Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T17:34:58.369Z Has data issue: false hasContentIssue false

12 - Behavioral and Molecular Genetics

from Part III - Experimental and Biological Approaches

Published online by Cambridge University Press:  23 March 2020

Aidan G. C. Wright
Affiliation:
University of Pittsburgh
Michael N. Hallquist
Affiliation:
Pennsylvania State University
Get access

Summary

Behavioral genetic research unequivocally supports the influence of both genetic and environmental factors on psychopathology risk. Decomposition of the sources of these influences has largely been carried out using twin and adoption studies. Building off the results of these studies, molecular genetic methodologies have come to dominate the field with the goal of identifying genetic variants that causally influence psychopathology risk. The chapter summarizes the logic of both quantitative and molecular genetic methods as well as their major findings as related to clinical psychology. Traditional and modern methods for estimating heritability based on familial relationships are described. From there the challenge of finding causal genetic variants in the context of polygenic phenotypes, including psychopathology, emerges. The chapter concludes by discussing the interaction between genes and the environment as well as future directions in the field, including rare variant analysis and epigenetics. An emphasis is placed on interpretation of results and limitations of past and current methodologies. Behavioral genetic research has produced strong results regarding the importance of genetic factors on psychopathology while also highlighting the influence of the environment. Uncovering the causal sources of these effects remains a young but active area of research.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., … Abecasis, G. R. (2015). A Global Reference for Human Genetic Variation. Nature, 526(7571), 6874.Google ScholarPubMed
Addington, A. M., & Rapoport, J. L. (2012). Annual Research Review: Impact of Advances in Genetics in Understanding Developmental Psychopathology. Journal of Child Psychology and Psychiatry, 53(5), 510518.Google Scholar
Anastasi, A. (1958). Heredity, Environment, and the Question How? Psychological Review, 65(4), 197208.CrossRefGoogle ScholarPubMed
Andrew, T., Hart, D. J., Snieder, H., Lange, M. de, Spector, T. D., & MacGregor, A. J. (2001). Are Twins and Singletons Comparable? A Study of Disease-Related and Lifestyle Characteristics in Adult Women. Twin Research and Human Genetics, 4(6), 464477.CrossRefGoogle ScholarPubMed
Antonarakis, S. E., & Beckmann, J. S. (2006). Mendelian Disorders Deserve More Attention. Nature Reviews Genetics, 7(4), 277282.Google Scholar
Arranz, M. J., & de Leon, J. (2007). Pharmacogenetics and Pharmacogenomics of Schizophrenia: A Review of Last Decade of Research. Molecular Psychiatry, 12(8), 707747.CrossRefGoogle ScholarPubMed
Autism Spectrum Disorders Working Group of the Psychiatric Genomics Consortium. (2017). Meta-analysis of GWAS of over 16,000 Individuals with Autism Spectrum Disorder Highlights a Novel Locus at 10q24.32 and a Significant Overlap with Schizophrenia. Molecular Autism, 8, 21.Google Scholar
Bassett, A. S., & Chow, E. W. C. (2008). Schizophrenia and 22q11.2 Deletion Syndrome. Current Psychiatry Reports, 10(2), 148157.Google Scholar
Bin, Xu, Roos, J. L., Levy, S., van Rensburg, E. J., Gogos, J. A., & Karayiorgou, M. (2008). Strong Association of De Novo Copy Number Mutations with Sporadic Schizophrenia. Nature Genetics, 40(7), 880885.Google Scholar
