Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-lvtpz Total loading time: 0 Render date: 2025-12-20T03:36:00.674Z Has data issue: false hasContentIssue false

3 - Networks and Multimodalities underlying Language Processing in the Brain

Evidence from Structural and Functional Neuroimaging

from Part II - Neuroimaging Studies of Brain and Language

Published online by Cambridge University Press:  12 December 2025

Edna Andrews
Affiliation:
Duke University, North Carolina
Swathi Kiran
Affiliation:
Boston University
Get access

Summary

The emergence of robust accessibility to functional neuroimaging in the late 1990s and early 2000s provided a new way to study language processing in the human brain, the most common techniques being PET and fMRI studies. Prior to this moment, neural language mappings were tied to invasive procedures in surgery and pathology, where CSM (cortical stimulation mapping) was one of the primary sources of data. Reframing approaches to understanding language processing in the brain allowed for closer ties between the cognitive neurosciences and linguistic theory, as well as new perspectives of multimodalities, resting state functional connectivity, and embodied cognition. Here we explore the range of outcomes in functional and structural neuroimaging studies focusing on language processing in the brain, including studies of bi- and multilingualism. The chapter concludes with a discussion of some of the central challenges in neuroimaging studies of language(s), including software and inter-method discrepancies, protocol design, proficiency measurements, and ecological validity.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abutalebi, J. (2008). Neural processing of second language representation and control. Acta Psychologica, 128, 466478.10.1016/j.actpsy.2008.03.014CrossRefGoogle Scholar
Abutalebi, J., Canini, M., Della Rosa, P. A., Green, D. W., & Weekes, B. S. (2015). The neuroprotective effects of bilingualism upon the inferior parietal lobule: A structural neuroimaging study in aging Chinese bilinguals. Journal of Neurolinguistics, 33, 313.10.1016/j.jneuroling.2014.09.008CrossRefGoogle Scholar
Abutalebi, J., Della Rosa, P. A., Ding, G., Weekes, B., Costa, A., & Green, D. W. (2013). Language proficiency modulates the engagement of cognitive control areas in multilinguals. Cortex, 49, 905911.10.1016/j.cortex.2012.08.018CrossRefGoogle ScholarPubMed
Abutalebi, J., Della Rosa, P. A., Green, D. W., Hernandez, M., Scifo, P., Keim, R., et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cerebral Cortex, 22(9), 20762086.10.1093/cercor/bhr287CrossRefGoogle ScholarPubMed
Abutalebi, J., & Green, D. (2007). Bilingual language production: The neurocognition of language representation and control. Journal of Neurolinguistics, 20, 242275.10.1016/j.jneuroling.2006.10.003CrossRefGoogle Scholar
Abutalebi, J., & Green, D. W. (2016). Neuroimaging of language control in bilinguals: Neural adaptation and reserve. Bilingualism: Language and Cognition, 19(4): 689698.10.1017/S1366728916000225CrossRefGoogle Scholar
Abutalebi, J., Guidi, L., Borsa, V., Canini, M., Della Rosa, P.A., Parris, B.A., & Weekes, B.S. (2015). Bilingualism provides a neural reserve for aging populations. Neuropsychologia, 69, 201201.10.1016/j.neuropsychologia.2015.01.040CrossRefGoogle ScholarPubMed
Abutalebi, J., Tettamanti, M., & Perani, D. (2009). The bilingual brain: Linguistic and non-linguistic skills. Brain and Language, 109, 5154.10.1016/j.bandl.2009.04.001CrossRefGoogle ScholarPubMed
Anderson, J. A. E., Grundy, J. G., De Frutos, J., Barker, R. M., Grady, C., & Bialystok, E. (2018). Effects of bilingualism on white matter integrity in older adults. Neuroimage, 167, 143150.10.1016/j.neuroimage.2017.11.038CrossRefGoogle Scholar
