Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-30T05:18:25.063Z Has data issue: false hasContentIssue false

11 - Adolescence, Physiological Adaptation, and the Development of Stress Responses

from Part III - Neurophysiological and Experiential Bases of the Development of Coping

Published online by Cambridge University Press:  22 June 2023

Ellen A. Skinner
Affiliation:
Portland State University
Melanie J. Zimmer-Gembeck
Affiliation:
Griffith University, Queensland
Get access

Summary

The significant biological, psychological, and social reorganization that occurs across adolescence lays the groundwork for both normative patterns of change as well as emerging individual differences in how youth respond to increasing exposure to stressors in their environment during this formative stage of life. This chapter aims to provide a comprehensive summary regarding changes in the psychological and behavioral components of stress responses across adolescence and the pubertal transition as well as the associated patterns of maturation in relevant physiological systems, including brain structure and function, the hypothalamic-pituitary-adrenal axis, and the sympathetic and parasympathetic nervous systems. A focus is placed on understanding both advances in stress responses as well as ways in which stress responses may become disrupted during this critical developmental stage, with an eye toward identifying characteristics of youth or their experiences that predict diverging developmental trajectories in responses to stress during this stage of risk and opportunity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, E. K. (2006). Transactions among adolescent trait and state emotion and diurnal and momentary cortisol activity in naturalistic settings. Psychoneuroendocrinology, 31(5), 664679. https://doi.org/10.1016/j.psyneuen.2006.01.010CrossRefGoogle ScholarPubMed
Ahmed, S. P., Bittencourt-Hewitt, A., & Sebastian, C. L. (2015). Neurocognitive bases of emotion regulation development in adolescence. Developmental Cognitive Neuroscience, 15, 1125. https://doi.org/10.1016/j.dcn.2015.07.006CrossRefGoogle ScholarPubMed
Alloy, L. B., Hamilton, J. L., Hamlat, E. J., & Abramson, L. Y. (2016). Pubertal development, emotion regulatory styles, and the emergence of sex differences in internalizing disorders and symptoms in adolescence. Clinical Psychological Science, 4(5), 867881. https://doi.org/10.1177/2167702616643008CrossRefGoogle ScholarPubMed
Balzarotti, S., Biassoni, F., Colombo, B., & Ciceri, M. R. (2017). Cardiac vagal control as a marker of emotion regulation in healthy adults: A review. Biological Psychology, 130, 5466. https://doi.org/10.1016/j.biopsycho.2017.10.008CrossRefGoogle ScholarPubMed
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Phan, K. L. (2007). Amygdala–frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303312. https://doi.org/10.1093/scan/nsm029Google Scholar
Bendezú, J. J., Sarah, E. D. P., & Martha, E. W. (2016). What constitutes effective coping and efficient physiologic regulation following psychosocial stress depends on involuntary stress responses. Psychoneuroendocrinology, 73, 4250. https://doi.org/10.1016/j.psyneuen.2016.07.005Google Scholar
Blakemore, S.-J., & Choudhury, S. (2006). Development of the adolescent brain: Implications for executive function and social cognition. Journal of Child Psychology and Psychiatry, 47(3–4), 296312. https://doi.org/10.1111/j.1469-7610.2006.01611.xCrossRefGoogle ScholarPubMed
Bouma, E. M. C., Riese, H., Ormel, J., Verhulst, F. C., & Oldehinkel, A. J. (2009). Adolescents’ cortisol responses to awakening and social stress; Effects of gender, menstrual phase and oral contraceptives. The TRAILS study. Psychoneuroendocrinology, 34(6), 884893. https://doi.org/10.1016/j.psyneuen.2009.01.003CrossRefGoogle ScholarPubMed
Buhle, J. T., Silvers, J. A., Wager, T. D., Lopez, R., Onyemekwu, C., Kober, H., Weber, J., & Ochsner, K. N. (2014). Cognitive reappraisal of emotion: A meta-analysis of human neuroimaging studies. Cerebral Cortex, 24(11), 29812990. https://doi.org/10.1093/cercor/bht154Google Scholar
Casey, B. J., Getz, S., & Galvan, A. (2008). The adolescent brain. Developmental Review, 28(1), 6277. https://doi.org/10.1016/j.dr.2007.08.003CrossRefGoogle ScholarPubMed
Chapman, P. L., & Mullis, R. L. (1999). Adolescent coping strategies and self-esteem. Child Study Journal, 29(1), 6977.Google Scholar
Chein, J., Albert, D., O’Brien, L., Uckert, K., & Steinberg, L. (2011). Peers increase adolescent risk taking by enhancing activity in the brain’s reward circuitry. Developmental Science, 14(2), F1F10. https://doi.org/10.1111/j.1467-7687.2010.01035.xGoogle Scholar
Chrousos, G. P., & Gold, P. W. (1992). The concepts of stress and stress system disorders: Overview of physical and behavioral homeostasis. JAMA, 267(9), 12441252. https://doi.org/10.1001/jama.1992.03480090092034Google Scholar
Collins, K. A., Mendelsohn, A., Cain, C. K., & Schiller, D. (2014). Taking action in the face of threat: Neural synchronization predicts adaptive coping. Journal of Neuroscience, 34(44), 1473314738. https://doi.org/10.1523/JNEUROSCI.2152-14.2014CrossRefGoogle ScholarPubMed
