Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-05T21:11:28.160Z Has data issue: false hasContentIssue false

Part VI - Altered States of the Imagination

Published online by Cambridge University Press:  26 May 2020

Anna Abraham
Affiliation:
University of Georgia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Antrobus, J., Hartwig, P., Rosa, D., Reinsel, R., and Fein, G. (1987). Brightness and Clarity of REM and NREM Imagery: Photo Response Scale. Sleep Research, 16(1958), 240.Google Scholar
Baird, B., Mota-Rolim, S. A., and Dresler, M. (2019). The Cognitive Neuroscience of Lucid Dreaming. Neuroscience & Biobehavioral Reviews, 100, 305323.CrossRefGoogle ScholarPubMed
Blagrove, M., Henley-Einion, J., Barnett, A., Edwards, D., and Seage, C. H. (2011). A Replication of the 5–7 Day Dream-Lag Effect with Comparison of Dreams to Future Events as Control for Baseline Matching. Consciousness and Cognition, 20(2), 384391.CrossRefGoogle ScholarPubMed
Blagrove, M., and Pace-Schott, E. F. (2010). Trait and Neurobiological Correlates of Individual Differences in Dream Recall and Dream Content. International Review of Neurobiology, 92, 155180.Google Scholar
Brooks, J. E., and Vogelsong, J. A. (2000). The Conscious Exploration of Dreaming: Discovering How We Create and Control our Dreams. Bloomington, IN: 1st Books Library.Google Scholar
Cheyne, J. A., and Girard, T. A. (2007). Paranoid Delusions and Threatening Hallucinations: A Prospective Study of Sleep Paralysis Experiences. Consciousness and Cognition, 16(4), 959974.Google Scholar
Christoff, K., Irving, Z. C., Fox, K. C. R., Spreng, R. N., and Andrews-Hanna, J. R. (2016). Mind-Wandering as Spontaneous Thought: A Dynamic Framework. Nature Reviews Neuroscience, 17(11), 718731.CrossRefGoogle ScholarPubMed
Dement, W., and Kleitman, N. (1957). The Relation of Eye Movements during Sleep to Dream Activity: An Objective Method for the Study of Dreaming. Journal of Experimental Psychology, 53(5), 339.Google Scholar
Dennett, D. C. (1976). Are Dreams Experiences? The Philosophical Review, 85(2), 151171.Google Scholar
Desseilles, M., Dang-Vu, T. T., Sterpenich, V., and Schwartz, S. (2011). Cognitive and Emotional Processes during Dreaming: A Neuroimaging View. Consciousness and Cognition, 20(4), 9981008.Google Scholar
Domhoff, G. W. (2013). Finding Meaning in Dreams: A Quantitative Approach. New York, NY: Springer Science & Business Media.Google Scholar
Fosse, R., Stickgold, R., and Hobson, J. A. (2004). Thinking and Hallucinating: Reciprocal Changes in Sleep. Psychophysiology, 41(2), 298305.Google Scholar
Foulkes, D. (2009). Children’s Dreaming and the Development of Consciousness. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Fox, K. C., Nijeboer, S., Solomonova, E., Domhoff, G. W., and Christoff, K. (2013). Dreaming as Mind Wandering: Evidence from Functional Neuroimaging and First-Person Content Reports. Frontiers in Human Neuroscience, 7, 412.Google Scholar
Hobbes, T. (1651/2006). Leviathan. London, UK: A. & C. Black.Google Scholar
Hobson, J. A. (1999). Dreaming as Delirium: How the Brain Goes out of Its Mind. Cambridge, MA: MIT Press.Google Scholar
Hobson, J. A., Pace-Schott, E. F., and Stickgold, R. (2000). Dreaming and the Brain: Toward a Cognitive Neuroscience of Conscious States. Behavioral and Brain Sciences, 23(6), 793842.Google Scholar
Horikawa, T., Tamaki, M., Miyawaki, Y., and Kamitani, Y. (2013). Neural Decoding of Visual Imagery during Sleep. Science, 340(6132), 639642.Google Scholar
Ichikawa, J. (2009). Dreaming and Imagination. Mind & Language, 24(1), 103121.CrossRefGoogle Scholar
Ichikawa, J.(2016). Imagination, Dreaming, and Hallucination. In Kind, A (ed.), The Routledge Handbook of Philosophy of Imagination. London, UK; New York, NY: Routledge, 149162.Google Scholar
Irving, Z. C. (2016). Mind-Wandering Is Unguided Attention: Accounting for the “Purposeful” Wanderer. Philosophical Studies, 173(2), 547571.Google Scholar
Kerr, N. H. (1993). Mental Imagery, Dreams, and Perception. In Cavallero, C and Foulkes, D (eds.), Dreaming as Cognition. New York, NY: Harvester Wheatsheaf, 1837.Google Scholar
Kind, A. (2013). The Heterogeneity of the Imagination. Erkenntnis, 78(1), 141159.Google Scholar
LaBerge, S., Baird, B., and Zimbardo, P. G. (2018). Smooth Tracking of Visual Targets Distinguishes Lucid REM Sleep Dreaming and Waking Perception from Imagination. Nature Communications, 9(1), 3298.CrossRefGoogle ScholarPubMed
LaBerge, S., and Ornstein, S. (1985). Lucid Dreaming. Los Angeles, CA: J. P. Tarcher.Google Scholar
Leibniz, G. (1956). Philosophical Papers and Letters. Volumes 1 and 2. Edited and translated by Loemker, L. E.. Chicago, IL: University of Chicago Press.Google Scholar
Liao, S., and Gendler, T. (2019). Imagination. In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Spring). plato.stanford.edu/archives/spr2019/entries/imagination/.Google Scholar
Malcolm, N. (1959). Dreaming. London, UK: Routledge & Kegan Paul.Google Scholar
Metzinger, T. (2009). The Ego Tunnel: The Science of the Mind and the Myth of the Self. New York, NY: Basic Books (AZ).Google Scholar
Nielsen, T. A. (1993). Changes in the Kinesthetic Content of Dreams following Somatosensory Stimulation of Leg Muscles during REM Sleep. Dreaming, 3(2), 99.Google Scholar
Nielsen, T. A.(2000). A Review of Mentation in REM and NREM Sleep: “Covert” REM Sleep as a Possible Reconciliation of Two Opposing Models. Behavioral and Brain Sciences, 23(6), 851866.Google Scholar
Nielsen, T. A.(2017). Microdream Neurophenomenology. Neuroscience of Consciousness, 2017(1), nix001.Google Scholar
Nielsen, T. A., and Powell, R. A. (1989). The “Dream-Lag” Effect: A 6-Day Temporal Delay in Dream Content Incorporation. Psychiatric Journal of the University of Ottawa, 14(4), 561565.Google Scholar
Nielsen, T. A., and Stenstrom, P. (2005). What Are the Memory Sources of Dreaming? Nature, 437(7063), 12861289.Google Scholar
Nir, Y., and Tononi, G. (2010). Dreaming and the Brain: From Phenomenology to Neurophysiology. Trends in Cognitive Sciences, 14(2), 88100.CrossRefGoogle ScholarPubMed
Noreika, V., Valli, K., Lahtela, H., and Revonsuo, A. (2009). Early-Night Serial Awakenings as a New Paradigm for Studies on NREM Dreaming. International Journal of Psychophysiology, 74(1), 1418.CrossRefGoogle ScholarPubMed
Pagel, J. F., Blagrove, M., Levin, R., Stickgold, B., and White, S. (2001). Definitions of Dream: A Paradigm for Comparing Field Descriptive Specific Studies of Dream. Dreaming, 11(4), 195202.Google Scholar
Rechtschaffen, A., and Buchignani, C. (1983). Visual Dimensions and Correlates of Dream Images. Sleep Research, 12(189).Google Scholar
Revonsuo, A. (2000). The Reinterpretation of Dreams: An Evolutionary Hypothesis of the Function of Dreaming. Behavioral and Brain Sciences, 23(6), 877901.Google Scholar
