Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-04-30T17:57:05.374Z Has data issue: false hasContentIssue false

9 - Environmental Pressures on Transgenerational Epigenetic Inheritance

An Evolutionary Development Mechanism Influencing Atypical Neurodevelopment in Autism?

from Part III - Evolution and Neuroscience

Published online by Cambridge University Press:  02 March 2020

Lance Workman
Affiliation:
University of South Wales
Will Reader
Affiliation:
Sheffield Hallam University
Jerome H. Barkow
Affiliation:
Dalhousie University, Nova Scotia
Get access

Summary

Research in developmental neuropsychiatric conditions has revealed morphological and functional divergences in the brain. In some cases, the divergences occur due to one or two highly penetrant genomic mutations. In case such as autism, mutations in varied sets of genes may produce a convergent autism behavioral phenotype. It is thus likely that there may be other forms of non-genomic regulation of gene expression during development affecting behavioral outcome. Epigenetic gene regulation is one such mechanism that can permanently switch on or switch off gene expression, and these epigenetic changes can be inherited from one cell stage to another during differentiation, mimicking the effects of genomic mutations. Epigenetic gene regulation occurring during early developmental stages of cellular differentiation, which are highly sensitive to environmental cues, is the primary mechanism responsible for the phenomenon known as evolutionary development or “evo-devo.” This chapter discusses these mechanisms in the context of autism and the environmental factors that influence it.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, T., & Zukin, R. S. (2008). Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Current Opinion in Pharmacology, 8, 5764.Google Scholar
Adhya, D., Swarup, V., Nowosiad, P., et al. (2018). Shared gene co-expression networks in autism from induced pluripotent stem cell (iPSC) neurons. bioRxiv, doi.org/10.1101/349415.Google Scholar
Amenduni, M., De Filippis, R., Cheung, A. Y., et al. (2011). iPS cells to model CDKL5-related disorders. European Journal of Human Genetics, 19, 12461255.Google Scholar
Ananiev, G., Williams, E. C., Li, H., & Chang, Q. (2011). Isogenic pairs of wild type and mutant induced pluripotent stem cell (iPSC) lines from Rett syndrome patients as in vitro disease model. PLoS ONE, 6, e25255.Google Scholar
Angoa-Perez, M., Jiang, H., Rodriguez, A. I., et al. (2006). Estrogen counteracts ozone-induced oxidative stress and nigral neuronal death. Neuroreport, 17, 629633.Google Scholar
APA (2013). Diagnostic and Statistical Manual of Mental Disorders (DSM-5®). Washington, DC: American Psychiatric Association Publishing.Google Scholar
Araneda, S., Commin, L., Atlagich, M., et al. (2008). VEGF overexpression in the astroglial cells of rat brainstem following ozone exposure. Neurotoxicology, 29, 920927.CrossRefGoogle ScholarPubMed
Arentsen, T., Raith, H., Qian, Y., Forssberg, H., & Diaz Heijtz, R. (2015). Host microbiota modulates development of social preference in mice. Microbial Ecology in Health and Disease, 26, 29719.Google Scholar
Audouze, K., & Grandjean, P. (2011). Application of computational systems biology to explore environmental toxicity hazards. Environmental Health Perspectives, 119, 17541759.CrossRefGoogle ScholarPubMed
Bakulski, K. M., Halladay, A., Hu, V. W., Mill, J., & Fallin, M. D. (2016). Epigenetic research in neuropsychiatric disorders: The “tissue issue”. Current Behavioral Neuroscience Reports, 3, 264274.Google Scholar
Bal, W., Liang, R., Lukszo, J., et al. (2000). Ni(II) specifically cleaves the C-terminal tail of the major variant of histone H2A and forms an oxidative damage-mediating complex with the cleaved-off octapeptide. Chemical Research in Toxicology, 13, 616624.CrossRefGoogle ScholarPubMed
Bao, A. M., & Swaab, D. F. (2011). Sexual differentiation of the human brain: relation to gender identity, sexual orientation and neuropsychiatric disorders. Frontiers in Neuroendocrinology, 32, 214226.Google Scholar
Bar-Nur, O., Caspi, I., & Benvenisty, N. (2012). Molecular analysis of FMR1 reactivation in fragile-X induced pluripotent stem cells and their neuronal derivatives. Journal of Molecular Cell Biology, 4, 180183.Google Scholar
Baron-Cohen, S., Lombardo, M. V., Auyeung, B., et al. (2011). Why are autism spectrum conditions more prevalent in males? PLoS Biology, 9, e1001081.Google Scholar
Baron-Cohen, S., Auyeung, B., Norgaard-Pedersen, B., et al. (2015). Elevated fetal steroidogenic activity in autism. Molecular Psychiatry, 20, 369376.CrossRefGoogle ScholarPubMed
Basu, S. N., Kollu, R., & Banerjee-Basu, S. (2009). AutDB: A gene reference resource for autism research. Nucleic Acids Researchearch, 37, D832D836.CrossRefGoogle ScholarPubMed
Becerra, T. A., Wilhelm, M., Olsen, J., Cockburn, M., & Ritz, B. (2013). Ambient air pollution and autism in Los Angeles County, California. Environmental Health Perspectives, 121, 380386.CrossRefGoogle ScholarPubMed
Bellavia, A., Urch, B., Speck, M., et al. (2013). DNA hypomethylation, ambient particulate matter, and increased blood pressure: findings from controlled human exposure experiments. Journal of the American Heart Association, 2, e000212.Google Scholar
Belton, J. M., McCord, R. P., Gibcus, J. H., et al. (2012). Hi-C: A comprehensive technique to capture the conformation of genomes. Methods, 58, 268276.Google Scholar
Berger, S. L., Kouzarides, T., Shiekhattar, R., & Shilatifard, A. (2009). An operational definition of epigenetics. Genes & Development, 23, 781783.CrossRefGoogle ScholarPubMed
