Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-26T14:48:07.982Z Has data issue: false hasContentIssue false

Chapter 4 - Occipital and Parietal Lobes

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 33 - 55
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Select Bibliography

Critchley, M. (1953). The Parietal Lobes. London: Edward Arnold.Google Scholar
Hecaen, H., and Albert, M. L. (1978). Human Neuropsychology. New York, NY: Wiley.Google Scholar
Hyvarinen, J. (1982). The Parietal Cortex of Monkey and Man. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Lishman, W. A. (1987). Organic Psychiatry (2nd edn). Boston, MA: Blackwell Scientific.Google Scholar
Milner, A. D., and Goodale, M. A., (2006). The Visual Brain in Action (2nd edn). Oxford Psychology Series. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Siegel, A. M., Andersen, R. A., Freund, H-J., and Spencer, D. D. (Eds). (2003). The Parietal Lobes. Advances in Neurology, volume 93, Baltimore, MD: Lippincott Williams and Wilkins.Google Scholar
Tilney, F., and Riley, H. A. (1938). The Form and Functions of the Central Nervous System: An Introduction to the Study of Nervous Diseases (3rd edn). New York, NY: Hoeber.Google Scholar
Zeki, S., (1993). A Vision of the Brain. Boston, MA: Blackwell Scientific Publications.Google Scholar

References

Abraham, A., Werning, M., Rakoczy, H.,Yves von Cramon, D., and Schubotz, R. I. (2008). Minds, persons, and space: An fMRI investigation into the relational complexity of higher-order intentionality. Conscious. Cog., 17, 438450. doi:10.1016/j.concog.2008.03.011CrossRefGoogle ScholarPubMed
Aguirre, G. K., and D’Esposito, M. (1997). Environmental knowledge is subserved by separable dorsal/ventral neural areas. J. Neurosci., 17, 25122518. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/9065511Google Scholar
Alkire, M. T., Pomfrett, C. J. D., Haier, R. J., Gianzero, M. V., Chan, C. M., Jacobsen, B. P., and Fallon, J. H. (1999). Functional brain imaging during anesthesia in humans: Effects of halothane on global and regional cerebral glucose metabolism. Anesthesiology, 90, 701709. doi:10.1111/j.1399–6576.2010.02208.xGoogle Scholar
Anderson, S. W., and Rizzo, M. (1994). Hallucinations following occipital lobe damage: The pathological activation of visual representations. J. Clin. Exp. Neuropsychology, 16, 651653. doi:10.1080/01688639408402678Google Scholar
Arcizet, F., Mirpour, K., Foster, D. J., Charpentier, C. J., and Bisley, J. W. (2015). LIP activity in the inter-stimulus interval of a change detection task biases the behavioral response. J. Neurophysiol., 114(5), 26372648. doi:10.1152/jn.00604.2015Google Scholar
Bear, D. M. (1983). Hemispheric specialization and the neurology of emotion. Arch. Neurol., 40, 95202. doi:10.1001/archneur.1983.04050040025003CrossRefGoogle ScholarPubMed
Becker, H. G. T., Erb, M., and Haarmeier, T. (2009). Differential dependency on motion coherence in subregions of the human MT+ complex. Eur. J. Neurosci., 28, 16741685. doi:10.1111/j.1460–9568.2008.06457.xGoogle Scholar
Behrens, T. E. J., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshoutt, C. A. M., Boulby, P. A.,… Matthews, P. M. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci., 6, 750757. doi:10.1038/nn1075Google Scholar
Bottini, G., Paulesu, E., Gandola, M., Loffredo, S., Scarpa, P., Sterzi, R.,… Vallar, G. (2005). Left caloric vestibular stimulation ameliorates right hemianesthesia. Neurol., 65, 12781283. doi:1212/01.wnl.0000182398.14088.e8CrossRefGoogle ScholarPubMed
Bridge, H., Thomas, O., Jbabdi, S., and Cowey, A. (2008). Changes in connectivity after visual cortical brain damage underlie altered visual function. Brain, 131, 14331444. doi:10.1093/brain/awn063Google Scholar