Boomsma, D., Busjahn, A., & Peltonen, L. (2002). Classical Twin Studies and Beyond. Nature Reviews Genetics, 3(11), 872882.Google Scholar
Boraska, V., Franklin, C. S., Floyd, J. a. B., Thornton, L. M., Huckins, L. M., Southam, L., … Bulik, C. M. (2014). A Genome-Wide Association Study of Anorexia Nervosa. Molecular Psychiatry, 19(10), 10851094.CrossRefGoogle ScholarPubMed
Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the Human Connectome: Toward a Transdiagnostic Model of Risk for Mental Illness. Neuron, 74(6), 9901004.CrossRefGoogle Scholar
Bulik, C. M., Sullivan, P. F., Tozzi, F., Furberg, H., Lichtenstein, P., & Pedersen, N. L. (2006). Prevalence, Heritability, and Prospective Risk Factors for Anorexia Nervosa. Archives of General Psychiatry, 63(3), 305312.Google Scholar
Burbridge, D. (2001). Francis Galton on Twins, Heredity and Social Class. British Journal for the History of Science, 34(3), 323340.Google Scholar
Burt, S. A. (2009). Rethinking Environmental Contributions to Child and Adolescent Psychopathology: A Meta-Analysis of Shared Environmental Influences. Psychological Bulletin, 135(4), 608637.CrossRefGoogle ScholarPubMed
Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLOS Computational Biology, 8(12), e1002822.Google Scholar
Carlborg, Ö., Haley, C. S., & Carlborg, O. (2004). Epistasis: Too Often Neglected in Complex Trait Studies? Nature Reviews Genetics, 5(8), 618625.Google Scholar
Caspi, A., Sugden, K., Moffitt, T. E., Taylor, A., Craig, I. W., Harrington, H., … Poulton, R. (2003). Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene. Science, 301(5631), 386389.Google Scholar
Caspi, A., Moffitt, T. E., Cannon, M., McClay, J., Murray, R., Harrington, H., … Craig, I. W. (2005). Moderation of the Effect of Adolescent-Onset Cannabis Use on Adult Psychosis by a Functional Polymorphism in the Catechol-O-Methyltransferase Gene: Longitudinal Evidence of a Gene X Environment Interaction. Biological Psychiatry, 57(10), 11171127.Google Scholar
Chen, C.-H., Lee, C.-S., Lee, M.-T. M., Ouyang, W.-C., Chen, C.-C., Chong, M.-Y., … Cheng, A. T.-A. (2014). Variant GADL1 and Response to Lithium Therapy in Bipolar I Disorder. New England Journal of Medicine, 370(2), 119128.Google Scholar
Chial, H. (2008). Rare Genetic Disorders: Learning about Genetic Disease through Gene Mapping, SNPs, and Microarray Data. Nature Education, 1(1), 192.Google Scholar
Costas, J., Sanjuán, J., Ramos-Ríos, R., Paz, E., Agra, S., Tolosa, A., … Arrojo, M. (2011). Interaction between COMT Haplotypes and Cannabis in Schizophrenia: A Case-Only Study in Two Samples from Spain. Schizophrenia Research, 127(1–3), 2227.Google Scholar
Crespi, B. J. (2016). Autism as a Disorder of High Intelligence. Frontiers in Neuroscience, 10, 300.Google Scholar
Cross-Disorder Group of the Psychiatric Genomics Consortium, Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., … International Inflammatory Bowel Disease Genetics Consortium (IIBDGC). (2013). Genetic Relationship between Five Psychiatric Disorders Estimated from Genome-Wide SNPs. Nature Genetics, 45(9), 984994.Google Scholar
Culverhouse, R. C., Saccone, N. L., Horton, A. C., Ma, Y., Anstey, K. J., Banaschewski, T., … Bierut, L. J. (2017). Collaborative Meta-Analysis Finds no Evidence of a Strong Interaction between Stress and 5-HTTLPR Genotype Contributing to the Development of Depression. Molecular Psychiatry, 23, 133142.Google Scholar