Revonsuo, A.(2005). The Self in Dreams. In Feinberg, T. E. and Keenan, J. P. (eds.), The Lost Self: Pathologies of the Brain and Identity. Oxford, UK: Oxford University Press, 206219.Google Scholar
Revonsuo, A.(2006). Inner Presence: Consciousness as a Biological Phenomenon. Cambridge, MA: MIT Press.Google Scholar
Revonsuo, A., Tuominen, J., and Valli, K. (2015). The Avatars in the Machine: Dreaming as a Simulation of Social Reality. In Metzinger, T and Windt, J. M. (eds.), Open MIND. Frankfurt am Main, Germany: MIND Group.Google Scholar
Rosen, M. G. (2018). How Bizarre? A Pluralist Approach to Dream Content. Consciousness and Cognition, 62, 148162.Google Scholar
Rosen, M. G.(2019). Dreaming of a Stable World: Vision and Action in Sleep. Synthese, 136. doi:10.1007/s11229-019-02149-1.Google Scholar
Ryle, G. (2009). The Concept of Mind. Abingdon, UK: Routledge.Google Scholar
Sauvageau, A., Nielsen, T. A., and Montplaisir, J. (1998). Effects of Somatosensory Stimulation on Dream Content in Gymnasts and Control Participants: Evidence of Vestibulomotor Adaptation in REM Sleep. Dreaming, 8(2), 125.Google Scholar
Schmidt, R. E., and Gendolla, G. H. (2008). Dreaming of White Bears: The Return of the Suppressed at Sleep Onset. Consciousness and Cognition, 17(3), 714724.Google Scholar
Schönhammer, R. (2004). Fliegen, fallen, flüchten: Psychologie intensiver Träume. Tübingen, Germany: Dgvt-Verlag.Google Scholar
Schönhammer, R.(2005). “Typical Dreams”: Reflections of Arousal. Journal of Consciousness Studies, 12(4–5), 1837.Google Scholar
Schredl, M. (2006). Factors Affecting the Continuity between Waking and Dreaming: Emotional Intensity and Emotional Tone of the Waking-Life Event. Sleep and Hypnosis, 8(1), 1.Google Scholar
Schwartz, S. (2000). A Historical Loop of One Hundred Years: Similarities between 19th Century and Contemporary Dream Research. Dreaming, 10(1), 55.CrossRefGoogle Scholar
Seli, P., Risko, E. F., Smilek, D., and Schacter, D. L. (2016). Mind-Wandering with and without Intention. Trends in Cognitive Sciences, 20(8), 605617.Google Scholar
Siclari, F., LaRocque, J. J., Postle, B. R., and Tononi, G. (2013). Assessing Sleep Consciousness within Subjects Using a Serial Awakening Paradigm. Frontiers in Psychology, 4, 542.Google Scholar
Siclari, F., and Tononi, G. (2017). Local Aspects of Sleep and Wakefulness. Current Opinion in Neurobiology, 44, 222227.Google Scholar
Smallwood, J., and Schooler, J. W. (2015). The Science of Mind Wandering: Empirically Navigating the Stream of Consciousness. Annual Review of Psychology, 66(1), 487518.Google Scholar
Solms, M. (2014). The Neuropsychology of Dreams: A Clinico-Anatomical Study. New York, NY: Psychology Press.Google Scholar
Sosa, E. (2007). A Virtue Epistemology: Apt Belief and Reflective Knowledge. Volume 1. Oxford, UK: Oxford University Press.Google Scholar
Strauch, I., and Meier, B. (1996). In Search of Dreams: Results of Experimental Dream Research. Albany, NY: SUNY Press.Google Scholar
Stumbrys, T., Erlacher, D., Johnson, M., and Schredl, M. (2014). The Phenomenology of Lucid Dreaming: An Online Survey. The American Journal of Psychology, 127(2), 191204.CrossRefGoogle ScholarPubMed
Suddendorf, T., Addis, D. R., and Corballis, M. C. (2009). Mental Time Travel and the Shaping of the Human Mind. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521), 13171324.CrossRefGoogle ScholarPubMed
Sutton, J. (2010). Carelessness and Inattention: Mind-Wandering and the Physiology of Fantasy from Locke to Hume. In Wolfe, C. T. and Gale, O (eds.), The Body as Object and Instrument of Knowledge: Embodied Empiricism in Early Modern Science. Dordrecht, Netherlands: Springer, 243263.Google Scholar
Thomas, N. J. T. (2018). Mental Imagery. In Zalta, E. N. (ed.), The Stanford Encyclopedia of Philosophy (Spring). plato.stanford.edu/archives/spr2018/entries/mental-imagery/.Google Scholar
Valli, K., and Revonsuo, A. (2009). The Threat Simulation Theory in Light of Recent Empirical Evidence: A Review. The American Journal of Psychology, 122(1), 1738.CrossRefGoogle ScholarPubMed
van Rijn, E., Eichenlaub, J.-B., Lewis, P. A., et al. (2015). The Dream-Lag Effect: Selective Processing of Personally Significant Events during Rapid Eye Movement Sleep, but Not during Slow Wave Sleep. Neurobiology of Learning and Memory, 122, 98109.CrossRefGoogle ScholarPubMed
Voss, U., and Hobson, A. (2015). What is the State-of-the-Art on Lucid Dreaming? Recent Advances and Questions for Future Research. In Metzinger, T and Windt, J. M. (eds.), Open MIND. Frankfurt am Main, Germany: MIND Group.Google Scholar
Voss, U., Schermelleh-Engel, K., Windt, J. M., Frenzel, C., and Hobson, A. (2013). Measuring Consciousness in Dreams: The Lucidity and Consciousness in Dreams Scale. Consciousness and Cognition, 22(1), 821.Google Scholar
Windt, J. M. (2010). The Immersive Spatiotemporal Hallucination Model of Dreaming. Phenomenology and the Cognitive Sciences, 9(2), 295316.Google Scholar
Windt, J. M.(2013). Reporting Dream Experience: Why (Not) to Be Skeptical about Dream Reports. Frontiers in Human Neuroscience, 7, 708.Google Scholar
Windt, J. M.(2015a). Dreaming: A Conceptual Framework for Philosophy of Mind and Empirical Research. Cambridge, MA: MIT Press.Google Scholar
Windt, J. M.(2015b). Just in Time – Dreamless Sleep Experience as Pure Subjective Temporality. In Metzinger, T and Windt, J. M. (eds.), Open MIND. Frankfurt am Main, Germany: MIND Group.Google Scholar
Windt, J. M.(2017). Predictive Brains, Dreaming Selves, Sleeping Bodies: How the Analysis of Dream Movement Can Inform a Theory of Self- and World-Simulation in Dreams. Synthese, 195(6), 25772625.Google Scholar
Windt, J. M.(2018). Consciousness and Dreams: From Self-Simulation to the Simulation of a Social World. In Gennaro, R. J. (ed.), The Routledge Handbook of Consciousness. New York, NY: Routledge, 420435.Google Scholar
Windt, J. M., Nielsen, T., and Thompson, E. (2016). Does Consciousness Disappear in Dreamless Sleep? Trends in Cognitive Sciences, 20(12), 871882.Google Scholar
Windt, J. M., and Voss, U. (2018). Spontaneous Thought, Insight, and Control in Lucid Dreams. In Fox, K. C. R. and Christoff, K (eds.), The Oxford Handbook of Spontaneous Thought: Mind-Wandering, Creativity, and Dreaming. New York, NY: Oxford University Press, 385410.Google Scholar
Zeidman, P., and Maguire, E. A. (2016). Anterior Hippocampus: The Anatomy of Perception, Imagination and Episodic Memory. Nature Reviews. Neuroscience, 17(3), 173182.Google Scholar

References

Abraham, A. (2013). The World According to Me: Personal Relevance and the Medial Prefrontal Cortex. Frontiers in Human Neuroscience, 7, 341344.Google Scholar
Abraham, A.(2016). The Imaginative Mind. Human Brain Mapping, 37, 41974211.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J., Reidler, J., Sepulcre, J., Poulin, R., and Buckner, R. (2010). Functional-Anatomic Fractionation of the Brain’s Default Network. Neuron, 65, 550562.Google Scholar