Brieber, S., Neufang, S., Burning, N., Kamp-Becker, I., Remschmidt, H., Herpertz-Dahlmann, B.,… Konrad, K. (2007). Structural brain abnormalities in adolescents with autism spectrum disorder and patients with attention deficit/hyperactivity disorder. J. Child Psychol. & Psychiatry 48, 12511258. doi:10.1111/j.1469–7610.2007.01799.xCrossRefGoogle ScholarPubMed
Britten, K. H. (2008). Mechanisms of self-motion perception. Ann. Rev. Neurosci., 31, 389410. doi:10.1146/annurev.neuro.29.051605.112953Google Scholar
Buchsbaum, M. S., Wu, J., Haier, R., Hazlett, E., Ball, R., Katz, M.,… Langer, D. (1987). Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder. Life Sci. 40, 23932400. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/2884547CrossRefGoogle ScholarPubMed
Burgess, N., Becker, S., King, J. A., and O’Keefe, J. (2001). Memory for events and their spatial context: models and experiments. Philos. Trans. Roy. Soc. Lond. B Biol. Sci., 356, 14931503. doi:10.1098/rstb.2001.0948Google Scholar
Buschman, T. J., and Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 315, 18601862. doi:10.1126/science.1145017Google Scholar
Buxbaum, L. J., Kyle, K., Grossman, M., and Coslett, H. B. (2007). Left inferior parietal representations for skilled hand-object interactions: evidence from stroke and cortiobasal degeneration. Cortex, 4, 411423. doi:10.1016/S0010-9452(08)70466–0CrossRefGoogle Scholar
Buxbaum, L. J., Sirigu, A., Schwartz, M. F., and Klatzky, R. L. (2003). Cognitive representations of hand posture in ideomotor apraxia. Neuropsychologia, 41, 10911113. doi:10.1016/S0028-3932(02)00314–7Google Scholar
Caspers, S., Eickhoff, S. B., Geyer, S., Scheperjans, F., Mohlberg, H., Zilles, K., and Amunts, K. (2008). The human inferior parietal lobule in stereotaxic space. Brain Struct. Funct., 212, 481495. doi:10.1007/s00429-008–0195-zGoogle Scholar
Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., and Zilles, K. (2006). The human inferior parietal cortex: cytoarchitectonic parcellation in interindividual variability. Neuroimage, 33, 430448. doi:10.1016/j.neuroimage.2006.06.054Google Scholar
Cavanna, A. E. (2007). The precuneus and consciousness. CNS Spectrums, 12, 545552. doi:org/10.1017/S1092852900021295Google Scholar
Cavanna, A. E., and Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564583. doi:10.1093/brain/awl004Google Scholar
Chen, A., DeAngelis, G. C., and Angelaki, D. E. (2013). Functional specializations of the ventral intraparietal area for multisensory heading discrimination. J. Neurosci., 33, 35673581. doi:10.1523/JNEUROSCI.4522–12.2013Google Scholar
Chen, X., Sachdev, P. S., Wen, W., and Anstey, K. J. (2007). Sex differences in regional gray matter in healthy individuals aged 44–48 years: A voxel-based morphometric study. Neuroimage, 36, 691699. doi:10.1016/j.neuroimage.2007.03.063Google Scholar
Collette, F., Van der Linden, M., Laureys, S., Arigoni, F., Delfoiore, G., Degueldre, C. L. A., and Salmon, E. (2007). Mapping the updating process: common and specific brain activations across different versions of the running span task. Cortex, 43, 146158. doi:10.1016/S0010-9452(08)70452–0CrossRefGoogle ScholarPubMed
Committeri, G., Pitzalis, S., Galati, G., Patria, F., Pelle, G., Sabatini, U.,… Pizzamiglio, L. (2007). Neural bases of personal and extrapersonal neglect in humans. Brain, 130, 431441. doi:10.1093/brain/awl265Google Scholar
Corbetta, M., Patel, G., and Shulman, G. (2008). The reorienting system of the human brain: From environment to theory of mind. Neuron, 58, 306324. doi:10.3389/neuro.09.001.2007Google Scholar
Craggs, J. G., Sanchez, J., Kibby, M. Y., Gilger, J. W., and Hynd, G. W. (2006). Brain morphology and neuropsychological profiles in a family displaying dyslexia and superior nonverbal intelligence. Cortex, 42, 11071118. doi:10.1016/S0010-9452(08)70222–3Google Scholar