Blanchard, K. S., Palmer, R. F., & Stein, Z. (2011). The value of ecologic studies: Mercury concentration in ambient air and the risk of autism. Reviews in Environmental Health, 26, 111118.CrossRefGoogle ScholarPubMed
Block, M. L., & Calderon-Garciduenas, L. (2009). Air pollution: Mechanisms of neuroinflammation and CNS disease. Trends in Neurosciences, 32, 506516.Google Scholar
Bollati, V., & Baccarelli, A. (2010). Environmental epigenetics. Heredity, 105, 105112.CrossRefGoogle ScholarPubMed
Borochov, N., Ausio, J., & Eisenberg, H. (1984). Interaction and conformational changes of chromatin with divalent ions. Nucleic Acids Research, 12, 30893096.Google Scholar
Bourassa, M. W., Alim, I., Bultman, S. J., & Ratan, R. R. (2016). Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neuroscience Letters, 625, 5663.CrossRefGoogle ScholarPubMed
Bourgeron, T. (2015). From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nature Reviews Neuroscience, 16, 551563.Google Scholar
Bravo, J. A., Forsythe, P., Chew, M. V., et al. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences, 108, 1605016055.Google Scholar
Breton, C. V., Salam, M. T., Wang, X., et al. (2012). Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environmental Health Perspectives, 120, 13201326.Google Scholar
Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y., & Greenleaf, W. J. (2013). Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nature Methods, 10, 12131218.Google Scholar
Byrum, S. D., Raman, A., Taverna, S. D., & Tackett, A. J. (2012). ChAP-MS: A method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Reports, 2, 198205.Google Scholar
Calderon-Garciduenas, L., Mora-Tiscareno, A., Ontiveros, E., et al. (2008a). Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs. Brain and Cognition, 68, 117127.CrossRefGoogle ScholarPubMed
Calderon-Garciduenas, L., Solt, A. C., Henriquez-Roldan, C., et al. (2008b). Long-term air pollution exposure is associated with neuroinflammation, an altered innate immune response, disruption of the blood–brain barrier, ultrafine particulate deposition, and accumulation of amyloid beta-42 and alpha-synuclein in children and young adults. Toxicologic Pathology, 36, 289310.Google Scholar
Carroll, S. B. (2008). Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell, 134, 2536.CrossRefGoogle Scholar
Castel, S. E., & Martienssen, R. A. (2013). RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nature Reviews Genetics, 14, 100112.CrossRefGoogle ScholarPubMed
Chaidez, V., Hansen, R. L., & Hertz-Picciotto, I. (2014). Gastrointestinal problems in children with autism, developmental delays or typical development. Journal of Autism and Developmental Disorders, 44, 11171127.Google Scholar
Chambers, S. M., Fasano, C. A., Papapetrou, E. P., et al. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology, 27, 275280.Google Scholar
Chen, H., Ke, Q., Kluz, T., Yan, Y., & Costa, M. (2006). Nickel ions increase histone H3 lysine 9 dimethylation and induce transgene silencing. Molecular and Cellular Biology, 26, 37283737.Google Scholar
Cheung, A. Y., Horvath, L. M., Grafodatskaya, D., et al. (2011). Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Human Molecular Genetics, 20, 21032115.CrossRefGoogle ScholarPubMed
Choi, G. B., Yim, Y. S., Wong, H., et al. (2016). The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science, 351, 933939.Google Scholar
Clarke, G., O’Mahony, S. M., Dinan, T. G., & Cryan, J. F. (2014). Priming for health: Gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatrica, 103, 812819.CrossRefGoogle ScholarPubMed
Coiro, P., Padmashri, R., Suresh, A., et al. (2015). Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders. Brain, Behavior, and Immunity, 50, 249258.Google Scholar
Coleman, M. (1976). The Autistic Syndromes. Amsterdam: North-Holland Publishing Company.Google Scholar
Cooper, G. S., Martin, S. A., Longnecker, M. P., Sandler, D. P., & Germolec, D. R. (2004). Associations between plasma DDE levels and immunologic measures in African-American farmers in North Carolina. Environmental Health Perspectives, 112, 10801084.Google Scholar
Corsini, E., Liesivuori, J., Vergieva, T., Van Loveren, H., & Colosio, C. (2008). Effects of pesticide exposure on the human immune system. Human & Experimental Toxicology, 27, 671680.CrossRefGoogle ScholarPubMed
Corsini, E., Sokooti, M., Galli, C. L., Moretto, A., & Colosio, C. (2013). Pesticide induced immunotoxicity in humans: A comprehensive review of the existing evidence. Toxicology, 307, 123135.Google Scholar
Crick, F. (1970). Central dogma of molecular biology. Nature, 227, 561563.CrossRefGoogle ScholarPubMed
Crumeyrolle-Arias, M., Jaglin, M., Bruneau, A., et al. (2014). Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinology, 42, 207217.Google Scholar
Dally, H., & Hartwig, A. (1997). Induction and repair inhibition of oxidative DNA damage by nickel(II) and cadmium(II) in mammalian cells. Carcinogenesis, 18, 10211026.Google Scholar
Davies, J. O., Oudelaar, A. M., Higgs, D. R., & Hughes, J. R. (2017). How best to identify chromosomal interactions: A comparison of approaches. Nature Methods, 14, 125134.Google Scholar
de Theije, C. G., Koelink, P. J., Korte-Bouws, G. A., et al. (2014a). Intestinal inflammation in a murine model of autism spectrum disorders. Brain, Behavior, and Immunity, 37, 240247.Google Scholar
de Theije, C. G., Wopereis, H., Ramadan, M., et al. (2014b). Altered gut microbiota and activity in a murine model of autism spectrum disorders. Brain, Behavior, and Immunity, 37, 197206.Google Scholar
De Vadder, F., Kovatcheva-Datchary, P., Goncalves, D., et al. (2014). Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell, 156, 8496.Google Scholar
Dekker, J., Rippe, K., Dekker, M., & Kleckner, N. (2002). Capturing chromosome conformation. Science, 295, 13061311.Google Scholar