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., … Neale, B. M. (2019). Discovery of the First Genome-Wide Significant Risk Loci for Attention Deficit/Hyperactivity Disorder. Nature Genetics, 51(1), 6375.Google Scholar
Dick, D. M., & Kendler, K. S. (2012). The Impact of Gene-Environment Interaction on Alcohol Use Disorders. Alcohol Research: Current Reviews, 34(3), 318324.Google ScholarPubMed
Drew, L. J., Crabtree, G. W., Markx, S., Stark, K. L., Chaverneff, F., Xu, B., … Karayiorgou, M. (2011). The 22q11.2 Microdeletion: Fifteen Years of Insights into the Genetic and Neural Complexity of Psychiatric Disorders. International Journal of Developmental Neuroscience, 29(3), 259281.Google Scholar
Duncan, L. E., & Keller, M. C. (2011). A Critical Review of the First 10 Years of Candidate Gene-by-Environment Interaction Research in Psychiatry. American Journal of Psychiatry, 168(10), 10411049.Google Scholar
Eichler, E. E., Flint, J., Gibson, G., Kong, A., Leal, S. M., Moore, J. H., & Nadeau, J. H. (2010). Missing Heritability and Strategies for Finding the Underlying Causes of Complex Disease. Nature Reviews Genetics, 11(6), 446450.Google Scholar
Falconer, D. S. (1965). The Inheritance of Liability to Certain Diseases, Estimated from the Incidence among Relatives. Annals of Human Genetics, 29(1), 5176.Google Scholar
Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. Harlow: Pearson Education.Google Scholar
Faraone, S. V., Perlis, R. H., Doyle, A. E., Smoller, J. W., Goralnick, J. J., Holmgren, M. A., & Sklar, P. (2005). Molecular Genetics of Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 57(11), 13131323.CrossRefGoogle ScholarPubMed
Felson, J. (2014). What Can We Learn from Twin Studies? A Comprehensive Evaluation of the Equal Environments Assumption. Social Science Research, 43, 184199.Google Scholar
Furberg, H., Kim, YunJung, Dackor, J., Boerwinkle, E., Franceschini, N., Ardissino, D., … Furberg, C. D. (2010). Genome-Wide Meta-Analyses Identify Multiple Loci Associated with Smoking Behavior. Nature Genetics, 42(5), 441447.Google Scholar
Gandal, M. J., Leppa, V., Won, H., Parikshak, N. N., & Geschwind, D. H. (2016). The Road to Precision Psychiatry: Translating Genetics into Disease Mechanisms. Nature Neuroscience, 19(11), 13971407.Google Scholar
Gelernter, J., Kranzler, H. R., Sherva, R., Almasy, L., Koesterer, R., Smith, A. H., … Farrer, L. A. (2014). Genome-Wide Association Study of Alcohol Dependence: Significant Findings in African- and European-Americans Including Novel Risk Loci. Molecular Psychiatry, 19(1), 4149.Google Scholar
Gormley, P., Anttila, V., Winsvold, B. S., Palta, P., Esko, T., Pers, T. H., … Palotie, A. (2016). Meta-Analysis of 375,000 Individuals Identifies 38 Susceptibility Loci for Migraine. Nature Genetics, 48(8), 856866.Google Scholar
Hamburg, M. A., & Collins, F. S. (2010). The Path to Personalized Medicine. New England Journal of Medicine, 363(4), 301304.Google Scholar
Hardy, J., & Singleton, A. (2009). Genomewide Association Studies and Human Disease. New England Journal of Medicine, 360(17), 17591768.Google Scholar
Hettema, J. M., Neale, M. C., & Kendler, K. S. (2001). A Review and Meta-Analysis of the Genetic Epidemiology of Anxiety Disorders. American Journal of Psychiatry, 158(10), 15681578.Google Scholar
Hill, W. G., Goddard, M. E., & Visscher, P. M. (2008). Data and Theory Point to Mainly Additive Genetic Variance for Complex Traits. PLOS Genetics, 4(2), e1000008.Google Scholar