Critchley, M. (1964). The problem of visual agnosia. J. Neurol. Sci., 1, 274290.Google Scholar
David, N., Cohen, M. X., Newen, A., Bewernick, B. H., Shah, N. J., Fink, G. R., and Vogeley, K. (2007). The extrastriate cortex distinguishes between the consequences of one’s own and others’ behavior. Neuroimage, 36, 10041014. doi:10.1016/j.neuroimage.2007.03.030Google Scholar
Davis, S. W., Dennis, N. A., Daselaar, S. M., Fleck, M. S., and Cabeza, R. (2008). Qué PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18, 12011209. doi:10.1093/cercor/bhm155Google Scholar
Decety, J., and Chaminade, T. (2003). Neural correlates of feeling sympathy. Neuropsychologia, 41, 127138. doi:10.1016/S0028-3932(02)00143–4Google Scholar
Devinsky, O., Bear, D., and Volpe, B. T. (1988). Confusional states following posterior cerebral artery infarction. Arch. Neurol., 45, 160163. doi:10.1001/archneur.1988.00520260046018Google Scholar
Doricchi, F., Thiebaut de Schotten, M., Tomaiuolo, F., and Bartolomeo, P. (2008). White matter (dis)connections and gray matter (dys)functions in visual neglect: Gaining insights into the brain networks of spatial awareness. Cortex, 44, 983995. doi:10.1016/j.cortex.2008.03.006CrossRefGoogle ScholarPubMed
Drew, T., Anjujar, J-E., Lajoie, K., and Yakovenko, S. (2008). Cortical mechanisms involved in visuomotor coordination during precision walking. Brain Res. Rev., 57, 199211. doi:10.1016/j.brainresrev.2007.07.017Google Scholar
Eikhoff, S. B., Weiss, P. H., Amunts, K., Fink, G. R., and Zilles, K. 2006. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping. Hum. Brain Map., 27, 611621. doi:10.1002/hbm.20205Google Scholar
Ellison, A., and Cowey, A. (2007). Time course of the involvement of the ventral and dorsal visual processing streams in a visuospatial task. Neuropsychologia, 45, 33353339. doi:10.1016/j.neuropsychologia.2007.06.014CrossRefGoogle Scholar
Farrer, C., and Frith, C. D. (2002). Experiencing oneself vs another person as being the cause of an action: the neural correlates of the experience of agency. Neuroimage, 15, 96603. doi:10.1006/nimg.2001.1009Google Scholar
Felician, O., Romaiguère, P., Anton, J. L., Nazarian, B., Roth, M., Poncet, M., and Roll, J. P. (2004). The role of human left superior parietal lobule in body part localization. Ann. Neurol., 55, 749751. doi:10.1002/ana.20109Google Scholar
Frederikse, M., Lu, A., Aylward, E., Barta, P., Sharma, T., and Pearlson, G. (2000). Sex differences in inferior parietal lobule volume in schizophrenia. Am. J. Psychatry, 157, 422427. doi:10.1093/cercor/9.8.896Google Scholar
Fredrikson, M., Fischer, H., and Wik, G. (1997). Cerebral blood flow during anxiety provocation. J. Clin. Psychiatry, 58, (Suppl. 16), 1621. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/9430505Google ScholarPubMed
Gallagher, S. (2000). Philosophical conceptions of the self: Implications for cognitive science. Trends Cog. Sci., 4, 1421. doi:10.1016/S1364-6613(99)01417–5Google Scholar
Geschwind, N. (1965). Disconnection syndromes in animals and man. Part I and II. Brain, 88, 237294, 585644. doi:10.1093/brain/88.2.237 237Google Scholar
Gillebert, C. R., Mantini, D., Thijs, V., Sunaert, S., Dupont, P., and Vandenberghe, R. (2011). Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain. 134, 16941709. doi:10.1093/brain/awr085Google Scholar
Goldstein, J. M., Goodman, J. M., Seidman, L. J., Kennedy, D. N., Makris, N., Lee, H.,… Tsuang, M. T (1999). Cortical abnormalities in schizophrenia identified by structural magnetic resonance imaging. Arch. Gen. Psychatry, 56, 537547. doi:10–1001/pubs.Arch Gen Psychiatry-ISSN-0003-990x-56–6-yoa8195Google Scholar