DeRosa, B. A., Van Baaren, J. M., Dubey, G. K., et al. (2012). Derivation of autism spectrum disorder-specific induced pluripotent stem cells from peripheral blood mononuclear cells. Neuroscience Letters, 516, 914.Google Scholar
Desaulniers, D., Xiao, G. H., Lian, H., et al. (2009). Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. International Journal of Toxicology, 28, 294307.CrossRefGoogle ScholarPubMed
Desbonnet, L., Clarke, G., Shanahan, F., Dinan, T. G., & Cryan, J. F. (2014). Microbiota is essential for social development in the mouse. Molecular Psychiatry, 19, 146148.Google Scholar
Diaz Heijtz, R., Wang, S., Anuar, F., et al. (2011). Normal gut microbiota modulates brain development and behavior. Proceedings of the National Academy of Sciences, 108, 30473052.Google Scholar
Ding, H. T., Taur, Y., & Walkup, J. T. (2017). Gut microbiota and autism: Key concepts and findings. Journal of Autism and Developmental Disorders, 47, 480489.CrossRefGoogle ScholarPubMed
Doi, T., Puri, P., McCann, A., Bannigan, J., & Thompson, J. (2011). Epigenetic effect of cadmium on global de novo DNA hypomethylation in the cadmium-induced ventral body wall defect (VBWD) in the chick model. Toxicological Sciences, 120, 475480.Google Scholar
El-Ansary, A., & Al-Ayadhi, L. (2014). GABAergic/glutamatergic imbalance relative to excessive neuroinflammation in autism spectrum disorders. Journal of Neuroinflammation, 11, 189.Google Scholar
Emanuele, E., Orsi, P., Boso, M., et al. (2010). Low-grade endotoxemia in patients with severe autism. Neuroscience Letters, 471, 162165.Google Scholar
Favre, M. R., Barkat, T. R., Lamendola, D., et al. (2013). General developmental health in the VPA-rat model of autism. Frontiers in Behavioral Neuroscience, 7, 88.Google Scholar
Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13, 97109.Google Scholar
Finegold, S. M., Molitoris, D., Song, Y., et al. (2002). Gastrointestinal microflora studies in late-onset autism. Clinical Infectious Diseases, 35, S6S16.CrossRefGoogle ScholarPubMed
Foley, K. A., Ossenkopp, K. P., Kavaliers, M., & Macfabe, D. F. (2014). Pre- and neonatal exposure to lipopolysaccharide or the enteric metabolite, propionic acid, alters development and behavior in adolescent rats in a sexually dimorphic manner. PLoS ONE, 9, e87072.CrossRefGoogle ScholarPubMed
Fullwood, M. J., & Ruan, Y. (2009). ChIP-based methods for the identification of long-range chromatin interactions. Journal of Cellular Biochemistry, 107, 3039.Google Scholar
Fullwood, M. J., Liu, M. H., Pan, Y. F., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462, 5864.Google Scholar
Galloway, T., & Handy, R. (2003). Immunotoxicity of organophosphorous pesticides. Ecotoxicology, 12, 345363.Google Scholar
Gardener, H., Spiegelman, D., & Buka, S. L. (2009). Prenatal risk factors for autism: Comprehensive meta-analysis. British Journal of Psychiatry, 195, 714.Google Scholar
Gardener, H., Spiegelman, D., & Buka, S. L. (2011). Perinatal and neonatal risk factors for autism: A comprehensive meta-analysis. Pediatrics, 128, 344355.Google Scholar
Garry, V. F., Harkins, M. E., Erickson, L. L., et al. (2002). Birth defects, season of conception, and sex of children born to pesticide applicators living in the Red River Valley of Minnesota, USA. Environmental Health Perspectives, 110(Suppl. 3), 441449.Google Scholar
Gentile, S. (2014). Risks of neurobehavioral teratogenicity associated with prenatal exposure to valproate monotherapy: A systematic review with regulatory repercussions. CNS Spectrums, 19, 305315.CrossRefGoogle ScholarPubMed
Gerhart, J., & Kirschner, M. (1997). Cells, Embryos, and Evolution: Toward a Cellular and Developmental Understanding of Phenotypic Variation and Evolutionary Adaptability, Malden, MA: Blackwell Science.Google Scholar
Griesi-Oliveira, K., Acab, A., Gupta, A. R., et al. (2015). Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Molecular Psychiatry, 20, 13501365.Google Scholar
Gu, H., Smith, Z. D., Bock, C., et al. (2011). Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nature Protocols, 6, 468481.Google Scholar
Guevara-Guzman, R., Arriaga, V., Kendrick, K. M., et al. (2009). Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats. Neuroscience, 159, 940950.CrossRefGoogle ScholarPubMed
Guo, H., Zhu, P., Guo, F., et al. (2015). Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing. Nature Protocols, 10, 645659.Google Scholar
Gurer, H., & Ercal, N. (2000). Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biology and Medicine, 29, 927945.Google Scholar
Guzzi, G., & La Porta, C. A. (2008). Molecular mechanisms triggered by mercury. Toxicology, 244, 112.Google Scholar
Handy, D. E., Castro, R., & Loscalzo, J. (2011). Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation, 123, 21452156.Google Scholar
Hannon, E., Lunnon, K., Schalkwyk, L., & Mill, J. (2015). Interindividual methylomic variation across blood, cortex, and cerebellum: Implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics, 10, 10241032.Google Scholar
Hayashi, K. (1975). Distribution of histone F1 on calf thymus nucleohistone DNA. Journal of Molecular Biology, 94, 397408.CrossRefGoogle ScholarPubMed
He, Y., & Ecker, J. R. (2015). Non-CG methylation in the human genome. Annual Review of Genomics Human Genetics, 16, 5577.Google Scholar
Henikoff, S., & Shilatifard, A. (2011). Histone modification: Cause or cog? Trends in Genetics, 27, 389396.Google Scholar
Hermanowicz, A., & Kossman, S. (1984). Neutrophil function and infectious disease in workers occupationally exposed to phosphoorganic pesticides: Role of mononuclear-derived chemotactic factor for neutrophils. Clinical Immunology and Immunopathology, 33, 1322.Google Scholar