Andrews, E. (2011). Language and brain: Recasting meaning in the definition of human language. Semiotica, 184(1/4), 1132.Google Scholar
Andrews, E. (2014). Neuroscience and Multilingualism. Cambridge University Press.10.1017/CBO9781139567770CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2021). Effects of lifelong musicianship on white matter integrity and cognitive brain reserve. Brain Sci, 11, 67.10.3390/brainsci11010067CrossRefGoogle Scholar
Andrews, E., Eierud, C., Banks, D., Harshbarger, T., Michael, A., & Rammell, C. (2023). DTI analysis of white matter integrity and cognitive brain reserve in lifelong musicians and controls. J Psychiatry Psychiatric Disord, 7(2), 6779.10.26502/jppd.2572-519X0187CrossRefGoogle Scholar
Andrews, E., Frigau, L., Voyvodic‐Casabo, C., Voyvodic, J., & Wright, J. (2013). Multilingualism and fMRI: Longitudinal study of second language acquisition. Brain Sciences, 3(2), 849876.10.3390/brainsci3020849CrossRefGoogle ScholarPubMed
Andrews, E., Harshbarger, T., & Rammell, C. S. (2019). Multilingual listening and reading: An fMRI study of Russian/English and Spanish/English bilinguals. Glossos, 14.Google Scholar
Ben Shalom, D., & D. Poeppel, D. (2008). Functional anatomic models of language: Assembling the pieces. The Neuroscientist, 14(1), 119127.10.1177/1073858407305726CrossRefGoogle Scholar
Bhatia, Tej K., & Ritchie, W. C. (2006). The Handbook of Bilingualism. Blackwell Publishing.10.1002/9780470756997CrossRefGoogle Scholar
Bialystok, E., Craik, F.I.M., & Freedman, M. (2007). Bilingualism as a protection against the onset of symptoms of dementia. Neuropsychologia, 45, 459464.10.1016/j.neuropsychologia.2006.10.009CrossRefGoogle ScholarPubMed
Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353362.10.1523/JNEUROSCI.17-01-00353.1997CrossRefGoogle ScholarPubMed
Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796.10.1093/cercor/bhp055CrossRefGoogle Scholar
Binder, J. R., & Price, C. J. (2001). Functional neuroimaging of language. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 187251). MIT Press.Google Scholar
Billiet, T., Vandenbulcke, M., Madler, B., et al. (2015). Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of Aging, 36, 21072121.10.1016/j.neurobiolaging.2015.02.029CrossRefGoogle ScholarPubMed
Birdsong, D. (2006). Age and second language acquisition and processing: A selective overview. Language Learning, 56, 949.10.1111/j.1467-9922.2006.00353.xCrossRefGoogle Scholar
Bolinger, D. (1949/1965). The sign is not arbitrary. Reprinted in Bolinger, D., Forms of English: Accent, Morpheme, Order. Edited by Abe, Isamu and Kanekiyo, Tetsuya. Harvard University Press.Google Scholar
Bolinger, D. (1986). Intonation and Its Parts: Melody in Spoken English. Stanford University Press.Google Scholar
Bolinger, D. (1989). Intonation and Its Uses: Melody in Grammar and Discourse. Stanford University Press.10.1515/9781503623125CrossRefGoogle Scholar
Bookheimer, S. (2002). Function MRI of language: New approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151188.10.1146/annurev.neuro.25.112701.142946CrossRefGoogle ScholarPubMed
Buchel, C., Price, C., & Friston, K. (1998). A multimodal language region in the ventral visual pathway. Nature, 394, 274277.10.1038/28389CrossRefGoogle ScholarPubMed
Cabeza, R., & Kingstone, A. (Eds.) (2001). Handbook of Functional Neuroimaging of Cognition (pp. 2748). MIT Press.Google Scholar
Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 147.10.1162/08989290051137585CrossRefGoogle Scholar
Calvin, W. H., & Ojemann, G. A. (1994). Conversations with Neil’s Brain: The Neural Nature of Thought and Language. Addison-Wesley/Harper & Row.Google Scholar
Cargnelutti, E., Tomasino, B., & Fabbro, F. (2019). Language brain representation in bilinguals with different age of appropriation and proficiency of the second language: A meta-analysis of functional imaging studies. Frontiers in Human Neuroscience, 13, 154.10.3389/fnhum.2019.00154CrossRefGoogle Scholar