Graziano, M. S. A., and Cooke, D. F. (2005). Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia, 44, 845859. doi:10.1016/j.neuropsychologia.2005.09.009Google Scholar
Grefkes, C., and Fink, G. R. (2005). The functional organization of the intraparietal sulcus in humans and monkeys. J. Anat., 207, 317. doi:10.1111/j.1469–7580.2005.00426.xGoogle Scholar
Grimsen, C., Hildebrandt, H., and Fahle, M. (2008). Dissociation of egocentric and allocentric coding of space in visual search after right middle cerebral artery stroke. Neuropsychologia, 46, 902914. doi:10.1016/j.neuropsychologia.2007.11.028CrossRefGoogle ScholarPubMed
Gündel, H., O’Connor, M-F., Littrell, L., Fort, C., and Lane, R. D. (2001). Functional neuroanatomy of grief: An fMRI study. Am. J. Psychiatry, 160, 19461953. doi.org/10.1176/appi.ajp.160.11.1946Google Scholar
Gusnard, D. A., and Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nat. Rev. Neurosci., 2, 685694. doi:10.1038/35094500Google Scholar
Haaland, K. Y., Harrington, D. L., and Knight, R. T. (2000). Neural representations of skilled movement. Brain, 123, 23062313. doi:10.1093/brain/123.11.2306Google Scholar
Hanakawa, T., Immisch, I., Toma, K, Dimyan, M. A., Van Gelderen, P., and Hallett, M. (2003). Functional properties of brain areas associated with motor execution and imagery. J. Neurophysiol., 89, 9891002. doi:10.1152/jn.00132.2002Google Scholar
Hecaen, H., and Albert, M. L. (1978). Human Neuropsychology. New York, NY: Wiley.Google Scholar
Heilman, K. M., and Rothi, L. J. G. (2003). Apraxia. In Heilman, K. M., and Valenstein, E. (Eds.) Clinical Neuropsychology. (pp. 215235). New York, NY: Oxford University Press.Google Scholar
Hermann, D., Smolka, M. N., Klein, S., Heinz, A., Mann, K., and Braus, D. F. (2007). Reduced fMRI activation of an occipital area in recently detoxified alcohol-dependent patients in a visual and acoustic paradigm. Addict. Biol., 12, 117121. doi:10.1111/j.1369–1600.2006.00039.xGoogle Scholar
Himmelbach, M., and Karnath, H-O. (2005). Dorsal and ventral stream interaction: contributions from optic ataxia. J. Cog. Neurosci., 17, 632640. doi:10.1162/0898929053467514Google Scholar
Himmelbach, M., Karnath, H.-O., Perenin, M.-T., Franz, V. H., and Stockmeier, K. (2006). A general deficit of the ‘automatic pilot’ with posterior parietal cortex lesions? Neuropsychologia, 44, 27492756. doi:10.1016/j.neuropsychologia.2006.04.030Google Scholar
Hobson, J. A., Pace-Schott, E. F., and Stickgold, R. (2000). Dreaming and the brain; toward a cognitive neuroscience of conscious states. Behav. Brain Sci., 23, 7931121. doi:10.1017/CBO9780511615511.003Google Scholar
Ipata, A. E., Gee, A. L., Goldberg, M. E., and Bisley, J. W. (2006). Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J. Neurosci., 26, 36563661. doi:10.1523/JNEUROSCI.5074–05.2006Google Scholar
Irle, E., Lange, E., Weniger, G., and Sachsse, U. (2007). Size abnormalities of the superior parietal cortices are related to dissociation in borderline personality disorder. Psychiatry Resh.: Neuroimaging, 156, 139149. doi:10.1016/j.pscychresns.2007.01.007Google Scholar
Isaacs, E. B., Edmonds, C. J., Lucas, A., and Gadian, D. G. (2001). Calculation difficulties in children of very low birthweight: A neural correlate. Brain, 124, 17011707. doi.org/10.1093/brain/124.9.1701Google Scholar
James, T. W., Culham, J., Humphrey, G. K., Milner, A. D., and Goodale, M. A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain, 126(11), 24632475. doi:10.1093/brain/awg248CrossRefGoogle Scholar
Karnath, H-O., and Perenin, M-T. (2005). Cortical control of visually guided reaching: evidence from patients with optic ataxia. Cereb. Cortex, 15, 15611569. doi:10.1093/cercor/bhi034Google Scholar