Hirschhorn, J. N., & Daly, M. J. (2005). Genome-Wide Association Studies for Common Diseases and Complex Traits. Nature Reviews Genetics, 6(2), 95108.CrossRefGoogle ScholarPubMed
Hong, E. P., & Park, J. W. (2012). Sample Size and Statistical Power Calculation in Genetic Association Studies. Genomics & Informatics, 10(2), 117122.Google Scholar
Hur, Y.-M., & Craig, J. M. (2013). Twin Registries Worldwide: An Important Resource for Scientific Research. Twin Research and Human Genetics, 16(1), 112.Google Scholar
Hyde, C. L., Nagle, M. W., Tian, C., Chen, X., Paciga, S. A., Wendland, J. R., … Winslow, A. R. (2016). Identification of 15 Genetic Loci Associated with Risk of Major Depression in Individuals of European Descent. Nature Genetics, 48(9), 10311036.Google Scholar
Jaffee, S. R., & Price, T. S. (2008). Genotype-Environment Correlations: Implications for Determining the Relationship between Environmental Exposures and Psychiatric Illness. Psychiatry, 7(12), 496499.Google Scholar
Johnson, R. C., Nelson, G. W., Troyer, J. L., Lautenberger, J. A., Kessing, B. D., Winkler, C. A., & O’Brien, S. J. (2010). Accounting for Multiple Comparisons in a Genome-Wide Association Study (GWAS). BMC Genomics, 11, 724.Google Scholar
Jorde, L. B. (2000). Linkage Disequilibrium and the Search for Complex Disease Genes. Genome Research, 10(10), 14351444.Google Scholar
Kendler, K. S., & Baker, J. H. (2007). Genetic Influences on Measures of the Environment: A Systematic Review. Psychological Medicine, 37(5), 615626.Google Scholar
Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C., & Eaves, L. J. (1993). A Test of the Equal-Environment Assumption in Twin Studies of Psychiatric Illness. Behavior Genetics, 23(1), 2127.Google Scholar
Kendler, K. S., Gatz, M., Gardner, C. O., & Pedersen, N. L. (2006). A Swedish National Twin Study of Lifetime Major Depression. American Journal of Psychiatry, 163(1), 109114.Google Scholar
Kieseppä, T., Partonen, T., Haukka, J., Kaprio, J., & Lönnqvist, J. (2004). High Concordance of Bipolar I Disorder in a Nationwide Sample of Twins. American Journal of Psychiatry, 161(10), 18141821.Google Scholar
Kirov, G., Pocklington, A. J., Holmans, P., Ivanov, D., Ikeda, M., Ruderfer, D., … Böttcher, Y. (2012). De Novo CNV Analysis Implicates Specific Abnormalities of Postsynaptic Signalling Complexes in the Pathogenesis of Schizophrenia. Molecular Psychiatry, 17(2), 142153.Google Scholar
Kwon, J. M., & Goate, A. M. (2000). The Candidate Gene Approach. Alcohol Research & Health, 24(3), 164168.Google Scholar
Lee, S. H., Ripke, S., Neale, B. M., Faraone, S. V., Purcell, S. M., Perlis, R. H., … Asherson, P. (2013). Genetic Relationship between Five Psychiatric Disorders Estimated from Genome-Wide SNPs. Nature Genetics, 45(9), 984994.Google Scholar
Li, M. D., Cheng, R., Ma, J. Z., & Swan, G. E. (2003). A Meta-Analysis of Estimated Genetic and Environmental Effects on Smoking Behavior in Male and Female Adult Twins. Addiction, 98(1), 2331.Google Scholar
Maes, H. H. M., Neale, M. C., Kendler, K. S., Hewitt, J. K., Silberg, J. L., Foley, D. L., … Eaves, L. J. (1998). Assortative Mating for Major Psychiatric Diagnoses in Two Population-Based Samples. Psychological Medicine, 28(6), 13891401.CrossRefGoogle ScholarPubMed
Maher, B. (2008). Personal Genomes: The Case of the Missing Heritability. Nature, 456(7218), 1821.Google Scholar
Malhotra, D., & Sebat, J. (2012). CNVs: Harbingers of a Rare Variant Revolution in Psychiatric Genetics. Cell, 148(6), 12231241.Google Scholar
Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., … Boehnke, M. (2009). Finding the Missing Heritability of Complex Diseases. Nature, 461(7265), 747753.Google Scholar
Mazzeo, S. E., Mitchell, K. S., Bulik, C. M., Aggen, S. H., Kendler, K. S., & Neale, M. C. (2010). A Twin Study of Specific Bulimia Nervosa Symptoms. Psychological Medicine, 40(7), 12031213.Google Scholar
McClellan, J., & King, M.-C. (2010). Genetic Heterogeneity in Human Disease. Cell, 141(2), 210217.Google Scholar
McGue, M., Keyes, M., Sharma, A., Elkins, I., Legrand, L., Johnson, W., & Iacono, W. (2007). The Environments of Adopted and Non-Adopted Youth: Evidence on Range Restriction from the Sibling Interaction and Behavior Study (SIBS). Behavior Genetics, 37(3), 449462.Google Scholar
McGuffin, P., Rijsdijk, F., Andrew, M., Sham, P., Katz, R., & Cardno, A. (2003). The Heritability of Bipolar Affective Disorder and the Genetic Relationship to Unipolar Depression. Archives of General Psychiatry, 60(5), 497502.Google Scholar
Mühleisen, T. W., Leber, M., Schulze, T. G., Strohmaier, J., Degenhardt, F., Treutlein, J., … Cichon, S. (2014). Genome-Wide Association Study Reveals Two New Risk Loci for Bipolar Disorder. Nature Communications, 5, 3339.Google Scholar
Munafò, M. R. (2006). Candidate Gene Studies in the 21st Century: Meta-Analysis, Mediation, Moderation. Genes, Brain & Behavior, 5, 38.Google Scholar
Neale, M., & Cardon, L. (2013). Methodology for Genetic Studies of Twins and Families. New York: Springer Science & Business Media.Google Scholar
Nikolas, M. A., & Alexandra, S. (2010). Genetic and Environmental Influences on ADHD Symptom Dimensions of Inattention and Hyperactivity: A Meta-Analysis. Journal of Abnormal Psychology, 119(1), 117.Google Scholar
Otowa, T., Hek, K., Lee, M., Byrne, E. M., Mirza, S. S., Nivard, M. G., … Hettema, J. M. (2016). Meta-Analysis of Genome-Wide Association Studies of Anxiety Disorders. Molecular Psychiatry, 21(10), 13911399.Google Scholar
Phillips, P. C. (2008). Epistasis ‒ The Essential Role of Gene Interactions in the Structure and Evolution of Genetic Systems. Nature Reviews Genetics, 9(11), 855867.CrossRefGoogle ScholarPubMed
Plomin, R., & Bergeman, C. S. (1991). The Nature of Nurture: Genetic Influence on “Environmental” Measures. Behavioral and Brain Sciences, 14(3), 373386.Google Scholar
Plomin, R., DeFries, J. C., & Loehlin, J. C. (1977). Genotype-Environment Interaction and Correlation in the Analysis of human behavior. Psychological Bulletin, 84(2), 309322.Google Scholar
Plomin, R., Owen, M. J., & McGuffin, P. (1994). The Genetic Basis of Complex Human Behaviors. Science, 264(5166), 17331739.Google Scholar
Plomin, R., DeFries, J. C., Knopik, V. S., & Neiderheiser, J. (2013). Behavioral Genetics (6th edn.). New York: Worth Publishers.Google Scholar
Polderman, T. J. C., Benyamin, B., de Leeuw, C. A., Sullivan, P. F., van Bochoven, A., Visscher, P. M., & Posthuma, D. (2015). Meta-Analysis of the Heritability of Human Traits Based on Fifty Years of Twin Studies. Nature Genetics, 47(7), 702709.Google Scholar
Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., … Stefansson, K. (2015). Polygenic Risk Scores for Schizophrenia and Bipolar Disorder Predict Creativity. Nature Neuroscience, 18(7), 953955.Google Scholar
Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., … Moran, J. L. (2009). Common Polygenic Variation Contributes to Risk of Schizophrenia and Bipolar Disorder. Nature, 460(7256), 748752.Google Scholar