Coggins, P. E., Kennedy, T. J., & Armstrong, T. A. (2004). Bilingual corpus callosum variability. Brain Lang., 89, 6975.10.1016/S0093-934X(03)00299-2CrossRefGoogle ScholarPubMed
Corina, D. P., Loudermilk, B. C., Detwiler, L., Martin, R. F., Brinkley, J. F., & Ojemann, G. A. (2010). Analysis of naming erros during cortical stimulation mapping: Implications for models of language representation. Brain and Language, 115, 101112.10.1016/j.bandl.2010.04.001CrossRefGoogle Scholar
Cox, R. (2019). Equitable thresholding and clustering: A novel method for fMRI clustering in AFNI. Brain Connectivity, 9(7).10.1089/brain.2019.0666CrossRefGoogle ScholarPubMed
Craik, F. I., Bialystok, E., & Freedman, M. (2010). Delaying the onset of Alzheimer disease: Bilingualism as a form of cognitive reserve. Neurology, 75(19), 17261729.10.1212/WNL.0b013e3181fc2a1cCrossRefGoogle ScholarPubMed
de Bot, K. (2006). The plastic bilingual brain: Synaptic pruning or growth? Commentary on Green et al. In Gullberg, M. & Indefrey, P. (Eds.), The Cognitive Neuroscience of Second Language Acquisition (pp. 127132). Blackwell.Google Scholar
de Bot, K. (2008). The imaging of what in the bilingual mind? Second Language Research, 24(1), 111133.10.1177/0267658307083034CrossRefGoogle Scholar
de Bot, K. (2009). Multilingualism and aging. In Ritchie, W. C. & Bhatia, Tej K. (Eds.), The New Handbook of Second Language Acquisition (pp. 425442). Emerald Group Publishing Ltd.Google Scholar
Donald, M. (2004). The definition of human nature. In Rees, D. & Rose, S. (Eds.), The New Brain Sciences: Perils and Prospects (pp. 3458). Cambridge University Press.10.1017/CBO9780511541698.003CrossRefGoogle Scholar
Eierud, C., Michael, A., Banks, D., & Andrews, E. (2023). Resting-state functional connectivity in lifelong musicians. Psychoradiology, 3, 18.10.1093/psyrad/kkad003CrossRefGoogle ScholarPubMed
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 79007905.10.1073/pnas.1602413113CrossRefGoogle ScholarPubMed
Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P.T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 29072926.10.1002/hbm.20718CrossRefGoogle Scholar
ETS. (2007). The Official Guide to the New TOEFL IBT (3rd edition). McGraw Hill.Google Scholar
Fabbro, F. (1999). The Neurolinguistics of Bilingualism: An Introduction. Psychology Press.Google Scholar
Fabbro, F. (2001). The bilingual brain: Cerebral representation of languages. Brain and Language,79(2), 211222.10.1006/brln.2001.2481CrossRefGoogle ScholarPubMed
Felton, A., Vazquez, D., Ramos-Nunez, A. I., Greene, M. R., Macbeth, A., Hernandez, A. E., & Chiarello, C. (2017). Bilingualism influences structural indices of interhemispheric organization. Journal of Neurolinguistics, 2017(42), 111.10.1016/j.jneuroling.2016.10.004CrossRefGoogle Scholar
Friederici, A. D. (1998). The neurobiology of language comprehension. In Friederici, A. D. (Ed.), Language Comprehension: A Biological Perspective (pp. 263301). Springer.10.1007/978-3-642-97734-3_9CrossRefGoogle Scholar
Gallese, V., & Lakoff, G. (2005). The brain’s concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3/4), 455479.10.1080/02643290442000310CrossRefGoogle ScholarPubMed
Giorgio, A., Santelli, L., Tomassini, V., Bosnell, R., Smith, S., De Stefano, N., & Johansen-Berg, H. (2010). Age-related changes in grey and white matter structure throughout adulthood. Neuroimage, 51(3), 943951.10.1016/j.neuroimage.2010.03.004CrossRefGoogle ScholarPubMed
Grundy, J. G., Anderson, J. A. E., & Bialystok, E. (2017). Neural correlates of cognitive processing in monolinguals and bilinguals. Annals of the New York Academy of Sciences, 1396(1), 183201.10.1111/nyas.13333CrossRefGoogle ScholarPubMed