Andrews-Hanna, J., Smallwood, J., and Spreng, R. (2014). The Default Network and Self-Generated Thought: Component Processes, Dynamic Control, and Clinical Relevance. Annals of the New York Academy of Science, 1316, 2952.Google Scholar
Bauer, P. (2013). Memory. In Zelazo, P (ed.), The Oxford Handbook of Developmental Psychology (Volume 1): Body and Mind. New York, NY: Oxford University Press, 503541.Google Scholar
Baylor, G., and Cavallero, C. (2001). Memory Sources Associated with REM and NREM Dream Reports throughout the Night: A New Look at the Data. Sleep, 24, 165170.Google Scholar
Beaty, R. E., Silvia, P. J., and Benedek, M. (2017). Brain Networks Underlying Novel Metaphor Production. Brain and Cognition, 111, 163170.Google Scholar
Blagrove, M. (1992). Dreams as a Reflection of Our Waking Concerns and Abilities: A Critique of the Problem-Solving Paradigm in Dream Research. Dreaming, 2, 205220.Google Scholar
Blagrove, M.(1996). Problems with the Cognitive Psychological Modeling of Dreaming. Journal of Mind and Behavior, 17, 99134.Google Scholar
Blagrove, M.(2000). Dreams Have Meaning but No Function. Behavioral and Brain Sciences, 23, 910.Google Scholar
Blake, Y., Terburg, D., Balchin, R., Morgan, B., van Honk, J., and Solms, M. (2019). The Role of the Basolateral Amygdala in Dreaming. Cortex, 113, 169183.Google Scholar
Bulkeley, K. (2014). Digital Dream Analysis: A Revised Method. Consciousness and Cognition, 29, 159170.Google Scholar
Cicogna, P., Natale, V., Occhionero, M., and Bosinelli, M. (1998). A Comparison of Mental Activity during Sleep Onset and Morning Awakening. Sleep, 21(5), 462470.Google Scholar
Curot, J., Valton, L., Denuelle, M., et al. (2018). Déjà-rêvé: Prior Dreams Induced by Direct Electrical Brain Stimulation. Brain Stimulation, 11(4), 875885.Google Scholar
Desjardins, S., and Zadra, A. (2006). Is the Threat Simulation Theory Threatened by Recurrent Dreams? Consciouness and Cognition, 15, 470474.Google Scholar
Domhoff, G. W. (1996). Finding Meaning in Dreams: A Quantitative Approach. New York, NY: Plenum.Google Scholar
Domhoff, G. W.(2003). The Scientific Study of Dreams: Neural Networks, Cognitive Development, and Content Analysis. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Domhoff, G. W.(2015). Dreaming as Embodied Simulation: A Widower Dreams of his Deceased Wife. Dreaming, 25, 232256.Google Scholar
Domhoff, G. W. (2018). The Emergence of Dreaming: Mind-Wandering, Embodied Simulation, and the Default Network. New York, NY: Oxford University Press.Google Scholar
Domhoff, G. W., and Schneider, A. (1999). Much Ado about Very Little: The Small Effect Sizes When Home and Laboratory Collected Dreams Are Compared. Dreaming, 9, 139151.Google Scholar
Domhoff, G. W., and Schneider, A. (2008). Similarities and Differences in Dream Content at the Cross-Cultural, Gender, and Individual Levels. Consciousness and Cognition, 17, 12571265.Google Scholar
Domhoff, G. W., and Schneider, A. (2015). Assessing Autocorrelation in Studies using the Hall and van de Castle Coding System to Study Individual Dream Series. Dreaming, 25, 7079.CrossRefGoogle Scholar
Domhoff, G. W., and Schneider, A. (2018). Are Dreams Social Simulations? Or Are They Enactments of Conceptions and Personal Concerns? An Empirical and Theoretical Comparison of Two Dream Theories. Dreaming, 28, 123.Google Scholar
Dorus, E., Dorus, W., and Rechtschaffen, A. (1971). The Incidence of Novelty in Dreams. Archives of General Psychiatry, 25, 364368.Google Scholar
Fair, D., Cohen, A. L., Dosenbach, N., et al. (2008). The Maturing Architecture of the Brain’s Default Network. Proceedings of the National Academy of Sciences, 105, 40284032.Google Scholar
Fiss, H., Ellman, S. J., and Klein, G. S. (1969). Waking Fantasies following Interrupted and Completed REM Periods. Archives of General Psychiatry, 21(2), 230239.Google Scholar
Fosse, R., Hobson, J. A., and Stickgold, R. (2003). Dreaming and Episodic Memory: A Functional Dissociation? Journal of Cognitive Neuroscience, 15, 19.Google Scholar
Fosse, R., Stickgold, R., and Hobson, J. A. (2001). The Mind in REM Sleep: Reports of Emotional Experience. Sleep, 24, 947955.Google Scholar
Foulkes, D. (1982). Children’s Dreams: Longitudinal Studies. New York, NY: Wiley.Google Scholar
Foulkes, D. (1985). Dreaming: A Cognitive-Psychological Analysis. Hillsdale, NJ: Erlbaum.Google Scholar
Foulkes, D. (1993). Data Constraints on Theorizing about Dream Function. In Moffitt, A, Kramer, M and Hoffmann, R (eds.), The Functions of Dreaming. Albany, NY: State University of New York Press, 1120.Google Scholar
Foulkes, D. (1999). Children’s Dreaming and the Development of Consciousness. Cambridge, MA: Harvard University Press.Google Scholar
Foulkes, D. (2017). Dreaming, Reflective Consciousness, and Feelings in the Preschool Child. Dreaming, 27, 113.Google Scholar
Foulkes, D., and Domhoff, G. W. (2014). Bottom-Up or Top-Down in Dream Neuroscience? A Top-Down Critique of Two Bottom-Up Studies. Consciousness and Cognition, 27, 168171.Google Scholar
Foulkes, D., and Fleisher, S. (1975). Mental Activity in Relaxed Wakefulness. Journal of Abnormal Psychology, 84, 6675.Google Scholar
Foulkes, D., Hollifield, M., Sullivan, B., Bradley, L., and Terry, R. (1990). REM Dreaming and Cognitive Skills at Ages 5–8: A Cross-Sectional Study. International Journal of Behavioral Development, 13, 447465.Google Scholar
Foulkes, D., Sullivan, B., Hollifield, M., and Bradley, L. (1989). Mental Rotation, Age, and Conservation. Journal of Genetic Psychology, 150, 449451.Google Scholar
Foulkes, D., and Vogel, G. (1965). Mental Activity at Sleep Onset. Journal of Abnormal Psychology, 70, 231243.CrossRefGoogle ScholarPubMed
Fox, K. (2018). Neural Origins of Self-Generated Thought: Insights from Intracranial Electrical Stimulations and Recordings in Humans. In Fox, K and Christoff, K (eds.), Handbook of Spontaneous Thought: Mind-Wandering, Creativity, and Dreaming. New York, NY: Oxford University Press, 165179.Google Scholar
Fox, K., Nijeboer, S., Solomonova, E., Domhoff, G. W., and Christoff, K. (2013). Dreaming as Mind Wandering: Evidence from Functional Neuroimaging and First-Person Content Reports. Frontiers in Human Neuroscience, 7, article 412, 118. doi:10.3389/fnhum.2013.00412. eCollection 02013.Google Scholar
Fox, K., Spreng, R., Ellamila, M., Andrews-Hanna, J., and Christoff, K. (2015). The Wandering Brain: Meta-Analysis of Functional Neuroimaging Studies of Mind-Wandering and Related Spontaneous Thought Processes. NeuroImage, 111, 611621.Google Scholar
Germain, A., Jeffrey, J., Salvatore, I., et al. (2013). A Window into the Invisible Wound of War: Functional Neuroimaging of REM Sleep in Returning Combat Veterans with PTSD. Psychiatry Research: Neuroimaging, 211, 176179.Google Scholar