Compas, B. E., Banez, G. A., Malcarne, V., & Worsham, N. (1991). Perceived control and coping with stress: A developmental perspective. Journal of Social Issues, 47(4), 2334. https://doi.org/10.1111/j.1540-4560.1991.tb01832.xCrossRefGoogle Scholar
Compas, B. E., Connor-Smith, J. K., Saltzman, H., Thomsen, A. H., & Wadsworth, M. E. (2001). Coping with stress during childhood and adolescence: Problems, progress, and potential in theory and research. Psychological Bulletin, 127(1), 87127. https://doi.org/10.1037/0033-2909.127.1.87Google Scholar
Compas, B. E., Jaser, S. S., Dunbar, J. P., Watson, K. H., Bettis, A. H., Gruhn, M. A., & Williams, E. K. (2014). Coping and emotion regulation from childhood to early adulthood: Points of convergence and divergence. Australian Journal of Psychology, 66(2), 7181. https://doi.org/10.1111/ajpy.12043CrossRefGoogle ScholarPubMed
Connor-Smith, J. K., Compas, B. E., Wadsworth, M. E., Thomsen, A. H., & Saltzman, H. (2000). Responses to stress in adolescence: Measurement of coping and involuntary stress responses. Journal of Consulting and Clinical Psychology, 68(6), 976992.Google Scholar
Cracco, E., Goossens, L., & Braet, C. (2017). Emotion regulation across childhood and adolescence: Evidence for a maladaptive shift in adolescence. European Child & Adolescent Psychiatry, 26(8), 909921. https://doi.org/10.1007/s00787-017-0952-8Google Scholar
Creswell, J. D., Way, B. M., Eisenberger, N. I., & Lieberman, M. D. (2007). Neural correlates of dispositional mindfulness during affect labeling. Psychosomatic Medicine, 69(6), 560565. https://doi.org/10.1097/PSY.0b013e3180f6171fCrossRefGoogle ScholarPubMed
Cribbet, M. R., Williams, P. G., Gunn, H. E., & Rau, H. K. (2011). Effects of tonic and phasic respiratory sinus arrhythmia on affective stress responses. Emotion, 11(1), 188193. https://doi.org/10.1037/a0021789Google Scholar
Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social–affective engagement and goal flexibility. Nature Reviews Neuroscience, 13(9), 636650. https://doi.org/10.1038/nrn3313Google Scholar
Crystal, D. S., Kakinuma, M., DeBell, M., Azuma, H., & Miyashita, T. (2008). Who helps you? Self and other sources of support among youth in Japan and the USA. International Journal of Behavioral Development, 32(6), 496508. https://doi.org/10.1177/0165025408095554Google Scholar
Cui, L., Morris, A. S., Harrist, A. W., Larzelere, R. E., Criss, M. M., & Houltberg, B. J. (2015). Adolescent RSA responses during an anger discussion task: Relations to emotion regulation and adjustment. Emotion, 15(3), 360372. https://doi.org/10.1037/emo0000040Google Scholar
Dahl, R. E., & Gunnar, M. R. (2009). Heightened stress responsiveness and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 16. https://doi.org/10.1017/S0954579409000017Google Scholar
Davis, M. M., Miernicki, M. E., Telzer, E. H., & Rudolph, K. D. (2019). The contribution of childhood negative emotionality and cognitive control to anxiety-linked neural dysregulation of emotion in adolescence. Journal of Abnormal Child Psychology, 47(3), 515527. https://doi.org/10.1007/s10802-018-0456-0CrossRefGoogle ScholarPubMed
De France, K., & Hollenstein, T. (2017). Assessing emotion regulation repertoires: The Regulation of Emotion Systems Survey. Personality and Individual Differences, 119, 204215. https://doi.org/10.1016/j.paid.2017.07.018Google Scholar
de Zambotti, M., Javitz, H., Franzen, P. L., Brumback, T., Clark, D. B., Colrain, I. M., & Baker, F. C. (2018). Sex- and age-dependent differences in autonomic nervous system functioning in adolescents. Journal of Adolescent Health, 62(2), 184190. https://doi.org/10.1016/j.jadohealth.2017.09.010Google Scholar
Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity. Neuroscience & Biobehavioral Reviews, 35(7), 15621592. https://doi.org/10.1016/j.neubiorev.2010.11.007Google Scholar
Donaldson, D., Prinstein, M. J., Danovsky, M., & Spirito, A. (2000). Patterns of children’s coping with life stress: Implications for clinicians. American Journal of Orthopsychiatry, 70(3), 351359. https://doi.org/10.1037/h0087689Google Scholar
Dorn, L. D., & Biro, F. M. (2011). Puberty and its measurement: A decade in review. Journal of Research on Adolescence, 21(1), 180195. https://doi.org/10.1111/j.1532-7795.2010.00722.xCrossRefGoogle Scholar
Dumontheil, I., & Blakemore, S. J. (2012). Social cognition and abstract thought in adolescence: The role of structural and functional development in rostral prefrontal cortex. British Journal of Educational Psychology Monograph Series II, Number 8 – Educational Neuroscience, 1, 99113.Google Scholar
Elmlinger, M. W., Kühnel, W., & Ranke, M. B. (2002). Reference ranges for serum concentrations of lutropin (LH), follitropin (FSH), estradiol (E2), prolactin, progesterone, sex hormone-binding globulin (SHBG), dehydroepiandrosterone sulfate (DHEAS), cortisol and ferritin in neonates, children and young adults. Clinical Chemistry and Laboratory Medicine, 40(11), 11511160. https://doi.org/10.1515/CCLM.2002.202CrossRefGoogle ScholarPubMed