Kibby, M. Y., Kroese, J. M., Morgan, A-E., Hiemenz, J. R., Cohen, M. J., and Hynd, G. W. (2004). The relationship between perisylvian morphology and verbal short-term functioning in children with neurodevelopmental disorders. Brain Lang., 89, 122135. doi:10.1016/S0093-934X(03)00310–9Google Scholar
Kjaer, T. W., Nowak, M., and Lou, H. C. (2002). Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage, 17, 10801086. doi:10.1016/S1053-8119(02)91230–9Google Scholar
Koyama, M., Hasegawa, I., Osada, T., Adachi, Y., Nakahara, K., and Miyashita, Y. (2004). Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron, 41, 795807. doi:10.1016/S0896-6273(04)00047–9Google Scholar
Kumari, V., Aasen, I., Taylor, P., Ffytche, D. H., Das, M., Barkataki, I.,… Sharma, T. (2006). Neural dysfunction and violence in schizophrenia: an fMRI investigation. Schizophrenia Resh., 84, 144164. doi.org/10.1016/j.schres.2006.02.017Google Scholar
Lange, C., Kracht, L., Herholz, K., Sachsse, U., and Irle, E. (2005). Reduced glucose metabolism in temporo-parietal cortices of women with borderline personality disorder. Psychiatry Resh., 139, 115126. doi:10.1016/j.pscychresns.2005.05.003CrossRefGoogle ScholarPubMed
Laureys, S., Boly, M., and Maquet, P. (2006). Tracking the recovery of consciousness from coma. J. Clin, Invest., 116, 18231825. doi:10.1172/JCI29172Google Scholar
Laureys, S., Owen, A. M., and Schiff, N. D. (2004). Brain function in coma, vegetative state and related disorders. Lancet Neurol., 3, 537546. doi:10.1016/S1474-4422(04)00852-XGoogle Scholar
Laycock, R., Crewther, S. G., and Crewther, D. P. (2007). Attention orienting dysfunction during salient novel stimulus processing in schizophrenia. Schizophrenia Resh., 75, 159171. doi:10.1016/j.schres.2004.12.010Google Scholar
Lissek, S., Peters, S., Fuchs, N., Witthaus, H., Nicolas, V., Tegenthoff, M.,… Brüne, M. (2008). Cooperation and deception recruit different subsets of the theory-of-mind network. PLoS One, 3(4):e2023. doi:10.1371/journal.pone.0002023Google Scholar
Lou, H. C., Luber, B., Crupain, M., Keenan, J. P., Nowak, M., Kjaer, T. W.,… Lisanby, S. H. (2004). Parietal cortex and representation of the mental self. Proc. Natl. Acad. Sci. U.S.A., 101, 68276832. doi:10.1073/pnas.0400049101Google Scholar
Lustig, C., Snyder, A. Z., Bhakta, M., O’Brien, K. C., McAvoy, M., Raichle, M. E.,… Buckner, R. L. (2003). Functional deactivations: change with age and dementia of the Alzheimer type. Proc. Natl. Acad. Sci. U.S.A., 100, 1450414509. doi:10.1073/pnas.2235925100Google Scholar
Malouin, F., Richards, C. L., Jackson, P. L., Dumans, F., and Doyon, J. (2003). Brain activations during motor imagery of locomotor-related tasks: a PET study. Hum. Brain Mapp., 19, 4762. doi:0.1002/hbm.10103Google Scholar
Maruff, P., Wood, S. J., Velakoulis, D., Smith, D. J., Soulsby, B., Suckling, J.,… Pantelis, C. (2005). Reduced volume of parietal and frontal association areas in patients with schizophrenia characterized by passivity delusions. Psychol. Med., 35, 783789. doi:10.1017/S0033291704003113Google Scholar
Meltzoff, A. N., and Decety, J. (2003). What imitation tells us about social cognition: a rapprochement between developmental psychology and cognitive neuroscience. Philo. Trans. R. Soc. Lond. B Biol. Sci., 358, 491500. doi:10.1098/rstb.2002.1261Google Scholar
Mendez, M. F. (2000). Corticobasal ganglionic degeneration with Balint’s syndrome. J. Neuropsychiatry Clin. Neurosci. 12, 273275. Retrieved from: http://neuro.psychiatryonline.org/doi/pdf/10.1176/jnp.12.2.273Google Scholar
Mendez, M. F. (2001). Visuospatial deficits and preserved reading ability in a patient with posterior cortical atrophy. Cortex, 37, 535543. doi:10.1016/S0010-9452(08)70592–6Google Scholar
