Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4hhp2 Total loading time: 0 Render date: 2024-04-30T18:31:34.559Z Has data issue: false hasContentIssue false

Chapter Sixteen - Understanding individual life-histories and habitat choices: implications for explaining population patterns and processes

Published online by Cambridge University Press:  05 December 2012

Beat Naef-Daenzer
Affiliation:
Swiss Ornithological Institute
Robert J. Fuller
Affiliation:
British Trust for Ornithology, Norfolk
Get access

Summary

Prologue

The restoration of grey wolves Canis lupus to the Yellowstone ecosystem is one of the largest and best-monitored experiments addressing links between individual habitat use and processes at the population level. After some 70 wolf-free years, 31 wolves were released in 1995–1996, so that Yellowstone again hosts all native large carnivores. Although large efforts to predict the ecological effects of wolves had been made on the basis of extant evidence, models and expert knowledge (Mack and Singer, 1992; Boyce, 1993; Cook, 1993) no one expected that these few individuals would change so much of the ecosystem. After only a decade the re-introduction has given rise to manifold ecological changes. Many of these are related to individual behaviour of the new predator or individual responses of potential prey. Proximate impacts, such as predation on elk Cervus elaphus, the main prey, were as predicted (Boyce, 1993; Smith et al., 2003). It was a surprise, however, that the re-introduction of a top predator would so quickly influence Yellowstone’s vegetation. The presence of wolves had profound effects on the trophic web, operating remarkably fast and reaching down to primary production. Interestingly, these effects were mainly related to behavioural processes (such as habitat use and spatial distributions) rather than to demographic processes (for example, population sizes and survival rates) due to predation. How did these relatively few wolf individuals cause so many changes at various levels of the ecosystem? Primarily, as an anti-predator response, elk altered their habitat selection and use of resources. Simultaneous GPS tracking of wolves and elk revealed that the elk responded to the presence of wolves at a distance of up to 1 km. They moved into wooded areas, avoiding the open grassland (Creel et al., 2005). The vegetation responded quickly to the resulting relief from browsing, and various plant species re-colonised areas from which they were absent for decades, for example willows Salix spp. and aspen Populus spp. (Ripple et al., 2001; Ripple and Beschta, 2006; Beyer et al., 2007).