Reich, D. E., & Lander, E. S. (2001). On the Allelic Spectrum of Human Disease. Trends in Genetics, 17(9), 502510.Google Scholar
Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin, S., … Sullivan, P. F. (2014). Genome-Wide Association Analysis Identifies 13 New Risk Loci for Schizophrenia. Nature Genetics, 45(10), 11501159.CrossRefGoogle Scholar
Robinson, M. R., Wray, N. R., & Visscher, P. M. (2014). Explaining Additional Genetic Variation in Complex Traits. Trends in Genetics, 30(4), 124132.Google Scholar
Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., … State, M. W. (2011). Multiple Recurrent De Novo CNVs, Including Duplications of the 7q11.23 Williams Syndrome Region, Are Strongly Associated with Autism. Neuron, 70(5), 863885.Google Scholar
Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium. (2011). Genome-Wide Association Study Identifies Five New Schizophrenia Loci. Nature Genetics, 43(10), 969976.Google Scholar
Schizophrenia Working Group of the Psychiatric Genomics Consortium. (2014). Biological Insights from 108 Schizophrenia-Associated Genetic Loci. Nature, 511(7510), 421427.Google Scholar
Schwekendiek, D. (2009). Height and Weight Differences between North and South Korea. Journal of Biosocial Science, 41(1), 5155.Google Scholar
Scriver, C. R. (2007). The PAH Gene, Phenylketonuria, and a Paradigm Shift. Human Mutation, 28(9), 831845.Google Scholar
Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., … Wigler, M. (2004). Large-Scale Copy Number Polymorphism in the Human Genome. Science, 305(5683), 525528.Google Scholar
Shao, H., Burrage, L. C., Sinasac, D. S., Hill, A. E., Ernest, S. R., O’Brien, W., … Nadeau, J. H. (2008). Genetic Architecture of Complex Traits: Large Phenotypic Effects and Pervasive Epistasis. Proceedings of the National Academy of Sciences of the United States of America, 105(50), 1991019914.Google Scholar
Stefansson, H., Rujescu, D., Cichon, S., Pietiläinen, O. P. H., Ingason, A., Steinberg, S., … Sigurdsson, A. (2008). Large Recurrent Microdeletions Associated with Schizophrenia. Nature, 455(7210), 232236.Google Scholar
Stone, J. L., O’Donovan, M. C., Gurling, H., Kirov, G. K., Blackwood, D. H. R., Corvin, A., … Macgregor, S. (2008). Rare Chromosomal Deletions and Duplications Increase Risk of Schizophrenia. Nature, 455(7210), 237241.Google Scholar
Stoolmiller, M. (1999). Implications of the Restricted Range of Family Environments for Estimates of Heritability and Nonshared Environment in Behavior-Genetic Adoption Studies. Psychological Bulletin, 125(4), 392409.Google Scholar
Stranger, B. E., Stahl, E. A., & Raj, T. (2011). Progress and Promise of Genome-Wide Association Studies for Human Complex Trait Genetics. Genetics, 187(2), 367383.Google Scholar
Stulp, G., & Barrett, L. (2016). Evolutionary Perspectives on Human Height Variation. Biological Reviews, 91(1), 206234.Google Scholar
Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic Epidemiology of Major Depression: Review and Meta-Analysis. American Journal of Psychiatry, 157(10), 15521562.Google Scholar
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a Complex Trait: Evidence from a Meta-Analysis of Twin Studies. Archives of General Psychiatry, 60(12), 11871192.Google Scholar
Taylor, S. (2011). Etiology of Obsessions and Compulsions: A Meta-Analysis and Narrative Review of Twin Studies. Clinical Psychology Review, 31(8), 13611372.Google Scholar