Ernst, M., Nelson, E. E., Jazbec, S., McClure, E. B., Monk, C. S., Leibenluft, E., Blair, J., & Pine, D. S. (2005). Amygdala and nucleus accumbens in responses to receipt and omission of gains in adults and adolescents. NeuroImage, 25(4), 12791291. https://doi.org/10.1016/j.neuroimage.2004.12.038Google Scholar
Ernst, M., Pine, D. S., & Hardin, M. (2006). Triadic model of the neurobiology of motivated behavior in adolescence. Psychological Medicine, 36(3), 299312. https://doi.org/10.1017/S0033291705005891Google Scholar
Eschenbeck, H., Kohlmann, C.-W., & Lohaus, A. (2007). Gender differences in coping strategies in children and adolescents. Journal of Individual Differences, 28(1), 1826. https://doi.org/10.1027/1614-0001.28.1.18Google Scholar
Evans, B. E., Greaves-Lord, K., Euser, A. S., Tulen, J. H. M., Franken, I. H. A., & Huizink, A. C. (2013). Determinants of physiological and perceived physiological stress reactivity in children and adolescents. PLoS ONE, 8(4), e61724. https://doi.org/10.1371/journal.pone.0061724Google Scholar
Eyre, E. L. J., Duncan, M. J., Birch, S. L., & Fisher, J. P. (2014). The influence of age and weight status on cardiac autonomic control in healthy children: A review. Autonomic Neuroscience: Basic & Clinical, 186, 821. https://doi.org/10.1016/j.autneu.2014.09.019Google Scholar
Foland-Ross, L. C., Kircanski, K., & Gotlib, I. H. (2014). Coping with having a depressed mother: The role of stress and coping in hypothalamic-pituitary-adrenal axis dysfunction in girls at familial risk for major depression. Development and Psychopathology, 26(4 Pt 2), 14011409. https://doi.org/10.1017/S0954579414001102Google Scholar
Fowler, C. H., Miernicki, M. E., Rudolph, K. D., & Telzer, E. H. (2017). Disrupted amygdala-prefrontal connectivity during emotion regulation links stress-reactive rumination and adolescent depressive symptoms. Developmental Cognitive Neuroscience, 27, 99106. https://doi.org/10.1016/j.dcn.2017.09.002Google Scholar
Franco, P., Putois, B., Guyon, A., Raoux, A., Papadopoulou, M., Guignard-Perret, A., Bat-Pitault, F., Hartley, S., & Plancoulaine, S. (2020). Sleep during development: Sex and gender differences. Sleep Medicine Reviews, 51, Article 101276. https://doi.org/10.1016/j.smrv.2020.101276Google Scholar
Fransson, E., Folkesson, L., Bergström, M., Östberg, V., & Lindfors, P. (2014). Exploring salivary cortisol and recurrent pain in mid-adolescents living in two homes. BMC Psychology, 2(1). https://doi.org/10.1186/s40359-014-0046-zGoogle Scholar
Frydenberg, E., & Lewis, R. (2000). Teaching coping to adolescents: When and to whom? American Educational Research Journal, 37(3), 727745. https://doi.org/10.3102/00028312037003727Google Scholar
Gee, D. G., Humphreys, K. L., Flannery, J., Goff, B., Telzer, E. H., Shapiro, M., Hare, T. A., Bookheimer, S. Y., & Tottenham, N. (2013). A developmental shift from positive to negative connectivity in human amygdala–prefrontal circuitry. Journal of Neuroscience, 33(10), 45844593. https://doi.org/10.1523/JNEUROSCI.3446-12.2013Google Scholar
Giuliani, N. R., & Pfeifer, J. H. (2015). Age-related changes in reappraisal of appetitive cravings during adolescence. NeuroImage, 108, 173181. https://doi.org/10.1016/j.neuroimage.2014.12.037Google Scholar
Gross, J. J., & Thompson, R. A. (2007). Emotion regulation: Conceptual foundations. In Gross, J. J. (Ed.), Handbook of emotion regulation (pp. 324). Guilford Press.Google Scholar
Grossman, P., & Taylor, E. W. (2007). Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biological Psychology, 74(2), 263285. https://doi.org/10.1016/j.biopsycho.2005.11.014Google Scholar
Gullone, E., Hughes, E. K., King, N. J., & Tonge, B. (2010). The normative development of emotion regulation strategy use in children and adolescents: A 2-year follow-up study. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 51(5), 567574. https://doi.org/10.1111/j.1469-7610.2009.02183.xGoogle Scholar
Gunnar, M. R., Wewerka, S., Frenn, K., Long, J. D., & Griggs, C. (2009). Developmental changes in hypothalamus–pituitary–adrenal activity over the transition to adolescence: Normative changes and associations with puberty. Development and Psychopathology, 21(1), 6985. https://doi.org/10.1017/S0954579409000054CrossRefGoogle ScholarPubMed
Guyer, A. E., Choate, V. R., Pine, D. S., & Nelson, E. E. (2012). Neural circuitry underlying affective response to peer feedback in adolescence. Social Cognitive and Affective Neuroscience, 7(1), 8192. https://doi.org/10.1093/scan/nsr043Google Scholar
Guyer, A. E., McClure-Tone, E. B., Shiffrin, N. D., Pine, D. S., & Nelson, E. E. (2009). Probing the neural correlates of anticipated peer evaluation in adolescence. Child Development, 80(4), 10001015. https://doi.org/10.1111/j.1467-8624.2009.01313.xGoogle Scholar
Guyer, A. E., Monk, C. S., McClure-Tone, E. B., Nelson, E. E., Roberson-Nay, R., Adler, A. D., Fromm, S. J., Leibenluft, E, Pine, D. S., & Ernst, M. (2008). A developmental examination of amygdala response to facial expressions. Journal of Cognitive Neuroscience, 20(9), 15651582. https://doi.org/10.1162/jocn.2008.20114Google Scholar