Guzmán-Vélez, E., & Tranel, D. (2015). Does bilingualism contribute to cognitive reserve? Cognitive and neural perspectives. Neuropsychology, 29, 139150.10.1037/neu0000105CrossRefGoogle ScholarPubMed
Hernandez, A. (2009). Language switching in the bilingual brain: What’s next?Brain and Language, 109, 133140.10.1016/j.bandl.2008.12.005CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: A framework for understanding aspects of the functional anatomy of language. Cognition, 92, 6799.10.1016/j.cognition.2003.10.011CrossRefGoogle ScholarPubMed
Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews, 8, 393402.10.1038/nrn2113CrossRefGoogle ScholarPubMed
Hodgson, V. J., Ralph, M. A. L., & Jackson, R. L. (2021). Multiple dimensions underlying the functional organization of the language network. NeuroImage, 241, 118444.10.1016/j.neuroimage.2021.118444CrossRefGoogle ScholarPubMed
Humphreys, G. F., & Lambon Ralph, M. A. (2015). Fusion and fission of cognitive functions in the human parietal cortex. Cerebral Cortex, 25(10), 35473560.10.1093/cercor/bhu198CrossRefGoogle ScholarPubMed
Instituto Cervantes. (n.d.). Preparar la prueba DELE. Retrieved from https://examenes.cervantes.es/es/dele/preparar-pruebaGoogle Scholar
Jackson, R. L. (2021). The neural correlates of semantic control revisited. NeuroImage, 224, 117444.10.1016/j.neuroimage.2020.117444CrossRefGoogle Scholar
Jakobson, R. (1985/1956). Metalanguage as a linguistic problem. In Rudy, S. (Ed.), Selected Writings VII (pp. 113121). Mouton.Google Scholar
Jakobson, R. (1987/1957). Linguistics and poetics. In Pomorska, K. & Rudy, S. (Eds.), Language in Literature (pp. 6294). Belknap Press of Harvard University Press.Google Scholar
Jakobson, R. (1985/1967). Language and culture. In Rudy, S. (Ed.), Selected Writings VII (pp.101111. Mouton.Google Scholar
Kotz, S. A. (2009). A critical review of ERP and fMRI evidence on L2 syntactic processing. Brain and Language, 109, 6874.10.1016/j.bandl.2008.06.002CrossRefGoogle ScholarPubMed
Kotz, S. A., & Schwartze, M. (2010). Cortical speech processing unplugged: A timely subcortico-cortical framework. Trends in Cognitive Sciences, 14(9), 392399.10.1016/j.tics.2010.06.005CrossRefGoogle ScholarPubMed
Lakoff, G., & Johnson, M. (1980). Metaphors We Live By. University of Chicago Press.Google Scholar
Lieberman, P. (2006). Towards an Evolutionary Biology of Language. Harvard University Press.Google Scholar
Liu, H., & Cao, F. (2016). L1 and L2 processing in the bilingual brain: A meta-analysis of neuroimaging studies. Brain and Language, 159, 6073.10.1016/j.bandl.2016.05.013CrossRefGoogle Scholar
Luk, G., Anderson, J. A., Craik, F. I., Grady, C., & Bialystok, E. (2010). Distinct neural correlates for two types of inhibition in bilinguals: Response inhibition versus interference suppression. Brain and Cognition, 74(3), 347357.10.1016/j.bandc.2010.09.004CrossRefGoogle ScholarPubMed
Luk, G., Bialystok, E., Craik, F. I. M., & Grady, C. L. (2011). Lifelong bilingualism maintains white matter integrity in older adults. Journal of Neuroscience, 31, 1680816813.10.1523/JNEUROSCI.4563-11.2011CrossRefGoogle ScholarPubMed
Luo, H., & Poeppel, D. (2007). Phase patterns of neuronal responses reliably discriminate speech in human auditory cortex. Neuron, 54, 10011010.10.1016/j.neuron.2007.06.004CrossRefGoogle ScholarPubMed
Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, 102(1–3), 5970.Google Scholar
Marek, S., Tervo-Clemmens, B., Calabro, F. J., Montez, D. F., Kay, B. P., Hatoum, A. S., et al. (2022). Reproducible brain-wide association studies require thousands of individuals. Nature, 603, 654660.10.1038/s41586-022-04492-9CrossRefGoogle ScholarPubMed
North, B. (2000). The Development of a Common Framework Scale of Language Proficiency. P. Lang.10.3726/978-1-4539-1059-7CrossRefGoogle Scholar
Ojemann, G. A. (1979). Individual variability in cortical localization of language. Brain and Language, 6, 239260.10.1016/0093-934X(78)90061-5CrossRefGoogle Scholar