Gibbs, R. (2014). Conceptual Metaphor in Thought and Social Action. In Landau, M, Robinson, M, and Meier, B (eds.), The Power of Metaphor: Examining its Influence on Social Life. Washington, DC: American Psychological Association, 1740.Google Scholar
Gopnik, A. (2009). The Philosophical Baby: What Children’s Minds Tell us About Truth, Love, and the Meaning of Life. New York, NY: Farrar, Straus, and Giroux.Google Scholar
Hall, C. (1951). What People Dream About. Scientific American, 184, 6063.Google Scholar
Hall, C., Domhoff, G. W., Blick, K., and Weesner, K. (1982). The Dreams of College Men and Women in 1950 and 1980: A Comparison of Dream Contents and Sex Differences. Sleep, 5, 188194.Google Scholar
Hall, C., and van de Castle, R. (1966). The Content Analysis of Dreams. New York, NY: Appleton-Century-Crofts.Google Scholar
Han, H. (2014). Structural and Longitudinal Analysis of Cognitive Social Networks in Dreams. West Lafayette, IN: Purdue University Unpublished PhD Dissertation.Google Scholar
Han, H., Schweickert, R., Xi, Z., and Viau-Quesnela, C. (2015). The Cognitive Social Network in Dreams: Transitivity, Assortativity, and Giant Component Proportion Are Monotonic. Cognitive Science, doi:10.1111/cogs.12244.Google Scholar
Hori, T., Hayashi, M., and Morikawa, T. (1994). Topographic EEG Changes and the Hypnagogic Experience. In Ogilvie, R and Harsh, J (eds.), Sleep Onset: Normal and Abnormal Processes. Washington, DC: American Psychological Association, 237253.Google Scholar
Hurovitz, C., Dunn, S., Domhoff, G. W., and Fiss, H. (1999). The Dreams of Blind Men and Women: A Replication and Extension of Previous Findings. Dreaming, 9, 183193.Google Scholar
Jenkins, A., and Mitchell, J. (2011). Medial Prefrontal Cortex Subserves Diverse Forms of Self-Reflection. Social Neuroscience, 6, 211218.Google Scholar
Kerr, N. (1993). Mental Imagery, Dreams, and Perception. In Foulkes, D and Cavallero, C (eds.), Dreaming as Cognition. New York, NY: Harvester Wheatsheaf, 1837.Google Scholar
Kerr, N., Foulkes, D., and Jurkovic, G. (1978). Reported Absence of Visual Dream Imagery in a Normally Sighted Subject with Turner’s Syndrome. Journal of Mental Imagery, 2, 247264.Google Scholar
LeDoux, J. (2019). The Deep History of Ourselves: The Four-Billion Year Story of How We Got Conscious Brains. New York, NY: Viking Press.Google Scholar
Madsen, P. L., Schmidt, F., Wildschidtz, G., et al. (1991). Cerebral O2 Metabolism and Cerebral Blood Flow in Humans during Sleep and Rapid-Eye-Movement Sleep. Journal of Applied Physiology, 70, 25972601.Google Scholar
Marquis, L.-P., Paquette, T., Blanchette-Carrière, C., Dumel, G., and Nielsen, T. (2017). REM Sleep Theta Changes in Frequent Nightmare Recallers. Sleep, 40, 112.Google Scholar
Nelson, K. (2007). Young Minds in Social Worlds: Experience, Meaning, and Memory. Cambridge, MA: Harvard University Press.Google Scholar
Pace-Schott, E. (2003). Postscript: Recent Findings on the Neurobiology of Sleep and Dreaming. In Pace-Schott, E, Solms, M, Blagrove, M, and Harnad, S (eds.), Sleep and Dreaming: Scientific Advances and Reconsiderations. New York, NY: Cambridge University Press, 335350.Google Scholar
Pesant, N., and Zadra, A. (2006). Dream Content and Psychological Well-Being: A Longitudinal Study of the Continuity Hypothesis. Journal of Clinical Psychology, 62(1), 111121.Google Scholar
Pivik, R. T., and Foulkes, D. (1968). NREM Mentation: Relation to Personality, Orientation Time, and Time of Night. Journal of Consulting and Clinical Psychology, 32, 144151.Google Scholar
Pyszczynski, T., and Taylor, J. (2016). When The Buffer Breaks: Disrupted Terror Management in Posttrauamtic Stress Disorder. Current Directions in Psychological Science, 25, 286290.Google Scholar
Reese, E. (2013). Culture, Narrative, and Imagination. In Taylor, M (ed.), The Oxford Handbook of the Development of Imagination. Oxford, UK; New York, NY: Oxford University Press, 196211.Google Scholar
Reinsel, R., Antrobus, J., and Wollman, M. (1992). Bizarreness in Dreams and Waking Fantasy. In Antrobus, J. S. and Bertini, M (eds.), The Neuropsychology of Sleep and Dreaming. Hillsdale, NJ: Erlbaum, 157184.Google Scholar
Revonsuo, A., and Salmivalli, C. (1995). A Content Analysis of Bizarre Elements in Dreams. Dreaming, 5, 169187.Google Scholar
Rosenthal, R., and Ambady, N. (1995). Experimenter Effects. In Manstead, A and Hewstone, M (eds.), Encyclopedia of Social Psychology. Oxford, UK: Blackwell, 230235.Google Scholar
Roussy, F., Brunette, M., Mercier, P., et al. (2000). Daily Events and Dream Content: Unsuccessful Matching Attempts. Dreaming, 10, 7783.Google Scholar
Roussy, F., Camirand, C., Foulkes, D., et al. (1996). Does Early-Night REM Dream Content Reliably Reflect Presleep State of Mind? Dreaming, 6, 121130.Google Scholar
Sacks, O. (2013). Hallucinations. New York, NY: Knopf.Google Scholar
Sämann, P., Wehrle, R., Hoehn, D., et al. (2011). Development of the Brain’s Default Mode Network from Wakefulness to Slow Wave Sleep. Cerebral Cortex, 21, 20822093.Google Scholar
Sato, J. R., Salum, G. A., Gadelha, A., et al. (2014). Age Effects on the Default Mode and Control Networks in Typically Developing Children. Journal of Psychiatric Research, 58, 8995.Google Scholar
Schacter, D., Addis, D., and Buckner, R. (2008). Episodic Simulation of Future Events: Concepts, Data, and Applications. Annals of the New York Academy of Sciences, 1124, 3960.Google Scholar
Sherman, L. E., Rudie, J. D., Pfeifer, J. H., et al. (2014). Development of the Default Mode and Central Executive Networks across Early Adolescence: A Longitudinal Study. Developmental Cognitive Neuroscience, 10, 148159.CrossRefGoogle ScholarPubMed
Snyder, F. (1970). The Phenomenology of Dreaming. In Madow, L and Snow, L (eds.), The Psychodynamic Implications of the Physiological Studies on Dreams. Springfield, IL: Thomas, 124151.Google Scholar
Solms, M. (1997). The Neuropsychology of Dreams: A Clinico-Anatomical Study. Hillsdale, NJ: Erlbaum.Google Scholar
Stickgold, R., Scott, L., Rittenhouse, C., and Hobson, J. A. (1999). Sleep-Induced Changes in Associative Memory. Journal of Cognitive Neuroscience, 11, 182193.Google Scholar
Strauch, I. (2005). REM Dreaming in the Transition from Late Childhood to Adolescence: A Longitudinal Study. Dreaming, 15, 155169.Google Scholar
Strauch, I., and Lederbogen, S. (1999). The Home Dreams and Waking Fantasies of Boys and Girls Ages 9–15. Dreaming, 9, 153161.Google Scholar
Strauch, I., and Meier, B. (1996). In Search of Dreams: Results of Experimental Dream Research. Albany, NY: State University of New York Press.Google Scholar
Suddendorf, T., and Dong, A. (2013). On the Evolution of Imagination and Design. In Taylor, M (ed.), The Oxford Handbook of the Development of Imagination. Oxford, UK; New York, NY: Oxford University Press, 453467.Google Scholar