Type
Chapter
Information
Birds and Habitat
Relationships in Changing Landscapes
, pp. 408 - 431
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begon, M.Townsend, C. R.Harper, J. L. 2006 Ecology: From Individuals to EcosystemsOxfordBlackwell PublishingGoogle Scholar
Beyer, H. L.Merrill, E. H.Varley, N.Boyce, M. S. 2007 Willow on Yellowstone’s northern range: evidence for a trophic cascade?Ecol. Appl. 17 1563CrossRefGoogle ScholarPubMed
Bolger, D. T.Patten, M. A.Bostock, D. C. 2005 Avian reproductive failure in response to an extreme climatic eventOecologia 142 398CrossRefGoogle Scholar
Both, C.Artemyev, A. V.Blaauw, B. 2004 Large-scale geographical variation confirms that climate change causes birds to lay earlierProc. R. Soc. B 271 1657CrossRefGoogle ScholarPubMed
Boyce, M. S. 1993 Predicting the consequences of wolf recovery to ungulates in Yellowstone National ParkWildlife Soc. Bull. 24 402Google Scholar
Burnham, K. P.Anderson, D. R. 1998 Model Selection and Multimodel Inference. A Practical Information-theoretic ApproachNew YorkSpringerGoogle Scholar
Cadenasso, M. L.Pickett, S. T. A.Weathers, K. C. 2003 An interdisciplinary and synthetic approach to ecological boundariesBioScience 53 717CrossRefGoogle Scholar
Carbonell, R.Pérez-Tris, J.Tellería, J. L. 2003 Effects of habitat heterogeneity and local adaptation on the body condition of a forest passerine at the edge of its distributional rangeBiol. J. Linn. Soc. 78 479CrossRefGoogle Scholar
Caswell, H. 2001 Matrix Population Models. Construction, Analysis and InterpretationSunderland, MASinauer AssociatesGoogle Scholar
Charnov, E. L. 1976 Optimal foraging: attack strategy of a mantidAm. Nat. 110 141CrossRefGoogle Scholar
Cody, M. L. 1985 Habitat Selection in BirdsSan DiegoAcademic Press
Cook, R. S. 1993 Ecological Issues on Reintroducing Wolves into Yellowstone National ParkDenver, ColoradoNational Park ServiceGoogle Scholar
Coulson, T.Catchpole, E. A.Albon, S. D. 2001 Age, sex, density, winter weather and population crashes in Soay sheepScience 292 1528CrossRefGoogle ScholarPubMed
Crabtree, R. L.Sheldon, J. W. 1999 The ecological role of coyotes on Yellowstone’s northern rangeYellowstone Science 7 15Google Scholar
Creel, S.Winnie, Jr. J.Maxwell, B.Hamlin, K.Creel, M. 2005 Elk alter habitat selection as an antipredator response to wolvesEcology 86 3387CrossRefGoogle Scholar
Darwin, C. R. 1859 On the Origin of Species by Means of Natural Selection, or The Preservation of Favoured Races in the Struggle for LifeLondonJohn MurrayGoogle Scholar
Dingemanse, N. J.Both, C.Drent, P. J.Rutten, A. L.Tinbergen, J. M. 2003 Fitness consequences of avian personalities in a fluctuating environmentProc. R. Soc. B. 270 741CrossRefGoogle Scholar
Dingemanse, N. J.Réale, D. 2005 Natural selection and animal personalityBehaviour 142 1165CrossRefGoogle Scholar
Drent, P. J.van Oers, K.van Noordwijk, A. J. 2003 Realized heritability of personalities in the great tit ()Proc. R. Soc. B. 270 45CrossRefGoogle Scholar
Emlen, J. M. 1966 The role of time and energy in food preferenceAm. Nat. 100 611CrossRefGoogle Scholar
Frey, H. 1992 Die Wiedereinbürgerung des Bartgeiers () in die AlpenEgretta 35 85Google Scholar
Fuller, R. J.Gaston, K. J.Quine, C. P. 2007 Living on the edge: British and Irish woodland birds in a European contextIbis 149 53CrossRefGoogle Scholar
Grueber, C. E.Nakagawa, S.Laws, R. J.Jamieson, I. G. 2011 Multimodel inference in ecology and evolution: challenges and solutionsJ. Evol. Biol. 24 699CrossRefGoogle ScholarPubMed
Guisan, A.Zimmermann, N. E. 2000 Predictive habitat distribution models in ecologyEcol. Model. 135 147CrossRefGoogle Scholar
Hampe, A. 2004 Bioclimate envelope models: what they detect and what they hideGlobal Ecol. Biogeogr. 13 469CrossRefGoogle Scholar
Hastings, H. M.Sugihara, G. 1993 Fractals. A User’s Guide for the Natural SciencesOxfordOxford Science PublicationsGoogle Scholar
Hirzel, A. H.Bosse, B.Oggier, P.-A. 2004 Ecological requirements of reintroduced species and the implications for release policy: the case of the bearded vultureJ. Appl. Ecol. 41 1103CrossRefGoogle Scholar