Hoffman, D. J., Heinz, G. H., Sileo, L., et al. (2000). Developmental toxicity of lead-contaminated sediment in Canada geese (Branta canadensis). Journal of Toxicology and Environmental Health A, 59, 235252.Google Scholar
Hormanseder, E., Simeone, A., Allen, G. E., et al. (2017). H3K4 methylation-dependent memory of somatic cell identity inhibits reprogramming and development of nuclear transfer embryos. Cell Stem Cell, 21, 135143.e6.Google Scholar
Hsiao, E. Y., McBride, S. W., Hsien, S., et al. (2013). Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell, 155, 14511463.Google Scholar
Hsieh, T. S., Fudenberg, G., Goloborodko, A., & Rando, O. J. (2016). Micro-C XL: Assaying chromosome conformation from the nucleosome to the entire genome. Nature Methods, 13, 10091011.Google Scholar
Hunaiti, A. A., & Soud, M. (2000). Effect of lead concentration on the level of glutathione, glutathione S-transferase, reductase and peroxidase in human blood. Science of the Total Environment, 248, 4550.CrossRefGoogle ScholarPubMed
Hurwitz, J. (2005). The discovery of RNA polymerase. Journal of Biological Chemistry, 280, 4247742485.Google Scholar
Ji, W., Yang, L., Yu, L., et al. (2008). Epigenetic silencing of O6-methylguanine DNA methyltransferase gene in NiS-transformed cells. Carcinogenesis, 29, 12671275.Google Scholar
Ji, H., Biagini Myers, J. M., Brandt, E. B., et al. (2016). Air pollution, epigenetics, and asthma. Allergy, Asthma & Clinical Immunology, 12, 51.Google Scholar
Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide mapping of in vivo protein–DNA interactions. Science, 316, 14971502.Google Scholar
Jomova, K., & Valko, M. (2011). Advances in metal-induced oxidative stress and human disease. Toxicology, 283, 6587.Google Scholar
Jyonouchi, H., Sun, S., & Le, H. (2001). Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. Journal of Neuroimmunology, 120, 170179.Google Scholar
Kalkbrenner, A. E., Daniels, J. L., Chen, J. C., et al. (2010). Perinatal exposure to hazardous air pollutants and autism spectrum disorders at age 8. Epidemiology, 21, 631641.CrossRefGoogle ScholarPubMed
Kang, D. W., Park, J. G., Ilhan, Z. E., et al. (2013). Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS ONE, 8, e68322.Google Scholar
Kanwal, R., Gupta, K., & Gupta, S. (2015). Cancer epigenetics: An introduction. Methods in Molecular Biology, 1238, 325.CrossRefGoogle ScholarPubMed
Karaczyn, A. A., Golebiowski, F., & Kasprzak, K. S. (2006). Ni(II) affects ubiquitination of core histones H2B and H2A. Experimental Cell Research, 312, 32523259.Google Scholar
Ke, Q., Ellen, T. P., & Costa, M. (2008). Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicology and Applied Pharmacology, 228, 190199.Google Scholar
Kim, K. C., Choi, C. S., Kim, J. W., et al. (2016). MeCP2 modulates sex differences in the postsynaptic development of the valproate animal model of autism. Molecular Neurobiology, 53, 4056.CrossRefGoogle ScholarPubMed
Kim, K. Y., Hysolli, E., & Park, I. H. (2011). Neuronal maturation defect in induced pluripotent stem cells from patients with Rett syndrome. Proceedings of the National Academy of Sciences, 108, 1416914174.Google Scholar
Kinney, D. K., Munir, K. M., Crowley, D. J., & Miller, A. M. (2008). Prenatal stress and risk for autism. Neuroscience & Biobehavioral Reviews, 32, 15191532.Google Scholar
Kobayashi, T., Matsuyama, T., Takeuchi, M., & Ito, S. (2016). Autism spectrum disorder and prenatal exposure to selective serotonin reuptake inhibitors: A systematic review and meta-analysis. Reproductive Toxicology, 65, 170178.CrossRefGoogle ScholarPubMed
Kosidou, K., Dalman, C., Widman, L., et al. (2016). Maternal polycystic ovary syndrome and the risk of autism spectrum disorders in the offspring: A population-based nationwide study in Sweden. Molecular Psychiatry, 21, 14411448.Google Scholar
Kratsman, N., Getselter, D., & Elliott, E. (2016). Sodium butyrate attenuates social behavior deficits and modifies the transcription of inhibitory/excitatory genes in the frontal cortex of an autism model. Neuropharmacology, 102, 136145.Google Scholar
Krey, J. F., Pasca, S. P., Shcheglovitov, A., et al. (2013). Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nature Neuroscience, 16, 201209.Google Scholar
Kuo, H. Y., & Liu, F. C. (2017). Valproic acid induces aberrant development of striatal compartments and corticostriatal pathways in a mouse model of autism spectrum disorder. FASEB Journal, 31, 44584472.Google Scholar
Kuo, M. H., & Allis, C. D. (1999). In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods, 19, 425433.Google Scholar
Lai, M. C., Lombardo, M. V., & Baron-Cohen, S. (2014). Autism. Lancet, 383, 896910.Google Scholar
Lancaster, M. A., Renner, M., Martin, C. A., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373379.Google Scholar
Lancaster, M. A., Corsini, N. S., Wolfinger, S., et al. (2017). Guided self-organization and cortical plate formation in human brain organoids. Nature Biotechnology, 35, 659666.CrossRefGoogle ScholarPubMed
Latchman, D. S. (1997). Transcription factors: An overview. International Journal of Biochemistry & Cell Biology, 29, 13051312.Google Scholar
Law, J. A., & Jacobsen, S. E. (2010). Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nature Reviews Genetics, 11, 204220.Google Scholar
Li, Q. (2007). New mechanism of organophosphorus pesticide-induced immunotoxicity. Journal of Nippon Medical School, 74, 7073.Google Scholar
Li, Q., Han, Y., Dy, A. B. C., & Hagerman, R. J. (2017). The gut microbiota and autism spectrum disorders. Frontiers in Cellular Neuroscience, 11, 120.CrossRefGoogle ScholarPubMed
Liang, J., Zhu, H., Li, C., et al. (2012). Neonatal exposure to benzo[a]pyrene decreases the levels of serum testosterone and histone H3K14 acetylation of the StAR promoter in the testes of SD rats. Toxicology, 302, 285291.Google Scholar