Molko, N., Cachia, A., Riviere, D., Mangin, J. R., Bruander, M., LeBihan, D.,… Dehaene, S. (2004). Brain anatomy in Turner Syndrome: Evidence for impaired social and spatial-numerical networks. Cerebral Cortex, 14, 840850. doi:10.1093/cercor/bhh042Google Scholar
Moores, K. A., Clark, C. R., McFarlane, A. C., Brown, G. C., Puce, A., and Taylor, D. J. (2008). Abnormal recruitment of working memory updating networks during maintenance of trauma-neutral information in post-traumatic stress disorder. Psychiatry Resh. Neuroimag., 163, 156170. doi.org/10.1016/j.pscychresns.2007.08.011Google Scholar
Morland, A. B., Le, S., Carroll, E., Hoffmann, M. B., and Pambakian, A. (2004). The role of spared calcarine cortex and lateral occipital cortex in the responses of human hemianopes to visual motion. J. Cogn. Neurosci., 16, 204218. doi:10.1162/089892904322984517Google Scholar
Moro, V., Urgesi, C., Pernigo, S., Lanteri, P., Pazzaglia, M., and Aglioti, S. M. (2008). The neural basis of body form and body action agnosia. Neuron, 60, 235246. doi:10.1016/j.neuron.2008.09.022Google Scholar
Mort, D. J., Malhotra, P., Mannan, S. K., Rorden, C., Pambakian, A., Kennard, C., and Husain, M. (2003). The anatomy of visual neglect. Brain, 126, 19861997. doi.org/10.1093/brain/awg200Google Scholar
Nagaratnam, N., Virk, S., and Brdarevic, O. 1996. Musical hallucinations associated with recurrence of a right occipital meningioma. Br. J. Clin. Pract., 50(1), 5657. Retrieved from www.ncbi.nlm.nih.gov/pubmed/8729606CrossRefGoogle ScholarPubMed
Naito, E., Scheperjans, F., Eickhoff, S. B., Amunts, K., Roland, P. E., Zilles, K., and Ehrsson, H. H. (2008). Human superior parietal lobule is involved in somatic perception of bimanual interaction with an external object. J. Neurophysiol., 99, 695703. doi:10.1152/jn.00529.2007Google Scholar
Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G., and Van Essen, D. C. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. J. Neurosci., 27, 1172511735. doi:10.1523/JNEUROSCI.0777–07.2007Google Scholar
Nudling, U., Ono, S., Mustari, M. J., Buttner, U., and Glasauer, S. (2008). Neural activity in cortical areas MST and FEF in relation to smooth pursuit gain control. Prog. Brain Resh., 171, 261264. doi:10.1016/S0079-6123(08)00636–5Google Scholar
O’Donnell, B. R., Bismark, A., Hetrick, W. P., Bodkins, M., Vohs, J. L., and Anatha, S. 2006. Early stage vision in schizophrenia and schizotypal personality disorder. Schizophrenia Resh., 86, 8998. doi:10.1016/j.schres.2006.05.016Google Scholar
Orban, G. A., (2008). Higher order visual processing in macaque extrastriate cortex. Physiological Rev., 88, 5989. doi:10.1152/physrev.00008.2007Google Scholar
Pa, J., and Hickok, G. (2007). A parietal-temporal sensory-motor integration area for the human vocal tract: Evidence from an fMRI study of skilled musicians. Neuropsychologia, 46, 362368. doi:10.1016/j.neuropsychologia.2007.06.024Google Scholar
Panayiotopoulos, C. P. (1999). Visual phenomena and headache in occipital epilepsy: a review, a systematic study and differentiation from migraine. Epileptic Disord., 1, 205216. doi:10.3349/ymj.2010.51.2.219Google Scholar
Pessoa, L, Kastner, S., and Ungerleider, L. (2002). Attentional control of the processing of neural and emotional stimuli. Brain Res., 15, 3145. doi:10.1016/S0926-6410(02)00214–8Google Scholar
Petreska, B., Adriani, M., Blanke, O., and Billard, A. G. (2007). Apraxia: A review. Prog. Brain Res., 164, 6183. doi:10.1016/S0079-6123(07)64004–7Google Scholar
Pisella, L., Grea, H. Tilikete, C., Vighetto, A., Desmurget, M., Rode, G.,… Rossetti, Y. (2000). An “automatic pilot” for the hand in human posterior parietal cortex, toward reinterpreting optic ataxia. Nat. Neurosci., 3, 729736. doi:10.1038/76694Google Scholar