Ojemann, G. A. (1983). Brain organization for language from the perspective of electrical stimulation mapping. Behavioral and Brain Sciences, 6(2), 189206.10.1017/S0140525X00015491CrossRefGoogle Scholar
Ojemann, G. A. (1987). Surgical therapy for medically intractable epilepsy. Journal of Neurosurgery, 66(4), 489499.10.3171/jns.1987.66.4.0489CrossRefGoogle ScholarPubMed
Ojemann, G. A. (1991). Cortical organization of language. The Journal of Neuroscience, 11(8), 22812287.10.1523/JNEUROSCI.11-08-02281.1991CrossRefGoogle ScholarPubMed
Ojemann, G. A. (1993). Functional mapping of cortical language areas in adults: Intraoperative approaches. Advances in Neurology, 63, 155163.Google ScholarPubMed
Ojemann, G. A. (2003). The neurobiology of language and verbal memory: Observations from awake neurosurgery. International Journal of Psychophysiology, 48(2), 141146.10.1016/S0167-8760(03)00051-5CrossRefGoogle ScholarPubMed
Ojemann, G. A., Corina, D. P., Corrigan, N., Schoenfield-McNeill, J., Poliakov, A., Zamora, L., Zanos, S. (2010). Neuronal correlates of functional magnetic resonance imaging in human temporal cortex. Brain, 33(I), 4659.10.1093/brain/awp227CrossRefGoogle Scholar
Ojemann, G. A., Ojemann, J., Lettich, E., & Berger, M. (1989). Cortical language localization in left, dominant hemisphere. Journal of Neurosurgery, 71(3), 316326.10.3171/jns.1989.71.3.0316CrossRefGoogle ScholarPubMed
Ojemann, G. A., & Whitaker, H. A. (1978). The bilingual brain. Archives of Neurology, 35(7), 409412.10.1001/archneur.1978.00500310011002CrossRefGoogle ScholarPubMed
Paradis, M. (2000). The neurolinguistics of bilingualism in the next decades. Brain and Language, 71, 178180.10.1006/brln.1999.2245CrossRefGoogle ScholarPubMed
Paradis, M. (2004). A Neurolinguistic Theory of Bilingualism. John Benjamins.10.1075/sibil.18CrossRefGoogle Scholar
Peirce, C. S. (1931–1958). Collected Papers of Charles Sanders Peirce, 1–8. Harvard University Press.Google Scholar
Peirce, C. S. (1957). Essays in the Philosophy of Science. Liberal Arts Press.Google Scholar
Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., et al. (1996). Brain processing of native and foreign languages. Neuroreport, 7(15), 24392444.10.1097/00001756-199611040-00007CrossRefGoogle ScholarPubMed
Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., Fracchetti, A., Magnani, G., March, A., & Abutalebi, J. (2017) The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer’s dementia. Proceedings of the National Academy of Science of USA, 114(7), 16901695.10.1073/pnas.1610909114CrossRefGoogle ScholarPubMed
Perani, D., Paulesu, E., Galles, N. S., Dupoux, E., Dehaene, S., Bettinardi, V., et al. (1998). The bilingual brain: Proficiency and age of acquisition of the second language. Brain, 121, 18411852.10.1093/brain/121.10.1841CrossRefGoogle ScholarPubMed
Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., et al. (2011). Neural language networks at birth. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 1605616061.10.1073/pnas.1102991108CrossRefGoogle ScholarPubMed
Pliatsikas, C. (2019). Multilingualism and brain plasticity. In Schwieter, J. W. & Paradis, M. (Eds.), The Handbook of the Neuroscience of Multilingualism (pp. 230251). Wiley Publishers.10.1002/9781119387725.ch11CrossRefGoogle Scholar
Pliatsikas, C. (2020). Understanding structural plasticity in the bilingual brain: The Dynamic Restructuring Model. Bilingualism: Language and Cognition, 23(2), 459471.10.1017/S1366728919000130CrossRefGoogle Scholar
Pliatsikas, C. (2023). Bilingualism and brain structure: Insights from healthy ageing and progressive neurodenegerative disease. In Luk, G. et al. (Eds.), Understanding Language and Cognition through Bilingualism: In Honor of Ellen Bialystok (pp. 301317). John Benjamins.10.1075/sibil.64.14pliCrossRefGoogle Scholar