Lieberman-Aiden, E., van Berkum, N. L., Williams, L., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289293.Google Scholar
Lin, V. W., Baccarelli, A. A., & Burris, H. H. (2016). Epigenetics – A potential mediator between air pollution and preterm birth. Environmental Epigenetics, 2, dvv008.Google Scholar
Ling, Z., Zhu, Y., Tong, C., et al. (2006). Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Experimental Neurology, 199, 499512.Google Scholar
Lister, R., Mukamel, E. A., Nery, J. R., et al. (2013). Global epigenomic reconfiguration during mammalian brain development. Science, 341, 1237905.CrossRefGoogle ScholarPubMed
Long, T. C., Tajuba, J., Sama, P., et al. (2007). Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental Health Perspectives, 115, 16311637.CrossRefGoogle ScholarPubMed
M’Bemba-Meka, P., Lemieux, N., & Chakrabarti, S. K. (2007). Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes. Archives of Toxicology, 81, 8999.Google Scholar
Madisen, L., Krumm, A., Hebbes, T. R., & Groudine, M. (1998). The immunoglobulin heavy chain locus control region increases histone acetylation along linked c-myc genes. Molecular and Cellular Biology, 18, 62816292.Google Scholar
Madrigano, J., Baccarelli, A., Mittleman, M. A., et al. (2012). Air pollution and DNA methylation: Interaction by psychological factors in the VA Normative Aging Study. American Journal of Epidemiology, 176, 224232.Google Scholar
Manousakis, G., Jensen, M. B., Chacon, M. R., Sattin, J. A., & Levine, R. L. (2009). The interface between stroke and infectious disease: Infectious diseases leading to stroke and infections complicating stroke. Current Neurology and Neuroscience Reports, 9, 2834.Google Scholar
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M., & Greenberg, M. E. (1999). Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science, 286, 785790.Google Scholar
Marchetto, M. C., Carromeu, C., Acab, A., et al. (2010). A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell, 143, 527539.Google Scholar
Marchetto, M. C., Belinson, H., Tian, Y., et al. (2017). Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Molecular Psychiatry, 22, 820835.Google Scholar
Mariani, J., Coppola, G., Zhang, P., et al. (2015). FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell, 162, 375390.Google Scholar
Martinez-Zamudio, R., & Ha, H. C. (2011). Environmental epigenetics in metal exposure. Epigenetics, 6, 820827.Google Scholar
Mascetti, V. L., & Pedersen, R. A. (2016). Human–mouse chimerism validates human stem cell pluripotency. Cell Stem Cell, 18, 6772.Google Scholar
Masi, A., Quintana, D. S., Glozier, N., et al. (2015). Cytokine aberrations in autism spectrum disorder: A systematic review and meta-analysis. Molecular Psychiatry, 20, 440446.Google Scholar
McCanlies, E. C., Fekedulegn, D., Mnatsakanova, A., et al. (2012). Parental occupational exposures and autism spectrum disorder. Journal of Autism and Developmental Disorders, 42, 23232334.Google Scholar
McCarthy, M. M., & Nugent, B. M. (2013). Epigenetic contributions to hormonally-mediated sexual differentiation of the brain. Journal of Neuroendocrinology, 25, 11331140.Google Scholar
McConnachie, P. R., & Zahalsky, A. C. (1992). Immune alterations in humans exposed to the termiticide technical chlordane. Archives of Environmental Health, 47, 295301.Google Scholar
McCormick, H., Young, P. E., Hur, S. S. J., et al. (2017). Isogenic mice exhibit sexually-dimorphic DNA methylation patterns across multiple tissues. BMC Genomics, 18, 966.Google Scholar
McLachlan, J. A., Simpson, E., & Martin, M. (2006). Endocrine disrupters and female reproductive health. Best Practice & Research: Clinical Endocrinology & Metabolism, 20, 6375.Google Scholar
Mills, N. L., Donaldson, K., Hadoke, P. W., et al. (2009). Adverse cardiovascular effects of air pollution. Nature Clinical Practice Cardiovascular Medicine, 6, 3644.Google Scholar
Mittal, V. A., Ellman, L. M., & Cannon, T. D. (2008). Gene–environment interaction and covariation in schizophrenia: The role of obstetric complications. Schizophrenia Bulletin, 34, 10831094.Google Scholar
Modabbernia, A., Mollon, J., Boffetta, P., & Reichenberg, A. (2016). Impaired gas exchange at birth and risk of intellectual disability and autism: A meta-analysis. Journal of Autism and Developmental Disorders, 46, 18471859.Google Scholar
Modabbernia, A., Velthorst, E., & Reichenberg, A. (2017). Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Molecular Autism, 8, 13.Google Scholar
Mohle, L., Mattei, D., Heimesaat, M. M., et al. (2016). Ly6 C(Hi) monocytes provide a link between antibiotic-induced changes in gut microbiota and adult hippocampal neurogenesis. Cell Reports, 15, 19451956.Google Scholar
Muotri, A. R., Marchetto, M. C., Coufal, N. G., et al. (2010). L1 retrotransposition in neurons is modulated by MeCP2. Nature, 468, 443446.Google Scholar
Nagano, T., Lubling, Y., Stevens, T. J., et al. (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502, 5964.Google Scholar
Nardone, S., Sams, D. S., Zito, A., Reuveni, E., & Elliott, E. (2017). Dysregulation of cortical neuron DNA methylation profile in autism spectrum disorder. Cerebral Cortex, 27, 57395754.Google Scholar
Naumova, O. Y., Dozier, M., Dobrynin, P. V., et al. (2018). Developmental dynamics of the epigenome: A longitudinal study of three toddlers. Neurotoxicology and Teratology, 66, 125131.Google Scholar
Nemmar, A., & Inuwa, I. M. (2008). Diesel exhaust particles in blood trigger systemic and pulmonary morphological alterations. Toxicology Letters, 176, 2030.Google Scholar
Nwankwo, D. O., & Wilson, G. G. (1988). Cloning and expression of the MspI restriction and modification genes. Gene, 64, 18.Google Scholar