Posner, M. I., and Dahaene, S. (1994). Attentional networks. Trends Neurosci., 17, 7579.Google Scholar
Pourtois, G., Grandjean, D., Sander, D., and Vuilleumier, P. (2004). Electrophysiological correlates of rapid spatial orienting towards fearful faces. Cerebral Cortex, 14, 619633. doi:10.1093/cercor/bhh023Google Scholar
Rainville, P., Hofbauer, R. K., Paus, T., Duncan, G. H., Bushnell, M. C., and Price, D. D. (1999). Cerebral mechanisms of hypnotic induction and suggestion. J. Cogn. Neurosci., 11, 110125. doi:10.1162/089892999563175Google Scholar
Redlich, F. C., and Dorsey, J. E. (1945). Denial of blindness by patients with cerebral disease. Arch. Neurol. Psychiatry 53, 407417. doi:10.1001/archneurpsyc.1945.02300060010002Google Scholar
Rees, G. (2008). The anatomy of blindsight. Brain, 131, 14141415. doi.org/10.1093/brain/awn089Google Scholar
Roy, A. C., Stefanini, S., Pavesi, G., and Gentilucci, M. (2004). Early movement impairments in a patient recovering from optic ataxia. Neuropsychologia 42, 847854. doi:10.1016/j.bandc.2015.01.006Google Scholar
Ruby, P., and Decety, J. (2001). Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nat. Neurosci. 4, 546550. doi:10.1038/87510Google Scholar
Ruby, P., Sirigu, A., and Decety, J. (2002). Distinct areas in parietal cortex involved in long-term and short-term action planning: a PET investigation. Cortex, 38, 321339. doi:10.1016/S0010-9452(08)70663–4Google Scholar
Santhouse, A. M., Howard, R. J., and ffytche, D. H. (2000). Visual hallucinatory syndromes and the anatomy of the visual brain. Brain, 123, 20552064. doi.org/10.1093/brain/123.10.2055Google Scholar
Saxe, R. (2006). Uniquely human social cognition. Cur. Opin. Neurobiol., 16, 235239. doi:10.1016/j.conb.2006.03.001Google Scholar
Schmahl, C., Bohus, M., Esposito, F., Treede, R. D., Di Salle, F., Greffrath, W.,… Seifritz, E. (2006). Neural correlates of antinociception in borderline personality disorder. Arch. Gen. Psychiatry, 63, 659667. doi:10.1001/archpsyc.63.6.659Google Scholar
Seidler, R. D., and Noll, D. C. (2008). Neuroanatomical correlates of motor acquisition and motor transfer. J. Neurophysiol. 99, 18361845. doi:10.1152/jn.01187.2007Google Scholar
Shapleske, J., Rossell, S. L., Chitnis, X. A., Suckling, J., Simmons, A., Bullmore, E. T.,… David, A. S. (2002). A computational morphometric MRI study of schizophrenia: effects of hallucinations. Cerebral Cortex, 12, 13311341. doi:10.1093/cercor/12.12.1331Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., and McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophrenia Resh. 49, 152. doi.org/10.1016/S0920–9964(01)00163–3CrossRefGoogle ScholarPubMed
Simon, O, Mangin, J. F., Cohen, L., Le Bihan, D., and Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33, 475487. doi:10.1016/S0896-6273(02)00575–5Google Scholar
Stoeckel, M. C., Weder, B., Binkofski, F., Choi, H-J., Amunts, K., Pieperhoff, P.,… Seitz, R. J. (2004). Left and right superior parietal lobule in tactile object discrimination. Eur. J. Neurosci. 19, 10671072. doi:10.1111/j.0953-816X.2004.03185.xGoogle Scholar
Tamietto, M., and de Gelder, B. (2007). Affective blindsight in the intact brain; neural interhemispheric summation for unseen fearful expressions. Neuropsychologia, 46, 820828. doi:org/10.1093/brain/awg037Google Scholar
Thiebaut de Schotten, M., Urbanski, M., Daffau, H., Volle, E, Lévy, R., Dubois, B., and Bartolomeo, P. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 309, 22262228. doi:10.1126/science.1116251Google Scholar
Troiani, V., and Robert, T. Schultz, R. T. (2013). Amygdala, pulvinar, and inferior parietal cortex contribute to early processing of faces without awareness. Front. Hum. Neurosci., 7, 241. doi:10.3389/fnhum.2013.00241Google Scholar