Gyurak, A., Gross, J. J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition & Emotion, 25(3), 400412. https://doi.org/10.1080/02699931.2010.544160Google Scholar
Hare, T. A., Tottenham, N., Galvan, A., Voss, H. U., Glover, G. H., & Casey, B. J. (2008). Biological substrates of emotional reactivity and regulation in adolescence during an emotional go-nogo task. Biological Psychiatry, 63(10), 927934. https://doi.org/10.1016/j.biopsych.2008.03.015Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(8), 12011213. https://doi.org/10.1016/j.pnpbp.2005.08.006Google Scholar
Hilt, L. M., Sladek, M. R., Doane, L. D., & Stroud, C. B. (2017). Daily and trait rumination: Diurnal cortisol patterns in adolescent girls. Cognition and Emotion, 31(8), 17571767. https://doi.org/10.1080/02699931.2016.1262332Google Scholar
Hollanders, J. J., van der Voorn, B., Rotteveel, J., & Finken, M. J. J. (2017). Is HPA axis reactivity in childhood gender-specific? A systematic review. Biology of Sex Differences, 8(1), Article 23. https://doi.org/10.1186/s13293-017-0144-8Google Scholar
Hostinar, C. E., Johnson, A. E., & Gunnar, M. R. (2015). Parent support is less effective in buffering cortisol stress reactivity for adolescents compared to children. Developmental Science, 18(2), 281297. https://doi.org/10.1111/desc.12195Google Scholar
Hostinar, C. E., McQuillan, M. T., Mirous, H. J., Grant, K. E., & Adam, E. K. (2014). Cortisol responses to a group public speaking task for adolescents: Variations by age, gender, and race. Psychoneuroendocrinology, 50, 155166. https://doi.org/10.1016/j.psyneuen.2014.08.015Google Scholar
Ji, J., Negriff, S., Kim, H., & Susman, E. J. (2016). A study of cortisol reactivity and recovery among young adolescents: Heterogeneity and longitudinal stability and change. Developmental Psychobiology, 58(3), 283302. https://doi.org/10.1002/dev.21369Google Scholar
Kazuma, N., Otsuka, K., Wakamatsu, K., Shirase, E., & Matsuoka, I. (2002). Heart rate variability in normotensive healthy children with aging. Clinical and Experimental Hypertension, 24(1–2), 8389. https://doi.org/10.1081/ceh-100108718CrossRefGoogle ScholarPubMed
Key, B. L., Campbell, T. S., Bacon, S. L., & Gerin, W. (2008). The influence of trait and state rumination on cardiovascular recovery from a negative emotional stressor. Journal of Behavioral Medicine, 31(3), 237248. https://doi.org/10.1007/s10865-008-9152-9Google Scholar
Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13(3), 695719. https://doi.org/10.1017/s0954579401003157Google Scholar
Koenig, J., Rash, J. A., Campbell, T. S., Thayer, J. F., & Kaess, M. (2017). A meta-analysis on sex differences in resting-state vagal activity in children and adolescents. Frontiers in Physiology, 8, Article 582. https://doi.org/10.3389/fphys.2017.00582CrossRefGoogle ScholarPubMed
Kovacs, M., Yaroslavsky, I., Rottenberg, J., George, C. J., Kiss, E., Halas, K., Dochnal, R., Benák, I., Baji, I., Vetró, A., Makai, A., & Kapornai, K. (2016). Maladaptive mood repair, atypical respiratory sinus arrhythmia, and risk of a recurrent major depressive episode among adolescents with prior major depression. Psychological Medicine, 46(10), 21092119. https://doi.org/10.1017/S003329171600057XCrossRefGoogle ScholarPubMed
Ladouceur, C. D. (2012). Neural systems supporting cognitive-affective interactions in adolescence: The role of puberty and implications for affective disorders. Frontiers in Integrative Neuroscience, 6, Article 65. https://doi.org/10.3389/fnint.2012.00065Google Scholar
Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer.Google Scholar
Lee, T.-H., & Telzer, E. H. (2016). Negative functional coupling between the right fronto-parietal and limbic resting state networks predicts increased self-control and later substance use onset in adolescence. Developmental Cognitive Neuroscience, 20, 3542. https://doi.org/10.1016/j.dcn.2016.06.002Google Scholar
Lefkowitz, E. S. (2005). “Things have gotten better”: Developmental changes among early emerging adults after the transition to university. Journal of Adolescent Research, 20(1), 4063. https://doi.org/10.1177/0743558404271236Google Scholar
Lenard, Z., Studinger, P., Mersich, B., Kocsis, L., & Kollai, M. (2004). Maturation of cardiovagal autonomic function from childhood to young adult age. Circulation, 110(16), 23072312. https://doi.org/10.1161/01.CIR.0000145157.07881.A3Google Scholar
Lougheed, J. P., & Hollenstein, T. (2012). A limited repertoire of emotion regulation strategies is associated with internalizing problems in adolescence. Social Development, 21(4), 704721. https://doi.org/10.1111/j.1467-9507.2012.00663.xGoogle Scholar
Lucas-Thompson, R. G., McKernan, C. J., & Henry, K. L. (2018). Unraveling current and future adolescent depressive symptoms: The role of stress reactivity across physiological systems. Developmental Psychology, 54(9), 16501660. https://doi.org/10.1037/dev0000530Google Scholar
McCorry, L. K. (2007). Physiology of the autonomic nervous system. American Journal of Pharmaceutical Education, 71(4), Article 78. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1959222/Google Scholar