O’Neill, L. A., & Kaltschmidt, C. (1997). NF-kappa B: A crucial transcription factor for glial and neuronal cell function. Trends in Neurosciences, 20, 252258.Google Scholar
O’Roak, B. J., Deriziotis, P., Lee, C., et al. (2011). Exome sequencing in sporadic autism spectrum disorders identifies severe de novo mutations. Nature Genetics, 43, 585589.CrossRefGoogle ScholarPubMed
O’Roak, B. J., Vives, L., Girirajan, S., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246250.Google Scholar
Oberdorster, G., Sharp, Z., Atudorei, V., et al. (2004). Translocation of inhaled ultrafine particles to the brain. Inhalation Toxicology, 16, 437445.CrossRefGoogle ScholarPubMed
Onishchenko, N., Karpova, N., Sabri, F., Castren, E., & Ceccatelli, S. (2008). Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury. Journal of Neurochemistry, 106, 13781387.Google Scholar
Palmer, R. F., Blanchard, S., Stein, Z., Mandell, D., & Miller, C. (2006). Environmental mercury release, special education rates, and autism disorder: An ecological study of Texas. Health & Place, 12, 203209.Google Scholar
Palmer, R. F., Blanchard, S., & Wood, R. (2009). Proximity to point sources of environmental mercury release as a predictor of autism prevalence. Health & Place, 15, 1824.Google Scholar
Papp, B., & Plath, K. (2013). Epigenetics of reprogramming to induced pluripotency. Cell, 152, 13241343.Google Scholar
Parikshak, N. N., Luo, R., Zhang, A., et al. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 10081021.Google Scholar
Parikshak, N. N., Swarup, V., Belgard, T. G., et al. (2016). Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature, 540, 423427.Google Scholar
Parracho, H. M., Bingham, M. O., Gibson, G. R., & McCartney, A. L. (2005). Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. Journal of Medical Microbiology, 54, 987991.Google Scholar
Pasca, A. M., Sloan, S. A., Clarke, L. E., et al. (2015). Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nature Methods, 12, 671678.Google Scholar
Pasca, S. P., Portmann, T., Voineagu, I., et al. (2011). Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nature Medicine, 17, 16571662.Google Scholar
Patrick, L. (2006). Lead toxicity part II: The role of free radical damage and the use of antioxidants in the pathology and treatment of lead toxicity. Alternative Medicine Review, 11, 114127.Google Scholar
Pavanello, S., Pesatori, A. C., Dioni, L., et al. (2010). Shorter telomere length in peripheral blood lymphocytes of workers exposed to polycyclic aromatic hydrocarbons. Carcinogenesis, 31, 216221.Google Scholar
Pereyra-Munoz, N., Rugerio-Vargas, C., Angoa-Perez, M., Borgonio-Perez, G., & Rivas-Arancibia, S. (2006). Oxidative damage in substantia nigra and striatum of rats chronically exposed to ozone. Journal of Chemical Neuroanatomy, 31, 114123.Google Scholar
Perry, V. H., Cunningham, C., & Holmes, C. (2007). Systemic infections and inflammation affect chronic neurodegeneration. Nature Reviews Immunology, 7, 161167.Google Scholar
Persico, A. M., & Napolioni, V. (2013). Urinary p-cresol in autism spectrum disorder. Neurotoxicology and Teratology, 36, 8290.Google Scholar
Phillips, T. M. (2000). Assessing environmental exposure in children: Immunotoxicology screening. Journal of Exposure Analysis and Environmental Epidemiology, 10, 769775.Google Scholar
Pohl, A., Cassidy, S., Auyeung, B., & Baron-Cohen, S. (2014). Uncovering steroidopathy in women with autism: A latent class analysis. Molecular Autism, 5, 27.Google Scholar
Price, C. S., Thompson, W. W., Goodson, B., et al. (2010). Prenatal and infant exposure to thimerosal from vaccines and immunoglobulins and risk of autism. Pediatrics, 126, 656664.Google Scholar
Price, D. J., & Joshi, J. G. (1983). Ferritin. Binding of beryllium and other divalent metal ions. Journal of Biological Chemistry, 258, 1087310880.Google Scholar
Qin, L., Wu, X., Block, M. L., et al. (2007). Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 55, 453462.Google Scholar
Quadrato, G., Nguyen, T., Macosko, E. Z., et al. (2017). Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545, 4853.Google Scholar
Quigley, E. M. (2016). Leaky gut – Concept or clinical entity? Current Opinion in Gastroenterology, 32, 7479.Google Scholar
Ramani, V., Deng, X., Qiu, R., et al. (2017). Massively multiplex single-cell Hi-C. Nature Methods, 14, 263266.Google Scholar
Rammes, G., Steckler, T., Kresse, A., et al. (2000). Synaptic plasticity in the basolateral amygdala in transgenic mice expressing dominant-negative cAMP response element-binding protein (CREB) in forebrain. European Journal of Neuroscience, 12, 25342546.CrossRefGoogle ScholarPubMed
Rauh, V. A., Garfinkel, R., Perera, F. P., et al. (2006). Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics, 118, e1845e1859.Google Scholar
Ray, D. E., & Richards, P. G. (2001). The potential for toxic effects of chronic, low-dose exposure to organophosphates. Toxicology Letters, 120, 343351.Google Scholar
Reed, A., Dzon, L., Loganathan, B. G., & Whalen, M. M. (2004). Immunomodulation of human natural killer cell cytotoxic function by organochlorine pesticides. Human & Experimental Toxicology, 23, 463471.Google Scholar
Repetto, R., & Baliga, S. S. (1997). Pesticides and immunosuppression: The risks to public health. Health Policy and Planning, 12, 97106.Google Scholar
Rieder, R., Wisniewski, P. J., Alderman, B. L., & Campbell, S. C. (2017). Microbes and mental health: A review. Brain, Behavior, and Immunity, 66, 917.Google Scholar
Rivest, S., Lacroix, S., Vallieres, L., et al. (2000). How the blood talks to the brain parenchyma and the paraventricular nucleus of the hypothalamus during systemic inflammatory and infectious stimuli. Proceedings of the Society for Experimental Biology and Medicine, 223, 2238.Google Scholar