Tonay, V. (1990/1991). California Women and their Dreams: A Historical and Sub-Cultural Comparison of Dream Content. Imagination, Cognition, and Personality, 10, 8397.Google Scholar
van Rijn, E., Eichenlaub, J. B., Lewis, P. A., et al. (2015). The Dream-Lag Effect: Selective Processing of Personally Significant Events during Rapid Eye Movement Sleep, but Not during Slow Wave Sleep. Neurobiology of Learning and Memory, 122, 98109.Google Scholar
Vignal, J.-P., Maillard, L., McGonigal, A., and Chauvel, P. (2007). The Dreamy State: Hallucinations of Autobiographic Memory Evoked by Temporal Lobe Stimulations and Seizures. Brain, 130, 8899.Google Scholar
Webb, E., Campbell, D., Schwartz, R., Sechrest, L., and Grove, J. (1981). Nonreactive Measures in the Social Sciences. Boston, MA: Houghton Mifflin.Google Scholar
Weisz, R., and Foulkes, D. (1970). Home and Laboratory Dreams Collected under Uniform Sampling Conditions. Psychophysiology, 6, 588596.Google Scholar
Zimmerman, W. B. (1970). Sleep Mentation and Auditory Awakening Thresholds. Psychophysiology, 6, 540549.Google Scholar

References

Addis, D. R., Moscovitch, M., Crawley, A. P., and McAndrews, M. P. (2004). Recollective Qualities Modulate Hippocampal Activation during Autobiographical Memory Retrieval. Hippocampus, 14(6), 752762.Google Scholar
Allen, P., Laroi, F., McGuire, P. K., and Aleman, A. (2008). The Hallucinating Brain: A Review of Structural and Functional Neuroimaging Studies of Hallucinations. Neuroscience & Biobehavioral Reviews, 32(1), 175191.Google Scholar
Amedi, A., Malach, R., and Pascual-Leone, A. (2005). Negative BOLD Differentiates Visual Imagery and Perception. Neuron, 48(5), 859872.Google Scholar
Aristotle, . (1968). De Anima. Books II and III (with certain passages from Book I). Translated by D. W. Hamlyn. Oxford, UK: Clarendon Press.Google Scholar
Barnett, K. J., and Newell, F. N. (2008). Synaesthesia is Associated with Enhanced Self-Rated Visual Imagery. Consciousness and Cognition, 17(3), 10321039.Google Scholar
Bartolomeo, P. (2002). The Relationship between Visual Perception and Visual Mental Imagery: A Reappraisal of the Neuropsychological Evidence. Cortex, 38(3), 357378.Google Scholar
Bartolomeo, P., Bachoud-Levi, A.-C., de Gelder, B., et al. (1998). Multiple-Domain Dissociation Between Impaired Visual Perception and Preserved Mental Imagery in a Patient with Bilateral Extrastriate Lesions. Neuropsychologia, 36, 239249.Google Scholar
Behrmann, M., Moscovitch, M., and Winocur, G. (1994). Intact Visual Imagery and Impaired Visual Perception in a Patient with Visual Agnosia. Journal of Experimental Psychology: Human Perception and Performance, 20(5), 10681087.Google Scholar
Behrmann, M., Winocur, G., and Moscovitch, M. (1992). Dissociation Between Mental Imagery and Object Recognition in a Brain-Damaged Patient. Nature, 359(6396), 636637.Google Scholar
Bergmann, J., Genc, E., Kohler, A., Singer, W., and Pearson, J. (2016). Smaller Primary Visual Cortex Is Associated with Stronger, but Less Precise Mental Imagery. Cerebral Cortex, 26(9), 38383850.Google Scholar
Beschin, N., Basso, A., and Della Sala, S. (2000). Perceiving Left and Imagining Right: Dissociation in Neglect. Cortex, 36(3), 401414.Google Scholar
Bickerton, D. (2014). More than Nature Needs: Language, Mind and Evolution. Cambridge, MA.: Harvard University Press.Google Scholar
Bischof, M., and Bassetti, C. L. (2004). Total Dream Loss: A Distinct Neuropsychological Dysfunction after Bilateral PCA Stroke. Annals of Neurology, 56(4), 583586.Google Scholar
Bisiach, E., Capitani, E., Luzzatti, C., and Perani, D. (1981). Brain and Conscious Representation of Outside Reality. Neuropsychologia, 19(4), 543551.Google Scholar
Bisiach, E., and Luzzatti, C. (1978). Unilateral Neglect of Representational Space. Cortex, 14, 129133.Google Scholar
Blazhenkova, O. (2016). Vividness of Object and Spatial Imagery. Perceptual and Motor Skills, 122(2), 490508.Google Scholar
Botez, M. I., Olivier, M., Vezina, J. L., Botez, T., and Kaufman, B. (1985). Defective Revisualization: Dissociation between Cognitive and Imagistic Thought Case Report and Short Review of the Literature. Cortex, 21(3), 375389.Google Scholar
Brewer, W. F., and Schommer-Aikins, M. (2006). Scientists Are Not Deficient in Visual Imagery: Galton Revisited. Review of General Psychology, 10(2), 130146.Google Scholar
Bridge, H., Harrold, S., Holmes, E. A., Stokes, M., and Kennard, C. (2012). Vivid Visual Mental Imagery in the Absence of the Primary Visual Cortex. Journal of Neurology, 259(6), 10621070.Google Scholar
Cabeza, R., and St, J. P. (2007). Functional Neuroimaging of Autobiographical Memory. Trends in Cognitive Sciences, 11(5), 219227.Google Scholar
Carhart-Harris, R. L., Muthukumaraswamy, S., Roseman, L., et al. (2016). Neural Correlates of the LSD Experience Revealed by Multimodal Neuroimaging. Proceedings of the National Academy of Sciences of the United States of America, 113(17), 48534858.Google Scholar
Charcot, J. M. (1889). Clinical Lectures on Diseases of the Nervous System. Volume 3. London, UK: The New Sydenham Society.Google Scholar
Chatterjee, A., and Southwood, M. H. (1995). Cortical Blindness and Visual Imagery. Neurology, 45(12), 21892195.Google Scholar
Clemens, A. (2018). When the Eye’s Mind is Blind. Scientific American, August 1. www.scientificamerican.com/article/when-the-minds-eye-is-blind1/.Google Scholar
Cotard, J. (1882). Du delire des negations. Archives de Neurologie, 4, 152170; 282296.Google Scholar
Cotard, J.(1884). Perte de la vision mentale dans la melancolie anxieuse. Archives de Neurologie, 7, 289295.Google Scholar
D’Aloisio-Montilla, N. (2017). Imagery and Overflow: We See More than We Report. Philosophical Psychology, 30(5), 545570.Google Scholar
Daselaar, S. M., Porat, Y., Huijbers, W., and Pennartz, C. M. (2010). Modality-Specific and Modality-Independent Components of the Human Imagery System. Neuroimage, 52(2), 677685.Google Scholar
de Araujo, D. B., Ribeiro, S., Cecchi, G. A., et al. (2012). Seeing with the Eyes Shut: Neural Basis of Enhanced Imagery following Ayahuasca Ingestion. Human Brain Mapping, 33(11), 25502560.Google Scholar
de Borst, A. W., Sack, A. T., Jansma, B. M., et al. (2012). Integration of “What” and “Where” in Frontal Cortex during Visual Imagery of Scenes. Neuroimage, 60(1), 4758.Google Scholar
de Vito, S., and Bartolomeo, P. (2016). Refusing to Imagine? On the Possibility of Psychogenic Aphantasia. A Commentary on Zeman et al. (2015). Cortex, 74, 334335.Google Scholar
Dunbar, R. (2004). The Human Story: A New History of Mankind’s Evolution. London, UK: Faber and Faber.Google Scholar
Eddy, J. K., and Glass, A. L. (1981). Reading and Listening to High and Low Imagery Sentences. Journal of Verbal Learning and Verbal Behavior, 20(3), 333345.Google Scholar
Farah, M. J. (1984). The Neurological Basis of Mental Imagery: A Componential Analysis. Cognition, 18, 245272.Google Scholar