McKernan, C. J., & Lucas-Thompson, R. G. (2018). Autonomic nervous system coordination moderates links of negative interparental conflict with adolescent externalizing behaviors. Developmental Psychology, 54(9), 16971708. https://doi.org/10.1037/dev0000498Google Scholar
Mendle, J., Beam, C. R., McKone, K. M. P., & Koch, M. K. (2020). Puberty and transdiagnostic risks for mental health. Journal of Research on Adolescence, 30(3), 687705. https://doi.org/10.1111/jora.12552Google Scholar
Modi, H. H., Davis, M. M., Miernicki, M. E., Telzer, E. H., & Rudolph, K. D. (2020). Maternal antecedents to adolescent girls’ neural regulation of emotion. Journal of Research on Adolescence, 30(3), 581598. https://doi.org/10.1111/jora.12545Google Scholar
Monk, C. S., McClure, E. B., Nelson, E. E., Zarahn, E., Bilder, R. M., Leibenluft, E., Charney, D. S., Ernst, M., & Pine, D. S. (2003). Adolescent immaturity in attention-related brain engagement to emotional facial expressions. NeuroImage, 20(1), 420428. https://doi.org/10.1016/S1053-8119(03)00355-0CrossRefGoogle ScholarPubMed
Moore, W. E., III, Pfeifer, J. H., Masten, C. L., Mazziotta, J. C., Iacoboni, M., & Dapretto, M. (2012). Facing puberty: Associations between pubertal development and neural responses to affective facial displays. Social Cognitive and Affective Neuroscience, 7(1), 3543. https://doi.org/10.1093/scan/nsr066Google Scholar
Moos, R. H., & Schaefer, J. A. (1993). Coping resources and processes: Current concepts and measures. In Goldberger, L. & Breznitz, S. (Eds.), Handbook of stress: Theoretical and clinical aspects (2nd ed., pp. 234257). Free Press.Google Scholar
Nelson, E. E., Leibenluft, E., McClure, E. B., & Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychological Medicine, 35(2), 163174. https://doi.org/10.1017/S0033291704003915Google Scholar
Netherton, C., Goodyer, I., Tamplin, A., & Herbert, J. (2004). Salivary cortisol and dehydroepiandrosterone in relation to puberty and gender. Psychoneuroendocrinology, 29(2), 125140. https://doi.org/10.1016/S0306-4530(02)00150-6Google Scholar
Neumann, S. A., Waldstein, S. R., Sellers, J. J., Thayer, J. F., & Sorkin, J. D. (2004). Hostility and distraction have differential influences on cardiovascular recovery from anger recall in women. Health Psychology, 23(6), 631640. https://doi.org/10.1037/0278-6133.23.6.631Google Scholar
Obradović, J., & Boyce, W. T. (2012). Developmental psychophysiology of emotion processes. Monographs of the Society for Research in Child Development, 77(2), 120128. https://doi.org/10.1111/j.1540-5834.2011.00670.xGoogle Scholar
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: A synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251, E124. https://doi.org/10.1111/j.1749-6632.2012.06751.xGoogle Scholar
Ordaz, S., & Luna, B. (2012). Sex differences in physiological reactivity to acute psychosocial stress in adolescence. Psychoneuroendocrinology, 37(8), 11351157. https://doi.org/10.1016/j.psyneuen.2012.01.002Google Scholar
Pascual, A., Conejero, S., & Etxebarria, I. (2016). Coping strategies and emotion regulation in adolescents: Adequacy and gender differences. Ansiedad y Estrés, 22(1), 14. https://doi.org/10.1016/j.anyes.2016.04.002Google Scholar
Payer, D. E., Baicy, K., Lieberman, M. D., & London, E. D. (2012). Overlapping neural substrates between intentional and incidental down-regulation of negative emotions. Emotion, 12(2), 229235. https://doi.org/10.1037/a0027421Google Scholar
Pfeifer, J. H., & Blakemore, S.-J. (2012). Adolescent social cognitive and affective neuroscience: Past, present, and future. Social Cognitive and Affective Neuroscience, 7(1), 110. https://doi.org/10.1093/scan/nsr099Google Scholar
Pitskel, N. B., Bolling, D. Z., Kaiser, M. D., Crowley, M. J., & Pelphrey, K. A. (2011). How grossed out are you? The neural bases of emotion regulation from childhood to adolescence. Developmental Cognitive Neuroscience, 1(3), 324337. https://doi.org/10.1016/j.dcn.2011.03.004Google Scholar
Platje, E., Vermeiren, R. R. J. M., Branje, S. J. T., Doreleijers, T. A. H., Meeus, W. H. J., Koot, H. M., Frijns, T., van Lier, P. A. C., & Jansen, L. M. C. (2013). Long-term stability of the cortisol awakening response over adolescence. Psychoneuroendocrinology, 38(2), 271280. https://doi.org/10.1016/j.psyneuen.2012.06.007Google Scholar
Porges, S. W. (2007). The polyvagal perspective. Biological Psychology, 74(2), 116143. https://doi.org/10.1016/j.biopsycho.2006.06.009Google Scholar
Quevedo, K. M., Benning, S. D., Gunnar, M. R., & Dahl, R. E. (2009). The onset of puberty: Effects on the psychophysiology of defensive and appetitive motivation. Development and Psychopathology, 21(1), 2745. https://doi.org/10.1017/S0954579409000030Google Scholar
Rauch, A. V., Ohrmann, P., Bauer, J., Kugel, H., Engelien, A., Arolt, V., Heindel, W., & Suslow, T. (2007). Cognitive coping style modulates neural responses to emotional faces in healthy humans: A 3-T fMRI study. Cerebral Cortex, 17(11), 25262535. https://doi.org/10.1093/cercor/bhl158Google Scholar