Roberts, A. L., Lyall, K., Hart, J. E., et al. (2013). Perinatal air pollutant exposures and autism spectrum disorder in the children of Nurses’ Health Study II participants. Environmental Health Perspectives, 121, 978984.Google Scholar
Roberts, E. M., & English, P. B. (2013). Bayesian modeling of time-dependent vulnerability to environmental hazards: An example using autism and pesticide data. Statistics in Medicine, 32, 23082319.Google Scholar
Roberts, E. M., English, P. B., Grether, J. K., et al. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environmental Health Perspectives, 115, 14821489.Google Scholar
Ronald, A., Pennell, C. E., & Whitehouse, A. J. (2010). Prenatal maternal stress associated with ADHD and autistic traits in early childhood. Frontiers in Psychology, 1, 223.Google Scholar
Rossignol, D. A., Genuis, S. J., & Frye, R. E. (2014). Environmental toxicants and autism spectrum disorders: A systematic review. Translational Psychiatry, 4, e360.Google Scholar
Rossnerova, A., Tulupova, E., Tabashidze, N., et al. (2013). Factors affecting the 27 K DNA methylation pattern in asthmatic and healthy children from locations with various environments. Mutation Research, 741 –742, 1826.Google Scholar
Rouhani, F., Kumasaka, N., de Brito, M. C., et al. (2014). Genetic background drives transcriptional variation in human induced pluripotent stem cells. PLoS Genetics, 10, e1004432.Google Scholar
Sanders, S. J., He, X., Willsey, A. J., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87, 12151233.Google Scholar
Sassone-Corsi, P., & Christen, Y. (2015). A Time for Metabolism and Hormones. New York: Springer Berlin Heidelberg.Google Scholar
Schaalan, M. F., Abdelraouf, S. M., Mohamed, W. A., & Hassanein, F. S. (2012). Correlation between maternal milk and infant serum levels of chlorinated pesticides (CP) and the impact of elevated CP on bleeding tendency and immune status in some infants in Egypt. Journal of Immunotoxicology, 9, 1524.Google Scholar
Sen, A., Sherr, C. J., & Todaro, G. J. (1976). Specific binding of the type C viral core protein p12 with purified viral RNA. Cell, 7, 2132.Google Scholar
Sharon, G., Sampson, T. R., Geschwind, D. H., & Mazmanian, S. K. (2016). The central nervous system and the gut microbiome. Cell, 167, 915932.Google Scholar
Sheldon, A. L., & Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51, 333355.CrossRefGoogle ScholarPubMed
Sheridan, S. D., Theriault, K. M., Reis, S. A., et al. (2011). Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS ONE, 6, e26203.Google Scholar
Shi, L., Fatemi, S. H., Sidwell, R. W., & Patterson, P. H. (2003). Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. Journal of Neuroscience, 23, 297302.Google Scholar
Shi, Y., Kirwan, P., & Livesey, F. J. (2012). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7, 18361846.Google Scholar
Shutoh, Y., Takeda, M., Ohtsuka, R., et al. (2009). Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: Implication of hormesis-like effects. Journal of Toxicological Sciences, 34, 469482.CrossRefGoogle ScholarPubMed
Silveyra, P., & Floros, J. (2012). Air pollution and epigenetics: Effects on SP-A and innate host defence in the lung. Swiss Medical Weekly, 142, w13579.Google Scholar
Sofer, T., Baccarelli, A., Cantone, L., et al. (2013). Exposure to airborne particulate matter is associated with methylation pattern in the asthma pathway. Epigenomics, 5, 147154.Google Scholar
Somji, S., Garrett, S. H., Toni, C., et al. (2011). Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells. Cancer Cell International, 11, 2.Google Scholar
Song, C., Kanthasamy, A., Anantharam, V., Sun, F., & Kanthasamy, A. G. (2010). Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: Relevance to epigenetic mechanisms of neurodegeneration. Molecular Pharmacology, 77, 621632.Google Scholar
Song, C., Kanthasamy, A., Jin, H., Anantharam, V., & Kanthasamy, A. G. (2011). Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology, 32, 586595.Google Scholar
Song, Y., Liu, C., & Finegold, S. M. (2004). Real-time PCR quantitation of clostridia in feces of autistic children. Applied and Environmental Microbiology, 70, 64596465.Google Scholar
Stouder, C., & Paoloni-Giacobino, A. (2011). Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction, 141, 207216.Google Scholar
Stroud, H., Su, S. C., Hrvatin, S., et al. (2017). Early-life gene expression in neurons modulates lasting epigenetic states. Cell, 171, 11511164.e16.Google Scholar
Sun, W., Poschmann, J., Cruz-Herrera Del Rosario, R., et al. (2016). Histone acetylome-wide association study of autism spectrum disorder. Cell, 167, 13851397.e11.Google Scholar
Suzuki, K., Matsuzaki, H., Iwata, K., et al. (2011). Plasma cytokine profiles in subjects with high-functioning autism spectrum disorders. PLoS ONE, 6, e20470.Google Scholar
Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663676.Google Scholar
Takahashi, K., Tanabe, K., Ohnuki, M., et al. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861872.Google Scholar
Takiguchi, M., Achanzar, W. E., Qu, W., Li, G., & Waalkes, M. P. (2003). Effects of cadmium on DNA-(cytosine-5) methyltransferase activity and DNA methylation status during cadmium-induced cellular transformation. Experimental Cell Research, 286, 355365.Google Scholar
Tang, S. C., Sheu, G. T., Wong, R. H., et al. (2010). Expression of glutathione S-transferase M2 in stage I/II non-small cell lung cancer and alleviation of DNA damage exposure to benzo[a]pyrene. Toxicology Letters, 192, 316323.Google Scholar
Thomson, E. M., Kumarathasan, P., Calderon-Garciduenas, L., & Vincent, R. (2007). Air pollution alters brain and pituitary endothelin-1 and inducible nitric oxide synthase gene expression. Environmental Research, 105, 224233.Google Scholar