Pliatsikas, C., DeLuca, V., Moschopoulou, E. et al. (2017). Immersive bilingualism reshapes the core of the brain. Brain Structure and Function, 222, 17851795.10.1007/s00429-016-1307-9CrossRefGoogle ScholarPubMed
Pliatsikas, C., Moschopoulou, E., & Saddy, J. D. (2015). The effects of bilingualism on the white matter structure of the brain. Proceedings of the National Academy of Sciences of the United States of America, 112, 13341337.10.1073/pnas.1414183112CrossRefGoogle ScholarPubMed
Poeppel, D. (1996). A critical review of PET studies of phonological processing. Brain and Language, 55(3), 317351.10.1006/brln.1996.0108CrossRefGoogle ScholarPubMed
Poeppel, D. (2008). The cartographic imperative: Confusing localization and explanation in human brain mapping. In Bredekamp, H., Bruhn, M., & Werner, G. (Eds.), Bildwelten des Wissens (Ikonographie des Gehirns) (pp. 121) Akademie Verlag.Google Scholar
Poeppel, D., & Embick, D. (2005). Defining the relation between linguistics and neuroscience. In Cutler, A. (Ed.), Twenty-First Century Psycholinguistics (pp. 103111). Four Cornerstones.Google Scholar
Poeppel, D., & Hickok, G. (2004). Towards a new functional anatomy of language. Cognition, 92, 112.10.1016/j.cognition.2003.11.001CrossRefGoogle ScholarPubMed
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197, 335359.10.1046/j.1469-7580.2000.19730335.xCrossRefGoogle ScholarPubMed
Price, C. (2010). The anatomy of language: A review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 6288.10.1111/j.1749-6632.2010.05444.xCrossRefGoogle Scholar
Raichle, M. (2001). Functional neuroimaging: A historical and physiological perspective. In Cabeza, R. & Kingstone, A. (Eds.), Handbook of Functional Neuroimaging of Cognition (pp. 326). MIT Press.Google Scholar
Raichle, M. (2006). The brain’s dark energy. Science, 314, 12491250.Google ScholarPubMed
Raichle, M. (2010). Two views of brain function. Trends in Cognitive Sciences, 14(4), 180190.10.1016/j.tics.2010.01.008CrossRefGoogle ScholarPubMed
Raichle, M. (2011). The restless brain. Brain Connectivity, 1, 312.10.1089/brain.2011.0019CrossRefGoogle ScholarPubMed
Raichle, M. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433447.10.1146/annurev-neuro-071013-014030CrossRefGoogle ScholarPubMed
Raichle, M. E., & Gusnard, D. A. (2005). Intrinsic brain activity sets the stage for expression of motivated behavior. Journal of Comparative Neurology, 493, 167176.10.1002/cne.20752CrossRefGoogle ScholarPubMed
Rammell, C. S., Cheng, H., Pisoni, D. B., & Newman, S. D. (2019). L2 speech perception in noise: An fMRI study of advanced Spanish learners. Brain Research, 1720, 146316.10.1016/j.brainres.2019.146316CrossRefGoogle ScholarPubMed
Rathee, R., Rallabandi, V. P., & Roy, P. K. (2016). Age-related differences in white matter integrity in healthy human brain: Evidence from structural MRI and diffusion tensor imaging. Magnetic Resonance Insights, 9, 920.10.4137/MRI.S39666CrossRefGoogle Scholar
Savan, D. (1980). Abduction and semiotics. In Rauch, I. & Carr, G. (Eds.), The Signifying Animal (pp. 252262). Indiana University Press.Google Scholar
Schirmer, A., Fox, P. M., & Grandjean, D. (2012). On the spatial organization of sound processing in the human temporal lobe: A meta-analysis. Neuroimage, 63(1), 137147.10.1016/j.neuroimage.2012.06.025CrossRefGoogle ScholarPubMed
Sebastian, R., Laird, A., & Kiran, S. (2011). Meta-analysis of the neural representation of first language and second language. Applied Psycholinguistics, 32(4), 799819.10.1017/S0142716411000075CrossRefGoogle Scholar
Sobolev, O., & Nesterova, T. (2014). Oral communication in the framework of cognitive fluency: Developing and testing spoken Russian within the TORFL system. Language Learning in Higher Education: Journal of the European Confederation of Language Centres in Higher Education (CercleS),3(2), 271282.Google Scholar