Tenesa, A., & Haley, C. S. (2013). The Heritability of Human Disease: Estimation, Uses and Abuses. Nature Reviews Genetics, 14(2), 139149.Google Scholar
Tick, B., Bolton, P., Happe, F., Rutter, M., & Rijsdijk, F. (2016). Heritability of Autism Spectrum Disorders: A Meta-Analysis of Twin Studies. Journal of Child Psychology and Psychiatry, 57(5), 585595.Google Scholar
Turkheimer, E. (2000). Three Laws of Behavior Genetics and What They Mean. Current Directions in Psychological Science, 9(5), 160164.Google Scholar
Van Winkel, R. (2011). Family-Based Analysis of Genetic Variation Underlying Psychosis-Inducing Effects of Cannabis: Sibling Analysis and Proband Follow-Up. Archives of General Psychiatry, 68(2), 148157.Google Scholar
Verhulst, B., Neale, M. C., & Kendler, K. S. (2015). The Heritability of Alcohol Use Disorders: A Meta-Analysis of Twin and Adoption Studies. Psychological Medicine, 45(5), 10611072.Google Scholar
Verweij, K. J. H., Zietsch, B. P., Lynskey, M. T., Medland, S. E., Neale, M. C., Martin, N. G., … Vink, J. M. (2010). Genetic and Environmental Influences on Cannabis Use Initiation and Problematic Use: A Meta-Analysis of Twin Studies. Addiction, 105(3), 417430.Google Scholar
Weaver, I. C. G., Cervoni, N., Champagne, F. A., D’Alessio, A. C., Sharma, S., Seckl, J. R., … Meaney, M. J. (2004). Epigenetic Programming by Maternal Behavior. Nature Neuroscience, 7(8), 847854.Google Scholar
Weiss, L. A., Shen, Y., Korn, J. M., Arking, D. E., Miller, D. T., Fossdal, R., … Daly, M. J. (2008). Association between Microdeletion and Microduplication at 16p11.2 and Autism. New England Journal of Medicine, 358(7), 667675.Google Scholar
Wilson, B. J., & Nicholls, S. G. (2015). The Human Genome Project, and Recent Advances in Personalized Genomics. Risk Management and Healthcare Policy, 8, 920.Google Scholar
Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., … Frayling, T. M. (2014). Defining the Role of Common Variation in the Genomic and Biological Architecture of Adult Human Height. Nature Genetics, 46(11), 11731186.Google Scholar
Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011a). GCTA: A Tool for Genome-Wide Complex Trait Analysis. The American Journal of Human Genetics, 88(1), 7682.CrossRefGoogle ScholarPubMed
Yang, J., Weedon, M. N., Purcell, S., Lettre, G., Estrada, K., Willer, C. J., … Goddard, M. E. (2011b). Genomic Inflation Factors under Polygenic Inheritance. European Journal of Human Genetics, 19(7), 807812.Google Scholar
Yengo, L., Sidorenko, J., Kemper, K. E., Zheng, Z., Wood, A. R., Weedon, M. N., … Consortium, G. (2018). Meta-Analysis of Genome-Wide Association Studies for Height and Body Mass Index in ~700,000 Individuals of European Ancestry. BioRxiv, 274654.Google Scholar
Zammit, S., Spurlock, G., Williams, H., Norton, N., Williams, N., O’Donovan, M. C., & Owen, M. J. (2007). Genotype Effects of CHRNA7, CNR1 and COMT in Schizophrenia: Interactions with Tobacco and Cannabis Use. The British Journal of Psychiatry, 191(5), 402407.Google Scholar
Zondervan, K. T., & Cardon, L. R. (2004). The Complex Interplay among Factors that Influence Allelic Association. Nature Reviews Genetics, 5(2), 89100.Google Scholar
Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The Mystery of Missing Heritability: Genetic Interactions Create Phantom Heritability. Proceedings of the National Academy of Sciences of the United States of America, 109(4), 11931198.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×