Tin Tin Win, S., Mitsushima, D., Yamamoto, S., et al. (2008). Changes in neurotransmitter levels and proinflammatory cytokine mRNA expressions in the mice olfactory bulb following nanoparticle exposure. Toxicology and Applied Pharmacology, 226, 192198.Google Scholar
Tomova, A., Husarova, V., Lakatosova, S., et al. (2015). Gastrointestinal microbiota in children with autism in Slovakia. Physiology & Behavior, 138, 179187.Google Scholar
Tsai, H. W., Grant, P. A., & Rissman, E. F. (2009). Sex differences in histone modifications in the neonatal mouse brain. Epigenetics, 4, 4753.Google Scholar
Ulahannan, N., & Greally, J. M. (2015). Genome-wide assays that identify and quantify modified cytosines in human disease studies. Epigenetics & Chromatin, 8, 5.Google Scholar
Urich, M. A., Nery, J. R., Lister, R., Schmitz, R. J., & Ecker, J. R. (2015). MethylC-seq library preparation for base-resolution whole-genome bisulfite sequencing. Nature Protocols, 10, 475483.Google Scholar
Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: Toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science Health, Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 26, 339362.Google Scholar
Vardabasso, C., Hasson, D., Ratnakumar, K., et al. (2014). Histone variants: Emerging players in cancer biology. Cellular and Molecular Life Sciences, 71, 379404.Google Scholar
Vine, M. F., Stein, L., Weigle, K., et al. (2000). Effects on the immune system associated with living near a pesticide dump site. Environmental Health Perspectives, 108, 11131124.Google Scholar
Voineagu, I., Wang, X., Johnston, P., et al. (2011). Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature, 474, 380384.Google Scholar
Volk, H. E., Hertz-Picciotto, I., Delwiche, L., Lurmann, F., & McConnell, R. (2011). Residential proximity to freeways and autism in the CHARGE study. Environmental Health Perspectives, 119, 873877.Google Scholar
Volk, H. E., Lurmann, F., Penfold, B., Hertz-Picciotto, I., & McConnell, R. (2013). Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry, 70, 7177.Google Scholar
Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81, 411423.Google Scholar
Waalkes, M. P. (2000). Cadmium carcinogenesis in review. Journal of Inorganic Biochemistry, 79, 241244.Google Scholar
Wang, B., Feng, W. Y., Wang, M., et al. (2007). Transport of intranasally instilled fine Fe2O3 particles into the brain: Micro-distribution, chemical states, and histopathological observation. Biological Trace Element Research, 118, 233243.Google Scholar
Wang, J., Liu, Y., Jiao, F., et al. (2008). Time-dependent translocation and potential impairment on central nervous system by intranasally instilled TiO2 nanoparticles. Toxicology, 254, 8290.Google Scholar
Wang, L., Christophersen, C. T., Sorich, M. J., et al. (2012). Elevated fecal short chain fatty acid and ammonia concentrations in children with autism spectrum disorder. Digestive Diseases and Sciences, 57, 20962102.Google Scholar
Wang, L., Christophersen, C. T., Sorich, M. J., et al. (2013). Increased abundance of Sutterella spp. and Ruminococcus torques in feces of children with autism spectrum disorder. Molecular Autism, 4, 42.Google Scholar
Warren, N., Caric, D., Pratt, T., et al. (1999). The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex. Cerebral Cortex, 9, 627635.Google Scholar
Watjen, W., & Beyersmann, D. (2004). Cadmium-induced apoptosis in C6 glioma cells: Influence of oxidative stress. Biometals, 17, 6578.Google Scholar
Wigle, D. T., Arbuckle, T. E., Turner, M. C., et al. (2008). Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. Journal of Toxicology and Environmental Health, Part B: Critical Reviews, 11, 373517.Google Scholar
Williams, B. L., Hornig, M., Buie, T., et al. (2011). Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS ONE, 6, e24585.Google Scholar
Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., & Grether, J. K. (2006). Autism spectrum disorders in relation to distribution of hazardous air pollutants in the San Francisco Bay Area. Environmental Health Perspectives, 114, 14381444.Google Scholar
Wright, R. O., Schwartz, J., Wright, R. J., et al. (2010). Biomarkers of lead exposure and DNA methylation within retrotransposons. Environmental Health Perspectives, 118, 790795.Google Scholar
Wu, S., Wu, F., Ding, Y., et al. (2017). Advanced parental age and autism risk in children: A systematic review and meta-analysis. Acta Psychiatrica Scandinavica, 135, 2941.Google Scholar
Xu, N., Li, X., & Zhong, Y. (2015). Inflammatory cytokines: Potential biomarkers of immunologic dysfunction in autism spectrum disorders. Mediators of Inflammation, 2015, 531518.Google Scholar
Xu, Q. S., Roberts, R. J., & Guo, H. C. (2005). Two crystal forms of the restriction enzyme MspI-DNA complex show the same novel structure. Protein Science, 14, 25902600.Google Scholar
Yan, Y., Kluz, T., Zhang, P., Chen, H. B., & Costa, M. (2003). Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicology and Applied Pharmacology, 190, 272277.Google Scholar
Ye, F., & Xu, X. C. (2010). Benzo[a]pyrene diol epoxide suppresses retinoic acid receptor-beta2 expression by recruiting DNA (cytosine-5-)-methyltransferase 3A. Molecular Cancer, 9, 93.Google Scholar
Yoshimasu, K., Kiyohara, C., Takemura, S., & Nakai, K. (2014). A meta-analysis of the evidence on the impact of prenatal and early infancy exposures to mercury on autism and attention deficit/hyperactivity disorder in the childhood. Neurotoxicology, 44, 121131.Google Scholar
Zama, A. M., & Uzumcu, M. (2009). Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes. Endocrinology, 150, 46814691.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×