Stowe, L.A., Haverkort, M., & Zwarts, F. (2005). Rethinking the neurological basis of language. Lingua, 115, 9971042.10.1016/j.lingua.2004.01.013CrossRefGoogle Scholar
Sulpizio, S., Del Maschio, N., Fedeli, D., & Abutalebi, J. (2020). Bilingual language processing: A meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 108, 834853.10.1016/j.neubiorev.2019.12.014CrossRefGoogle ScholarPubMed
Tagarelli, K. M., Shattuck, K. F., Turkeltaub, P. E., & Ullman, M. T. (2019). Language learning in the adult brain: A neuroanatomical meta-analysis of lexical and grammatical learning. Neuroimage, 193, 178200.10.1016/j.neuroimage.2019.02.061CrossRefGoogle Scholar
Tang, Y., Nyengaard, J. R., Pakkenberg, B., & Gundersen, H. J. G. (1997). Age-induced white matter changes in the human brain: A stereological investigation. Neurobiology of Aging, 18(6), 609615.10.1016/S0197-4580(97)00155-3CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta‐analysis of the functional neuroanatomy of single‐word reading: Method and validation. Neuroimage, 16, 765780.10.1006/nimg.2002.1131CrossRefGoogle ScholarPubMed
Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 113.10.1002/hbm.21186CrossRefGoogle ScholarPubMed
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36, 441454.10.1017/S0033291705006264CrossRefGoogle ScholarPubMed
Vigneau, M., Beaucousin, V., Hervé, P. Y., Duffau, H., Crivello, F., Houde, O., et al. (2006). Meta-analyzing left hemisphere language areas: Phonology, semantics, and sentence processing. Neuroimage, 30(4), 14141432.10.1016/j.neuroimage.2005.11.002CrossRefGoogle ScholarPubMed
Vigneau, M., Beaucousin, V., Hervé, P. Y., Jobard, G., Petit, L., Crivello, F., et al. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage, 54(1), 577593.10.1016/j.neuroimage.2010.07.036CrossRefGoogle ScholarPubMed
Westlye, L.T., Walhovd, K. B., Dale, A. M., Bjørnerud, A., Due-Tønnessen, A., Engvig, A., et al. (2010). Life-span changes of the human brain white matter: Diffusion tensor imaging (DTI) and volumetry. Cerebral Cortex, 20(9), 20552068.10.1093/cercor/bhp280CrossRefGoogle ScholarPubMed
Zatorre, R. J. (1989). On the representation of multiple languages in the brain: Old problems and new directions. Brain and Language, 36(1), 127147.10.1016/0093-934X(89)90056-4CrossRefGoogle ScholarPubMed
Zatorre, R. J., Meyer, E., Gjedde, A., & Evans, A. C. (1996). PET studies of phonetic processing of speech: Review, replication, and reanalysis. Cerebral Cortex, 6, 2130.10.1093/cercor/6.1.21CrossRefGoogle ScholarPubMed
Zou, L., Guosheng, D., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of left caudate in bimodal bilinguals. Cortex, 48(9), 11971206.10.1016/j.cortex.2011.05.022CrossRefGoogle ScholarPubMed

Accessibility standard: WCAG 2.2 AAA

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and attains the highest (AAA) level of WCAG compliance, optimising the user experience by meeting the most extensive accessibility guidelines.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.
Full alternative textual descriptions
You get more than just short alt text: you have comprehensive text equivalents, transcripts, captions, or audio descriptions for substantial non‐text content, which is especially helpful for complex visuals or multimedia.

Visual Accessibility

Use of colour is not sole means of conveying information
You will still understand key ideas or prompts without relying solely on colour, which is especially helpful if you have colour vision deficiencies.
Use of high contrast between text and background colour
You benefit from high‐contrast text, which improves legibility if you have low vision or if you are reading in less‐than‐ideal lighting conditions.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×