Faw, B. (2009). Conflicting Intuitions May Be Based on Differing Abilities – Evidence from Mental Imaging Research. Journal of Consciousness Studies, 16, 4568.Google Scholar
Fulford, J., Milton, F., Salas, D., et al. (2018). The Neural Correlates of Visual Imagery Vividness – An fMRI Study and Literature Review. Cortex, 105, 2640.Google Scholar
Galton, F. (1880). Statistics of Mental Imagery. Mind, 5, 301318.Google Scholar
Gardini, S., Concari, L., Pagliara, S., et al. (2011). Visuo-Spatial Imagery Impairment in Posterior Cortical Atrophy: A Cognitive and SPECT Study. Behavioural Neurology, 24(2), 123132.Google Scholar
Gardini, S., Cornoldi, C., De, B. R., and Venneri, A. (2006). Left Mediotemporal Structures Mediate the Retrieval of Episodic Autobiographical Mental Images. Neuroimage, 30(2), 645655.Google Scholar
Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J., and Moscovitch, M. (2004). Remembering our Past: Functional Neuroanatomy of Recollection of Recent and Very Remote Personal Events. Cerebral Cortex, 14(11), 12141225.Google Scholar
Greenberg, D. L., and Knowlton, B. J. (2014). The Role of Visual Imagery in Autobiographical Memory. Memory and Cognition, 42(6), 922934.Google Scholar
Grüter, T., and Carbon, C. C. (2010). Escaping Attention. Science, 328(5977), 435436.Google Scholar
Grüter, T., Grüter, M., Bell, V., and Carbon, C. C. (2009). Visual Mental Imagery in Congenital Prosopagnosia. Neuroscience Letters, 453(3), 135140.Google Scholar
Guillot, A., Collet, C., Nguyen, V. A., et al. (2008). Functional Neuroanatomical Networks Associated with Expertise in Motor Imagery. Neuroimage, 41(4), 14711483.Google Scholar
Jacobs, C., Schwarzkopf, D. S., and Silvanto, J. (2018). Visual Working Memory Performance in Aphantasia. Cortex, 105, 6173.Google Scholar
Keogh, R., Bergmann, J., and Pearson, J. (2016). Cortical Excitability Controls the Strength of Mental Imagery. BioRxiv. org. doi.org/10.1101/093690.Google Scholar
Keogh, R., and Pearson, J. (2018). The Blind Mind: No Sensory Visual Imagery in Aphantasia. Cortex, 105, 5360.Google Scholar
Lambert, M. V., Senior, C., Phillips, M. L., et al. (2001). Visual Imagery and Depersonalisation. Psychopathology, 34(5), 259264.Google Scholar
Lorey, B., Pilgramm, S., Bischoff, M., et al. (2011). Activation of the Parieto-Premotor Network Is Associated with Vivid Motor Imagery – A Parametric FMRI Study. PLoS. One, 6(5), e20368.Google Scholar
MacKisack, M., Aldworth, S., Macpherson, F., et al. (2016). On Picturing a Candle: The Prehistory of Imagery Science. Frontiers in Psychology, 7, 515.Google Scholar
McKelvie, S. (1995). The VVIQ as a Psychometric Test of Individual Differences in Visual Imagery Vividness: A Critical Quantitative Review and Plea for Direction. Journal of Mental Imagery, 19, 1106.Google Scholar
Miller, L. (2017). All Things New. Los Angeles, CA: Three Saints Press.Google Scholar
Milton, F., Muhlert, N., Butler, C. R., Benattayallah, A., and Zeman, A. Z. (2011). The Neural Correlates of Everyday Recognition Memory. Brain and Cognition, 76(3), 369381.Google Scholar
Moro, V., Berlucchi, G., Lerch, J., Tomaiuolo, F., and Aglioti, S. M. (2008). Selective Deficit of Mental Visual Imagery with Intact Primary Visual Cortex and Visual Perception. Cortex, 44(2), 109118.Google Scholar
Nielsen, J. (1946). Agnosia, Apraxia, Aphasia: Their Value in Cerebral Localisation. 2nd edition. New York, NY: Hoeber.Google Scholar
Palmiero, M., Belardinelli, M. O., Nardo, D., et al. (2009). Mental Imagery Generation in Different Modalities Activates Sensory-Motor Areas. Cognitive Processing, 10(Suppl 2), S268271.Google Scholar
Pearson, J., Clifford, C. W., and Tong, F. (2008). The Functional Impact of Mental Imagery on Conscious Perception. Current Biology, 18(13), 982986.Google Scholar
Pearson, J., Rademaker, R. L., and Tong, F. (2011). Evaluating the Mind’s Eye: The Metacognition of Visual Imagery. Psychological Science, 22(12), 15351542.Google Scholar
Phillips, M. L., Medford, N., Senior, C., et al. (2001). Depersonalization Disorder: Thinking without Feeling. Psychiatry Research, 108(3), 145160.Google Scholar
Reisberg, D., Pearson, D. G., and Kosslyn, S. M. (2003). Intuitions and Introspections about Imagery: The Role of Imagery Experience in Shaping an Investigator’s Theoretical Views. Applied Cognitive Psychology, 17, 147160.Google Scholar
Rubin, D. C., and Greenberg, D. L. (1998). Visual Memory-Deficit Amnesia: A Distinct Amnesic Presentation and Etiology. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 54135416.Google Scholar
Servos, P., and Goodale, M. A. (1995). Preserved Visual Imagery in Visual Form Agnosia. Neuropsychologia, 33, 13831394.Google Scholar
Shuren, J. E., Brott, T. G., Schefft, B. K., and Houston, W. (1996). Preserved Colour Imagery in an Achromatopsic. Neuropsychologia, 34, 485489.Google Scholar
Solms, M. (2009). The Neuropsychology of Dreams. New York, NY: Psychology Press.Google Scholar
Watkins, N. W. (2017). (A)phantasia and SDAM: Scientific and Personal Perspectives. psyarxiv.com/d7av9/.Google Scholar
Winlove, C. I. P., Milton, F., Ranson, J., et al. (2018). The Neural Correlates of Visual Imagery: A Co-ordinate-Based Meta-Analysis. Cortex, 105, 425.Google Scholar
Zago, S., Allegri, N., Cristoffanini, M., et al. (2011). Is the Charcot and Bernard Case (1883) of Loss of Visual Imagery Really Based on Neurological Impairment? Cognitive Neuropsychiatry, 16(6), 481504.Google Scholar
Zatorre, R. J., Halpern, A. R., and Bouffard, M. (2010). Mental Reversal of Imagined Melodies: A Role for the Posterior Parietal Cortex. Journal of Cognitive Neuroscience, 22(4), 775789.Google Scholar
Zeman, A., Dewar, M., and Della Sala, S. (2015). Lives without Imagery – Congenital Aphantasia. Cortex, 73, 378380.Google Scholar
Zeman, A., Dewar, M., and Della Sala, S.(2016). Reflections on Aphantasia. Cortex, 74, 336337.Google Scholar
Zeman, A. Z., Della Sala, S., Torrens, L. A., et al. (2010). Loss of Imagery Phenomenology with Intact Visuo-Spatial Task Performance: A Case of “Blind Imagination”. Neuropsychologia, 48(1), 145155.Google Scholar
Zimmer, C. (2010). The Brain. Discover, 2829.Google Scholar
Zmigrod, L., Garrison, J. R., Carr, J., and Simons, J. S. (2016). The Neural Mechanisms of Hallucinations: A Quantitative Meta-Analysis of Neuroimaging Studies. Neuroscience & Biobehavioral Reviews, 69, 113123.Google Scholar
Zvyagintsev, M., Clemens, B., Chechko, N., et al. (2013). Brain Networks Underlying Mental Imagery of Auditory and Visual Information. The European Journal of Neuroscience, 37(9), 14211434.Google Scholar

References

Barnier, A. J., and McConkey, K. M. (1999). Absorption, Hypnotizability and Context: Non‐Hypnotic Contexts Are Not All the Same. Contemporary Hypnosis, 16(1), 18.Google Scholar