Reising, M. M., Bettis, A. H., Dunbar, J. P., Watson, K. H., Gruhn, M., Hoskinson, K. R., & Compas, B. E. (2018). Stress, coping, executive function, and brain activation in adolescent offspring of depressed and nondepressed mothers. Child Neuropsychology, 24(5), 638656. https://doi.org/10.1080/09297049.2017.1307950Google Scholar
Renk, K., & Creasey, G. (2003). The relationship of gender, gender identity, and coping strategies in late adolescents. Journal of Adolescence, 26(2), 159168. https://doi.org/10.1016/s0140-1971(02)00135-5Google Scholar
Roecker, C. E., Dubow, E. F., & Donaldson, D. (1996). Cross-situational patterns in children’s coping with observed interpersonal conflict. Journal of Clinical Child Psychology, 25(3), 288299. https://doi.org/10.1207/s15374424jccp2503_5Google Scholar
Rudolph, K. D. (2014). Puberty as a developmental context of risk for psychopathology. In Lewis, M. & Rudolph, K. D. (Eds.), Handbook of developmental psychopathology (pp. 331354). Springer US. https://doi.org/10.1007/978-1-4614-9608-3_17Google Scholar
Rudolph, K. D., Davis, M. M., Skymba, H. V., Modi, H. H., & Telzer, E. H. (2021). Social experience calibrates neural sensitivity to social feedback during adolescence: A functional connectivity approach. Developmental Cognitive Neuroscience, 47, Article 100903. https://doi.org/10.1016/j.dcn.2020.100903Google Scholar
Rudolph, K. D., Skymba, H. V., Modi, H. H., Davis, M. M., Sze, W. Y., Rosswurm, C. P., & Telzer, E. H. (2021). How does peer adversity “get inside the brain?” Adolescent girls’ differential susceptibility to neural dysregulation of emotion following victimization. Developmental Psychobiology, 63(3), 481495. https://doi.org/10.1002/dev.22022Google Scholar
Rudolph, K. D., & Troop-Gordon, W. (2010). Personal-accentuation and contextual-amplification models of pubertal timing: Predicting youth depression. Development and Psychopathology, 22(2), 433451. https://doi.org/10.1017/S0954579410000167Google Scholar
Rudolph, K. D., Troop-Gordon, W., Modi, H. H., & Granger, D. A. (2018). An exploratory analysis of the joint contribution of HPA axis activation and motivation to early adolescent depressive symptoms. Developmental Psychobiology, 60(3), 303316. https://doi.org/10.1002/dev.21600Google Scholar
Santarnecchi, E., Sprugnoli, G., Tatti, E., Mencarelli, L., Neri, F., Momi, D., Di Lorenzo, G., Pascual-Leone, A., Rossi, S., & Rossi, A. (2018). Brain functional connectivity correlates of coping styles. Cognitive, Affective, & Behavioral Neuroscience, 18(3), 495508. https://doi.org/10.3758/s13415-018-0583-7Google Scholar
Saxbe, D. E. (2008). A field (researcher’s) guide to cortisol: Tracking HPA axis functioning in everyday life. Health Psychology Review, 2(2), 163190. https://doi.org/10.1080/17437190802530812Google Scholar
Schreiber, J. E., Shirtcliff, E., Van Hulle, C., Lemery-Chalfant, K., Klein, M. H., Kalin, N. H., Essex, M. J., & Goldsmith, H. H. (2006). Environmental influences on family similarity in afternoon cortisol levels: Twin and parent-offspring designs. Psychoneuroendocrinology, 31(9), 11311137. https://doi.org/10.1016/j.psyneuen.2006.07.005Google Scholar
Schriber, R. A., & Guyer, A. E. (2016). Adolescent neurobiological susceptibility to social context. Developmental Cognitive Neuroscience, 19, 118. https://doi.org/10.1016/j.dcn.2015.12.009Google Scholar
Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27(9), 23492356. https://doi.org/10.1523/JNEUROSCI.5587-06.2007Google Scholar
Shirtcliff, E. A., Allison, A. L., Armstrong, J. M., Slattery, M. J., Kalin, N. H., & Essex, M. J. (2012). Longitudinal stability and developmental properties of salivary cortisol levels and circadian rhythms from childhood to adolescence. Developmental Psychobiology, 54(5), 493502. https://doi.org/10.1002/dev.20607Google Scholar
Silk, J. S., Siegle, G. J., Lee, K. H., Nelson, E. E., Stroud, L. R., & Dahl, R. E. (2014). Increased neural response to peer rejection associated with adolescent depression and pubertal development. Social Cognitive and Affective Neuroscience, 9(11), 17981807. https://doi.org/10.1093/scan/nst175Google Scholar
Silvers, J. A., McRae, K., Gabrieli, J. D. E., Gross, J. J., Remy, K. A., & Ochsner, K. N. (2012). Age-related differences in emotional reactivity, regulation, and rejection sensitivity in adolescence. Emotion, 12(6), 12351247. https://doi.org/10.1037/a0028297Google Scholar
Silvers, J. A., Shu, J., Hubbard, A. D., Weber, J., & Ochsner, K. N. (2015). Concurrent and lasting effects of emotion regulation on amygdala response in adolescence and young adulthood. Developmental Science, 18(5), 771784. https://doi.org/10.1111/desc.12260Google Scholar
Sinha, R., Lacadie, C. M., Constable, R. T., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences, 113(31), 88378842. https://doi.org/10.1073/pnas.1600965113Google Scholar
Skinner, E. A., Edge, K., Altman, J., & Sherwood, H. (2003). Searching for the structure of coping: A review and critique of category systems for classifying ways of coping. Psychological Bulletin, 129(2), 216269. https://doi.org/10.1037/0033-2909.129.2.216Google Scholar
Skinner, E. A., & Wellborn, J. G. (1994). Coping during childhood and adolescence: A motivational perspective. In Featherman, D. L., Lerner, R. M., & Perlmutter, M. (Eds.), Life-span development and behavior (Vol. 12, pp. 91133). Lawrence Erlbaum Associates, Inc.Google Scholar