Horn, D.Mitchell, R.Stairs, G. R. 1978 Analysis of Ecological SystemsColumbusOhio State University Press
Huntley, B.Green, R. E.Collingham, Y. C.Willis, S. G. 2007 A Climatic Atlas of European Breeding BirdsBarcelonaLynx edicionsGoogle Scholar
Hurrell, J. W. 1995 Decadal trends in the North Atlantic Oscillation and relationships to regional temperature and precipitationScience 269 676CrossRefGoogle Scholar
Hutchinson, G. E. 1953 The concept of pattern in ecologyP. Natl. Acad. Sci. 105 1Google Scholar
Kéry, M.Royle, A. J. 2008 Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveysJ. Appl. Ecol. 45 589CrossRefGoogle Scholar
Lebreton, J. D.Burnham, K. P.Clobert, J.Anderson, D. R. 1992 Modelling survival and testing biological hypotheses using marked animals: a unified approach with case studiesEcol. Monogr. 62 67CrossRefGoogle Scholar
Lebreton, J. D.Clobert, J. 1991 Bird population dynamics, management and conservation: the role of mathematical modellingBird Population StudiesPerrins, C. M.105OxfordOxford University PressGoogle Scholar
Low, M.Pärt, T. 2009 Patterns of mortality for each life-history stage in a population of the endangered New Zealand stitchbirdJ. Anim. Ecol. 78 761CrossRefGoogle Scholar
MacArthur, R. H. 1964 Environmental factors affecting bird species diversityAm. Nat. 68 387CrossRefGoogle Scholar
MacArthur, R. H. 1968 The theory of the nichePopulation Biology and EvolutionLewontin, R. C.159SyracuseSyracuse University PressGoogle Scholar
MacArthur, R. H.Pianka, E. R. 1966 On optimal use of a patchy habitatAm. Nat. 100 603CrossRefGoogle Scholar
MacArthur, R. H.Recher, H.Cody, M. 1966 On the relation between habitat selection and species diversityAm. Nat. 100 319CrossRefGoogle Scholar
Mack, J. A.Singer, F. 1992 Population models for elk, mule deer, and moose on Yellowstone’s northern winter rangeWolves for Yellowstone? Report to the US CongressVarley, J. D.Brewster, W. G.4/3Yellowstone National Park ServiceGoogle Scholar
Maggini, R.Lehmann, A.Kéry, M. 2011 Are Swiss birds tracking climate change? Detecting elevational shifts using response curve shapesEcol. Model. 222 21CrossRefGoogle Scholar
Martin, T. E. 2001 Abiotic vs. biotic influences on habitat selection of coexisting species: climate change impacts?Ecology 82 175CrossRefGoogle Scholar
Martin, T. E. 2007 Climate correlates of 20 years of trophic changes in a high-elevation riparian systemEcology 88 367CrossRefGoogle Scholar
Morrison, M. L.Hall, L. S. 2002 Standard terminology: toward a common language to advance ecological understanding and applicationPredicting Species Occurrences. Issues of Accuracy and ScaleScott, J. M.Heglund, P. J.Morrison, M. L.LondonIsland PressGoogle Scholar
Naef-Daenzer, B. 2000 Patch time allocation and patch sampling by foraging great and blue titsAnim. Behav. 59 989CrossRefGoogle ScholarPubMed
Naef-Daenzer, B.Luterbacher, J.Nuber, M.Rutishauser, T.Winkel, W. 2012 Cascading climate effects and related ecological consequences during past centuriesClim. Past Discuss. 8 2041CrossRefGoogle Scholar
Naef-Daenzer, B.Widmer, F.Nuber, M. 2001 Differential post-fledging survival of great and coal tits in relation to their condition and fledging dateJ. Anim. Ecol. 70 730CrossRefGoogle Scholar
Newton, I. 1998 Population Limitation in BirdsLondonAcademic PressGoogle Scholar
Perdeck, A. C.Visser, M. E.van Balen, J. H. 2000 Great tits survival and the beech-crop cycleArdea 88 99Google Scholar
Pérez-Tris, J.Carbonell, R.Tellería, J. L. 2000 Abundance distribution, morphological variation and juvenile condition of robins, , in their Mediterranean range boundaryJ. Biogeog. 27 879CrossRefGoogle Scholar
Perrins, C. M. 1991 Tits and their caterpillar food supplyIbis 133 49CrossRefGoogle Scholar
Perry, G.Pianka, E. R. 1997 Animal foraging: past, present and futureTrends Ecol. Evol. 12 360CrossRefGoogle ScholarPubMed
Pierce, G. J.Ollasen, J. G. 1987 Eight reasons why optimal foraging is a complete waste of timeOikos 49 111CrossRefGoogle Scholar
Polis, G. A.Power, M. E.Huxel, G. R. 2004 Food Webs at the Landscape LevelChicagoUniversity of Chicago PressGoogle Scholar