Bowers, K. S. (1981). Do the Stanford Scales Tap the “Classic Suggestion Effect”? International Journal of Clinical and Experimental Hypnosis, 29(1), 4253.Google Scholar
Bowers, P., Laurence, J. R., and Hart, D. (1988). The Experience of Hypnotic Suggestions. International Journal of Clinical and Experimental Hypnosis, 36(4), 336349.Google Scholar
Braffman, W., and Kirsch, I. (1999). Imaginative Suggestibility and Hypnotizability: An Empirical Analysis. Journal of Personality and Social Psychology, 77(3), 578587.Google Scholar
Bryant, R. A., and Idey, A. (2001). Intrusive Thoughts and Hypnotizability. Contemporary Hypnosis, 18(1), 1420.Google Scholar
Cardeña, E., and Terhune, D. B. (2014). Hypnotizability, Personality Traits and the Propensity to Experience Alterations of Consciousness. Psychology of Consciousness: Theory, Research, and Practice, 1, 292307.Google Scholar
Cardeña, E., and Terhune, D. B. (2019). The Roles of Response Expectancies, Baseline Experiences, and Hypnotizability in Spontaneous Hypnotic Experiences. International Journal of Clinical and Experimental Hypnosis, 67(1), 127.Google Scholar
Carli, G., Cavallaro, F. I., Rendo, C. A., and Santarcangelo, E. L. (2007). Imagery of Different Sensory Modalities: Hypnotizability and Body Sway. Experimental Brain Research, 179(2), 147154.Google Scholar
Carlson, E. B., and Putnam, F. W. (1989). Integrating Research on Dissociation and Hypnotizability: Are There Two Pathways to Hypnotizability? Dissociation, 2, 3238.Google Scholar
Cojan, Y., Piguet, C., and Vuilleumier, P. (2015). What Makes Your Brain Suggestible? Hypnotizability Is Associated with Differential Brain Activity during Attention outside Hypnosis. Neuroimage, 117, 367374.Google Scholar
Comey, G., and Kirsch, I. (1999). Intentional and Spontaneous Imagery in Hypnosis: The Phenomenology of Hypnotic Responding. International Journal of Clinical and Experimental Hypnosis, 47(1), 6585.Google Scholar
Council, J. R., Kirsch, I., and Grant, D. L. (1996). Imagination, Expectancy, and Hypnotic Responding. In Kunzendorf, R. G., Spanos, N. P., and Wallace, B (eds.), Hypnosis and Imagination. Amityville, NY: Baywood, 4166.Google Scholar
Deeley, Q., Oakley, D. A., Toone, B., et al. (2013). The Functional Anatomy of Suggested Limb Paralysis. Cortex, 49(2), 411422.Google Scholar
Derbyshire, S. W., Whalley, M. G., and Oakley, D. A. (2009). Fibromyalgia Pain and Its Modulation by Hypnotic and Non-Hypnotic Suggestion: An fMRI Analysis. European Journal of Pain, 13(5), 542550.Google Scholar
Derbyshire, S. W., Whalley, M. G., Stenger, V. A., and Oakley, D. A. (2004). Cerebral Activation during Hypnotically Induced and Imagined Pain. Neuroimage, 23(1), 392401.Google Scholar
Dienes, Z., and Perner, J. (2007). Executive Control without Conscious Awareness: The Cold Control Theory of Hypnosis. In Jamieson, G. A. (ed.), Hypnosis and Conscious States: The Cognitive Neuroscience Perspective. Oxford, UK: Oxford University Press, 293314.Google Scholar
Franklin, B., Majault, Le, Sallin, R., et al.(2002). Report of the Commissioners Charged by the King with the Examination of Animal Magnetism. 1784. International Journal of Clinical and Experimental Hypnosis, 50(4), 332363.Google Scholar
Gauld, A. (1992). A History of Hypnotism. Cambridge, UK: Cambridge University Press.Google Scholar
Glisky, M. L., Tataryn, D. J., and Kihlstrom, J. F. (1995). Hypnotizability and Mental Imagery. International Journal of Clinical and Experimental Hypnosis, 43(1), 3454.Google Scholar
Glisky, M. L., Tataryn, D. J., Tobias, B. A., Kihlstrom, J. F., and McConkey, K. M. (1991). Absorption, Openness to Experience, and Hypnotizability. Journal of Personality and Social Psychology, 60(2), 263272.Google Scholar
Gonsalkorale, W. M., Miller, V., Afzal, A., and Whorwell, P. J. (2003). Long Term Benefits of Hypnotherapy for Irritable Bowel Syndrome. Gut, 52(11), 16231629.Google Scholar
Granqvist, P., Fredrikson, M., Unge, P., et al. (2005). Sensed Presence and Mystical Experiences Are Predicted by Suggestibility, Not by the Application of Transcranial Weak Complex Magnetic Fields. Neuroscience Letters, 379(1), 16.Google Scholar
Haggard, P. (2017). Sense of Agency in the Human Brain. Nature Reviews Neuroscience, 18(4), 196207.Google Scholar
Halligan, P. W., Athwal, B. S., Oakley, D. A., and Frackowiak, R. S. (2000). Imaging Hypnotic Paralysis: Implications for Conversion Hysteria. Lancet, 355(9208), 986987.Google Scholar
Halligan, P. W., and Oakley, D. A. (2014). Hypnosis and Beyond: Exploring the Broader Domain of Suggestion. Psychology of Consciousness: Theory, Research, and Practice, 1, 105122.Google Scholar
Hargadon, R., Bowers, K. S., and Woody, E. Z. (1995). Does Counterpain Imagery Mediate Hypnotic Analgesia? Journal of Abnormal Psychology, 104(3), 508516.Google Scholar
Haxby, J. V., Connolly, A. C., and Guntupalli, J. S. (2014). Decoding Neural Representational Spaces using Multivariate Pattern Analysis. Annual Review of Neuroscience, 37, 435456.Google Scholar
Jamieson, G. A., and Woody, E. (2007). Dissociated Control as a Paradigm for Cognitive Neuroscience Research and Theorising in Hypnosis. In Jamieson, G. A. (ed.), Hypnosis and Conscious States: The Cognitive Neuroscience Perspective. Oxford, UK: Oxford University Press, 111129.Google Scholar
Kihlstrom, J. F. (2008). The Domain of Hypnosis, Revisited. In Nash, M. R. and Barnier, A. J. (eds.), The Oxford Handbook of Hypnosis: Theory, Research and Practice. Oxford, UK: Oxford University Press, 2152.Google Scholar
King, B. J., and Council, J. R. (1998). Intentionality during Hypnosis: An Ironic Process Analysis. International Journal of Clinical and Experimental Hypnosis, 46(3), 295313.Google Scholar
Kirsch, I. (1999). Clinical Hypnosis as a Nondeceptive Placebo. In Kirsch, I, Capafons, A, Cardeña-Buelna, E, and Amigó, S (eds.), Clinical Hypnosis and Self-Regulation: Cognitive-Behavioural Perspectives. Washington, DC: American Psychological Association, 211225.Google Scholar
Kirsch, I., and Lynn, S. J. (1995). Altered State of Hypnosis: Changes in the Theoretical Landscape. American Psychologist, 50(10), 846858.Google Scholar
Kirsch, I., Montgomery, G., and Sapirstein, G. (1995). Hypnosis as an Adjunct to Cognitive-Behavioral Psychotherapy: A Meta-Analysis. Journal of Consulting and Clinical Psychology, 63, 214.Google Scholar
Kogon, M. M., Jasiukaitis, P., Berardi, A., et al. (1998). Imagery and Hypnotizability Revisited. International Journal of Clinical and Experimental Hypnosis, 46(4), 363370.Google Scholar
Lau-Zhu, A., Holmes, E. A., and Porcheret, K. (2018). Intrusive Memories of Trauma in the Laboratory: Methodological Developments and Future Directions. Current Behavioral Neuroscience Reports, 5(1), 6171.Google Scholar
Laurence, J.-R., Beaulieu-Prévost, D., and du Chéné, T. (2008). Measuring and Understanding Individual Differences in Hypnotizability. In Nash, M. R. and Barnier, A. J. (eds.), The Oxford Handbook of Hypnosis: Theory, Research and Practice. Oxford, UK: Oxford University Press, 225253.Google Scholar