Skinner, E. A., & Zimmer-Gembeck, M. J. (2007). The development of coping. Annual Review of Psychology, 58(1), 119144. https://doi.org/10.1146/annurev.psych.58.110405.085705Google Scholar
Sladek, M. R., Doane, L. D., Luecken, L. J., & Eisenberg, N. (2016). Perceived stress, coping, and cortisol reactivity in daily life: A study of adolescents during the first year of college. Biological Psychology, 117, 815. https://doi.org/10.1016/j.biopsycho.2016.02.003Google Scholar
Sladek, M. R., Doane, L. D., & Stroud, C. B. (2017). Individual and day-to-day differences in active coping predict diurnal cortisol patterns among early adolescent girls. Journal of Youth and Adolescence, 46(1), 121135. https://doi.org/10.1007/s10964-016-0591-2Google Scholar
Smith, A. R., Chein, J., & Steinberg, L. (2013). Impact of socio-emotional context, brain development, and pubertal maturation on adolescent risk-taking. Hormones and Behavior, 64(2), 323332. https://doi.org/10.1016/j.yhbeh.2013.03.006Google Scholar
Somerville, L. H. (2013). The teenage brain: Sensitivity to social evaluation. Current Directions in Psychological Science, 22(2), 121127. https://doi.org/10.1177/0963721413476512Google Scholar
Sontag, L. M., Graber, J. A., Brooks-Gunn, J., & Warren, M. P. (2008). Coping with social stress: Implications for psychopathology in young adolescent girls. Journal of Abnormal Child Psychology, 36(8), Article 1159. https://doi.org/10.1007/s10802-008-9239-3Google Scholar
Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309315. https://doi.org/10.1038/nn1008Google Scholar
Spear, L. P. (2009). Heightened stress responsivity and emotional reactivity during pubertal maturation: Implications for psychopathology. Development and Psychopathology, 21(1), 8797. https://doi.org/10.1017/S0954579409000066Google Scholar
Spear, L. P. (2011). Rewards, aversions and affect in adolescence: Emerging convergences across laboratory animal and human data. Developmental Cognitive Neuroscience, 1(4), 390403. https://doi.org/10.1016/j.dcn.2011.08.001Google Scholar
Stewart, J. G., Mazurka, R., Bond, L., Wynne-Edwards, K. E., & Harkness, K. L. (2013). Rumination and impaired cortisol recovery following a social stressor in adolescent depression. Journal of Abnormal Child Psychology, 41(7), 10151026. https://doi.org/10.1007/s10802-013-9740-1Google Scholar
Stroud, L. R., Foster, E., Papandonatos, G. D., Handwerger, K., Granger, D. A., Kivlighan, K. T., & Niaura, R. (2009). Stress response and the adolescent transition: Performance versus peer rejection stressors. Development and Psychopathology, 21(1), 4768. https://doi.org/10.1017/S0954579409000042Google Scholar
Stroud, L. R., Papandonatos, G. D., Williamson, D. E., & Dahl, R. E. (2011). Sex differences in cortisol response to corticotropin releasing hormone challenge over puberty: Pittsburgh Pediatric Neurobehavioral Studies. Psychoneuroendocrinology, 36(8), 12261238. https://doi.org/10.1016/j.psyneuen.2011.02.017Google Scholar
Sumter, S. R., Bokhorst, C. L., Miers, A. C., Van Pelt, J., & Westenberg, P. M. (2010). Age and puberty differences in stress responses during a public speaking task: Do adolescents grow more sensitive to social evaluation? Psychoneuroendocrinology, 35(10), 15101516. https://doi.org/10.1016/j.psyneuen.2010.05.004Google Scholar
Tanner, J. M. (1971). Sequence, tempo, and individual variation in the growth and development of boys and girls aged twelve to sixteen. Daedalus, 100(4), 907930.Google Scholar
Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience and Biobehavioral Reviews, 33(2), 8188. https://doi.org/10.1016/j.neubiorev.2008.08.004Google Scholar
Theurel, A., & Gentaz, E. (2018). The regulation of emotions in adolescents: Age differences and emotion-specific patterns. PLoS ONE, 13(6), Article e0195501. https://doi.org/10.1371/journal.pone.0195501Google Scholar
Thomas, K. M., Drevets, W. C., Whalen, P. J., Eccard, C. H., Dahl, R. E., Ryan, N. D., & Casey, B. J. (2001). Amygdala response to facial expressions in children and adults. Biological Psychiatry, 49(4), 309316. https://doi.org/10.1016/S0006-3223(00)01066-0Google Scholar
Törnhage, C. J. (2002). Reference values for morning salivary cortisol concentrations in healthy school-aged children. Journal of Pediatric Endocrinology & Metabolism: JPEM, 15(2), 197204. https://doi.org/10.1515/jpem.2002.15.2.197Google Scholar
Torre, J. B., & Lieberman, M. D. (2018). Putting feelings into words: Affect labeling as implicit emotion regulation. Emotion Review, 10(2), 116124. https://doi.org/10.1177/1754073917742706Google Scholar
Tsigos, C., & Chrousos, G. P. (2002). Hypothalamic–pituitary–adrenal axis, neuroendocrine factors and stress. Journal of Psychosomatic Research, 53(4), 865871.Google Scholar
van den Bos, E., de Rooij, M., Miers, A. C., Bokhorst, C. L., & Westenberg, P. M. (2014). Adolescents’ increasing stress response to social evaluation: Pubertal effects on cortisol and alpha-amylase during public speaking. Child Development, 85(1), 220236. https://doi.org/10.1111/cdev.12118Google Scholar