Tsutsui, K., Jiang, M., Sakata, H., and Taira, M. (2003). Short-term memory and perceptual decision for three-dimensional visual features in the caudal intraparietal sulcus (Area CIP). J. Neurosci., 23, 54865495. doi:10.1523/JNEUROSCI.073512.2012CrossRefGoogle ScholarPubMed
Vallar, G., Bottini, G., and Sterzi, R. (2003). Anosognosia for left-sided motor and sensory deficits, motor neglect, and sensory hemiinattention: is there a relationship? Prog. Brain Resh., 142, 289301. Retrieved from: www.ncbi.nlm.nih.gov/pubmed/12693268Google Scholar
Van Essen, D. C., Dierker, D., Snyder, A. Z., Raichle, M. E., Reiss, A. L., and Korenberg, J. (2006). Symmetry of cortical folding abnormalities in Williams syndrome revealed by surface-based analyses. J. Neuroscience, 26, 54705483. doi:10.1523/JNEUROSCI.415405.2006Google Scholar
Vingerhoets, G. (2008). Knowing about tools: Neural correlates of too familiarity and experience. Neuroimage, 40, 13801391. doi:10.1016/j.neuroimage.2007.12.058Google Scholar
Vogeley, K., and Fink, G. R. (2003). Neural correlates of the first-person-perspective. Trends Cogn. Sci., 7, 3842. doi:10.1186/1471–2202-15–39Google Scholar
Vossel, S., Geng, J. J., and Fink, G. R. (2014). Dorsal and ventral attention systems. Neuroscientist, 20(2), 150159. doi:10.1177/1073858413494269Google Scholar
Vostrikov, V. M., Kolomeets, N. S., and Uranova, N. A. (2014). Deficit of perineuronal oligodendrocytes in the inferior parietal lobule is associated with lack of insight in schizophrenia. Eur. J. Psychiat., 28(2), 114123. doi.org/10.4321/S0213-61632014000200005Google Scholar
Weiskrantz, L. (2004). Roots of blindsight. Prog. Brain Resh., 144, 229241. doi:10.1016/S0079-6123(03)14416–0Google Scholar
Whalley, H. C., Simonotto, E., Flett, S., Marshall, L., Ebmeier, K. P., Owens, D. G. C.,… Lawrie, S. M. (2004). fMRI correlates of state and trait effects in subjects at genetically enhanced risk of schizophrenia. Brain, 127, 478490. doi.org/10.1093/brain/awh070Google Scholar
Wheaton, L. A. (2007). Parietal representations for hand-object interactions. J. Neuroscience, 27, 969970. doi:10.1523/JNEUROSCI.5332–06.2007Google Scholar
Wik, G., Fredrikson, M., Ericson, K., Eriksson, L., Stone-Elander, S., and Grieitz, T. (1992). A functional cerebral response to frightening visual stimulation. Psychiatry Res.: Neuroimaging, 50, 1524. doi:org/10.1016/0925–4927(93)90020-IGoogle Scholar
Wilkinson, F. (2004). Auras and other hallucinations: Windows on the visual brain. Prog. Brain Resh., 144, 305320. doi:10.3389/fncom.2015.00029Google Scholar
Williams, L. M., Das, P., Liddell, B. J., Kemp, A. H., Rennie, C. J., and Gordon, E. (2006). Mode of functional connectivity in amygdala pathways dissociates level of awareness for signals of fear. J. Neurosci., 26, 92649271. doi:10.1523/JNEUROSCI.1016–06.2006Google Scholar
Wolbers, T., Weiller, C., and Büchel, C. (2003). Contralateral coding of imagined body parts in the superior parietal lobe. Cereb. Cortex, 13, 392399. doi:10.1093/cercor/13.4.392Google Scholar
Yildiz, M., Borgwardt, S. J., and Berger, G. E. (2011). Parietal lobes in schizophrenia: do they matter? Schizophrenia Resh. Treat., ID 581686. doi:org/10.1155/2011/581686Google Scholar
Zhou, S-Y., Suzuki, M., Takahashi, T., Hagion, H., Kawasaki, Y., Matsui, M.,… Kurachi, M. (2007). Parietal lobe volume deficits in schizophrenia spectrum disorders. Schizophrenia Resh., 89, 3548. doi:10.1016/j.schres.2006.08.032Google Scholar
Zohar, J., Insel, T. R., Berman, K. F., Foa, E. B., Hill, J. L., and Weinberger, D. R. (1989). Anxiety and cerebral blood flow during behavioral challenge: Dissociation of central from peripheral and subjective measures. Arch. Gen. Psychiatry, 46, 505510. doi:10.1016/S1053-8119(03)00401–4Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×