Ripple, W. J.Beschta, R. L. 2006 Linking wolves to willows via risk-sensitive foraging by ungulates in the northern Yellowstone ecosystemFor. Ecol. Manage. 230 96CrossRefGoogle Scholar
Ripple, W. J.Larsen, E. J.Renkin, R. A.Smith, D. W. 2001 Trophic cascades among wolves, elk and aspen on Yellowstone National Park’s northern rangeBiol. Conserv. 102 227CrossRefGoogle Scholar
Robinson, R. A. 2010 State of bird populations in Britain and IrelandSilent Summer: The State of Wildlife in Britain and IrelandMaclean, N.281CambridgeCambridge University PressCrossRefGoogle Scholar
Saether, B. E.Engen, S.Grøtan, V. 2007 The extended Moran effect and large-scale synchronous fluctuations in the size of great tit and blue tit populationsJ. Anim. Ecol. 76 315CrossRefGoogle ScholarPubMed
Saether, B. E.Engen, S.Møller, A. P. 2003 Climate variation and regional gradients in population dynamics of two hole-nesting passerinesProc. R. Soc. B. 270 2397CrossRefGoogle ScholarPubMed
Sauer, J. R.Hines, J. E.Fallon, J. 2008 The North American Breeding Bird Survey, Results and Analysis 1966–2007. Version 5.15.2008Laurel, MDUSGS Patuxent Wildlife Research CenterGoogle Scholar
Schaub, M.Zink, R.Beissmann, H.Sarrazin, F.Arlettaz, R. 2009 When to end releases in reintroduction programmes: demographic rates and population viability analysis of bearded vultures in the AlpsJ. Appl. Ecol. 46 92CrossRefGoogle Scholar
Schaub, M.Ullrich, B.Knötzsch, G.Albrecht, P.Meisser, C. 2006 Local population dynamics and the impact of scale and isolation: a study on different little owl populationsOikos 115 389CrossRefGoogle Scholar
Schoener, T. W. 1971 Theory of feeding strategiesAnnu. Rev. Ecol. Syst. 2 369CrossRefGoogle Scholar
Scott, J. M.Heglund, P. J.Morrison, M. L. 2002 Predicting Species Occurrences: Issues of Accuracy and ScaleIsland PressLondon
Skórka, P.Lenda, M.Martyka, R.Tworek, S. 2009 The use of metapopulation and optimal foraging theories to predict movement and foraging decisions of mobile animals in heterogeneous landscapesLandscape Ecol. 24 599CrossRefGoogle Scholar
Smith, D. W.Peterson, R. O.Houston, D. B. 2003 Yellowstone after wolvesBioScience 53 330CrossRefGoogle Scholar
Stahler, D.Heinrich, B.Smith, D. 2002 Common ravens, , preferentially associate with grey wolves, , as a foraging strategy in winterAnim. Behav. 64 283CrossRefGoogle Scholar
Stenseth, N. C.Ottersen, G.Hurrell, J. W. 2003 Studying climate effects on ecology through the use of climate indices: the North Atlantic oscillation, El Niño Southern Oscillation and beyondProc. R. Soc. B 270 2087CrossRefGoogle ScholarPubMed
Stephens, D. W.Krebs, J. R. 1986 Foraging TheoryPrincetonPrinceton University PressGoogle Scholar
Sutherland, W. J. 1996 From Individual Behaviour to Population EcologyOxfordOxford University PressGoogle Scholar
Tijms, H. C. 1986 Stochastic Modelling and Analysis: A Computational ApproachNew YorkWiley and SonsGoogle Scholar
Van Oers, K.Drent, P. J.de Goede, P.van Noordwijk, A. J. 2004 Repeatability and heritability of risk-taking behaviour in relation to avian personalitiesProc. R. Soc. B. 271 65CrossRefGoogle ScholarPubMed
Van Overveld, Th.Adriaensen, F.Matthysen, E. 2011 Post fledging family space use in great tits in relation to environmental and parental characteristicsBehav. Ecol. 22 899CrossRefGoogle Scholar
Verbeek, M. E. M.Drent, P. J.Wiepkema, P. R. 1994 Consistent individual differences in early exploratory behaviour of male great titsAnim. Behav. 48 1119CrossRefGoogle Scholar
Visser, M. E.Adriaensen, F.Van Balen, J. H. 2002 Variable responses to large-scale climate change in European populationsProc. R. Soc. B 270 367Google Scholar
Wilmers, C. C.Crabtree, R. L.Smith, D. W.Murphy, K. M.Getz, W. M. 2003 Trophic facilitation by introduced top predators: grey wolf subsidies to scavengers in Yellowstone National ParkJ. Anim. Ecol. 72 909CrossRefGoogle Scholar
Wilson, J. D.Evans, A. D.Grice, P. V. 2009 Bird Conservation and AgricultureCambridgeCambridge University PressGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×