Vasilev, C. A., Crowell, S. E., Beauchaine, T. P., Mead, H. K., & Gatzke-Kopp, L. M. (2009). Correspondence between physiological and self-report measures of emotion dysregulation: A longitudinal investigation of youth with and without psychopathology. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 50(11), 13571364. https://doi.org/10.1111/j.1469-7610.2009.02172.xGoogle Scholar
Vijayakumar, N., Pfeifer, J. H., Flournoy, J. C., Hernandez, L. M., & Dapretto, M. (2019). Affective reactivity during adolescence: Associations with age, puberty and testosterone. Cortex, 117, 336350. https://doi.org/10.1016/j.cortex.2019.04.024Google Scholar
Vögele, C., Sorg, S., Studtmann, M., & Weber, H. (2010). Cardiac autonomic regulation and anger coping in adolescents. Biological Psychology, 85(3), 465471. https://doi.org/10.1016/j.biopsycho.2010.09.010Google Scholar
Wadsworth, M. E., Bendezú, J. J., Loughlin-Presnal, J., Ahlkvist, J. A., Tilghman-Osborne, E., Bianco, H., Rindlaub, L., & Hurwich-Reiss, E. (2018). Unlocking the black box: A multilevel analysis of preadolescent children’s coping. Journal of Clinical Child and Adolescent Psychology, 47(4), 527541. https://doi.org/10.1080/15374416.2016.1141356Google Scholar
Walker, E. F., Walder, D. J., & Reynolds, F. (2001). Developmental changes in cortisol secretion in normal and at-risk youth. Development and Psychopathology, 13(3), 721732. https://doi.org/10.1017/S0954579401003169Google Scholar
Wang, Y., & Yip, T. (2020). Sleep facilitates coping: Moderated mediation of daily sleep, ethnic/racial discrimination, stress responses, and adolescent well-being. Child Development, 91(4), e833e852. https://doi.org/10.1111/cdev.13324Google Scholar
Weisz, J. R., Rothbaum, F. M., & Blackburn, T. C. (1984). Standing out and standing in: The psychology of control in America and Japan. American Psychologist, 39(9), 955969. https://doi.org/10.1037/0003-066X.39.9.955Google Scholar
Will, G.-J., van Lier, P. A. C., Crone, E. A., & Güroğlu, B. (2016). Chronic childhood peer rejection is associated with heightened neural responses to social exclusion during adolescence. Journal of Abnormal Child Psychology, 44(1), 4355. https://doi.org/10.1007/s10802-015-9983-0Google Scholar
Williams, K., & McGillicuddy-De Lisi, A. (1999). Coping strategies in adolescents. Journal of Applied Developmental Psychology, 20(4), 537549. https://doi.org/10.1016/S0193-3973(99)00025-8Google Scholar
Yang, J., Zhang, S., Lou, Y., Long, Q., Liang, Y., Xie, S., & Yuan, J. (2018). The increased sex differences in susceptibility to emotional stimuli during adolescence: An event-related potential study. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00660Google Scholar
Yaroslavsky, I., Bylsma, L. M., Rottenberg, J., & Kovacs, M. (2013). Combinations of resting RSA and RSA reactivity impact maladaptive mood repair and depression symptoms. Biological Psychology, 94(2), 272281. https://doi.org/10.1016/j.biopsycho.2013.06.008Google Scholar
Yaroslavsky, I., Rottenberg, J., Bylsma, L. M., Jennings, J. R., George, C., Baji, I., Benák, I., Dochnal, R., Halas, K., Kapornai, K., Kiss, E., Makai, A., Varga, H., Vetró, Á., & Kovacs, M. (2016). Parasympathetic nervous system activity predicts mood repair use and its effectiveness among adolescents with and without histories of major depression. Journal of Abnormal Psychology, 125(3), 323336. https://doi.org/10.1037/abn0000149Google Scholar
Yuan, J., Ju, E., Yang, J., Chen, X., & Li, H. (2014). Different patterns of puberty effect in neural oscillation to negative stimuli: Sex differences. Cognitive Neurodynamics, 8(6), 517524. https://doi.org/10.1007/s11571-014-9287-zGoogle Scholar
Yuksel, D., Baker, F. C., Goldstone, A., Claudatos, S. A., Forouzanfar, M., Prouty, D. E., Colrain, I. M., & de Zambotti, M. (2021). Stress, sleep, and autonomic function in healthy adolescent girls and boys: Findings from the NCANDA study. Sleep Health, 7(1), 7278. https://doi.org/10.1016/j.sleh.2020.06.004Google Scholar
Zelazo, P. D., & Carlson, S. M. (2012). Hot and cool executive function in childhood and adolescence: Development and plasticity. Child Development Perspectives, 6(4), 354360.Google Scholar
Zimmer-Gembeck, M. J., & Skinner, E. A. (2011). The development of coping across childhood and adolescence: An integrative review and critique of research. International Journal of Behavioral Development, 35(1), 117. https://doi.org/10.1177/0165025410384923CrossRefGoogle Scholar
Zimmer‐Gembeck, M. J., & Skinner, E. A. (2016). The development of coping: Implications for psychopathology and resilience. In Cicchetti, D. (Ed.), Developmental psychopathology (3rd ed., Vol. 4, pp. 485544). Wiley. http://au.wiley.com/WileyCDA/WileyTitle/productCd-1118121791Google Scholar
Zimmermann, P., & Iwanski, A. (2014). Emotion regulation from early adolescence to emerging adulthood and middle adulthood: Age differences, gender differences, and emotion-specific developmental variations. International Journal of Behavioral Development, 38(2), 182194. https://doi.org/10.1177/0165025413515405Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×