Lush, P., Caspar, E. A., Cleeremans, A., et al. (2017). The Power of Suggestion: Posthypnotically Induced Changes in the Temporal Binding of Intentional Action Outcomes. Psychological Science, 28(5), 661669.Google Scholar
Lush, P., Naish, P., and Dienes, Z. (2016). Metacognition of Intentions in Mindfulness and Hypnosis. Neuroscience of Consciousness, 2016(1), niw007.Google Scholar
Lynn, S. J., Kirsch, I., and Hallquist, M. (2008). Social Cognitive Theories of Hypnosis. In Nash, M. R. and Barnier, A. J. (eds.), The Oxford Handbook of Hypnosis: Theory, Research and Practice. Oxford, UK: Oxford University Press, 111140.Google Scholar
Lynn, S. J., Kirsch, I., Knox, J., Fassler, O., and Lilienfeld, S. O. (2007). Hypnosis and Neuroscience: Implications for the Altered State Debate. In Jamieson, G. A. (ed.), Hypnosis and Conscious States: The Cognitive Neuroscience Perspective. Oxford, UK: Oxford University Press, 145165.Google Scholar
Marucci, F. S., and Meo, M. (2000). Suggestibility and Imagery during Attribution of Meaning to Ambiguous Figures. In de Pascalis, V, Gheorghiu, V. A., Sheehan, P. W., and Kirsch, I (eds.), Suggestion and Suggestibility: Theory and Research. Munich, Germany: M.E.G.-Stiftung, 167175.Google Scholar
Maxwell, R., Lynn, S. J., and Condon, L. (2015). Hypnosis, Hypnotic Suggestibility, Memory, and Involvement in Films. Consciousness and Cognition, 33, 170184.Google Scholar
Moore, J. W., and Obhi, S. S. (2012). Intentional Binding and the Sense of Agency: A Review. Consciousness and Cognition, 21(1), 546561.Google Scholar
Moore, M., and Tasso, A. F. (2008). Clinical Hypnosis: The Empirical Evidence. In Nash, M. R. and Barnier, A. J. (eds.), The Oxford Handbook of Hypnosis: Theory, Research and Practice. Oxford, UK: Oxford University Press, 697725.Google Scholar
Morgan, A. H. (1973). The Heritability of Hypnotic Susceptibility in Twins. Journal of Abnormal Psychology, 82(1), 5561.Google Scholar
Oakley, D. A. (2012). From Freud to Neuroimaging: Hypnosis as a Common Thread. In Fotopoulou, A, Pfaff, D, and Conway, M. A. (eds.), From the Couch to the Lab: Trends in Psychodynamic Neuroscience. Oxford, UK: Oxford University Press, 356372.Google Scholar
Oakley, D. A., and Halligan, P. W. (2009). Hypnotic Suggestion and Cognitive Neuroscience. Trends in Cognitive Sciences, 13(6), 264270.Google Scholar
Oakley, D. A., and Halligan, P. W.(2013). Hypnotic Suggestion: Opportunities for Cognitive Neuroscience. Nature Reviews Neuroscience, 14(8), 565576.Google Scholar
Oakley, D. A., and Halligan, P. W.(2017). Chasing the Rainbow: The Non-Conscious Nature of Being. Frontiers in Psychology, 8, 1924.Google Scholar
Oakley, D. A., Ward, N. S., Halligan, P. W., and Frackowiak, S. J. (2003). Differential Brain Activations for Malingered and Subjectively “Real” Paralysis. In Halligan, P. W., Bass, C, and Oakley, D. A. (eds.), Malingering and Illness Deception. Oxford, UK: Oxford University Press, 267284.Google Scholar
Panero, M. E., Goldstein, T. R., Rosenberg, R., Hughes, H., and Winner, E. (2016). Do Actors Possess Traits Associated with High Hypnotizability? Psychology of Aesthetics, Creativity, and the Arts, 10(2), 233239.Google Scholar
Patterson, D. R., and Jensen, M. P. (2003). Hypnosis and Clinical Pain. Psychological Bulletin, 129(4), 495521.Google Scholar
Pekala, R. J., and Kumar, V. K. (2007). An Empirical-Phenomenological Approach to Quantifying Consciousness and States of Consciousness: With Particular Reference to Understanding the Nature of Hypnosis. In Jamieson, G. A. (ed.), Hypnosis and Conscious States: The Cognitive Neuroscience Perspective. Oxford, UK: Oxford University Press, 167194.Google Scholar
Piccione, C., Hilgard, E. R., and Zimbardo, P. G. (1989). On the Degree of Stability of Measured Hypnotizability over a 25-year Period. Journal of Personality and Social Psychology, 56(2), 289295.Google Scholar
Polito, V., Barnier, A. J., Woody, E. Z., and Connors, M. H. (2014). Measuring Agency Change across the Domain of Hypnosis. Psychology of Consciousness: Theory, Research, and Practice, 1(1), 319.Google Scholar
Raz, A. (2007). Hypnobo: Perspectives on Hypnosis and Placebo. American Journal of Clinical Hypnosis, 50(1), 2936.Google Scholar
Rhue, J. (2004). Developmental Determinants of High Hypnotizability. In Heap, M, Brown, R. J., and Oakley, D. A. (eds.), The Highly Hypnotizable Person: Theoretical, Experimental and Clinical Issues. New York, NY: Brunner-Routledge, 115132.Google Scholar
Roche, S. M., and McConkey, K. M. (1990). Absorption: Nature, Assessment, and Correlates. Journal of Personality and Social Psychology, 59(1), 91101.Google Scholar
Rominger, C., Weiss, E. M., Nagl, S., et al. (2014). Carriers of the COMT Met/Met Allele Have Higher Degrees of Hypnotizability, Provided That They Have Good Attentional Control: A Case of Gene-Trait Interaction. International Journal of Clinical and Experimental Hypnosis, 62(4), 455482.Google Scholar
Sarbin, T. R., and Lim, D. T. (1963). Some Evidence in Support of the Roletaking Hypothesis in Hypnosis. International Journal of Clinical and Experimental Hypnosis, 11, 98103.Google Scholar
Sheehan, P. W., and Robertson, R. (1996). Imagery and Hypnosis: Trends and Patternings in Effects. In Kunzendorf, R. G., Spanos, N. P., and Wallace, B (eds.), Hypnosis and Imagination. Amityville, NY: Baywood, 117.Google Scholar
Spanos, N. P. (1986). Hypnotic Behavior: A Social Psychological Interpretation of Amnesia, Analgesia and Trance Logic. Behavioral and Brain Sciences, 9(3), 449467.Google Scholar
Spanos, N. P., and Gorassini, D. R. (1984). Structure of Hypnotic Test Suggestions and Attributions of Responding Involuntarily. Journal of Personality and Social Psychology, 46(3), 688696.Google Scholar
Spanos, N. P., Stenstrom, R. J., and Johnston, J. C. (1988). Hypnosis, Placebo, and Suggestion in the Treatment of Warts. Psychosomatic Medicine, 50(3), 245260.Google Scholar
Srzich, A. J., Byblow, W. D., Stinear, J. W., Cirillo, J., and Anson, J. G. (2016). Can Motor Imagery and Hypnotic Susceptibility Explain Conversion Disorder with Motor Symptoms? Neuropsychologia, 89, 287298.Google Scholar
Szechtman, H., Woody, E., Bowers, K. S., and Nahmias, C. (1998). Where the Imaginal Appears Real: A Positron Emission Tomography Study of Auditory Hallucinations. Proceedings of the National Academy of Sciences of the United States of America, 95(4), 19561960.Google Scholar
Tasso, A. F., and Perez, N. (2008). Parsing Everyday Suggestibility: What Does It Tell Us about Hypnosis? In Nash, M. R. and Barnier, A. J. (eds.), The Oxford Handbook of Hypnosis: Theory, Research and Practice. Oxford, UK: Oxford University Press, 283309.Google Scholar
Terhune, D. B. (2012). Metacognition, Cold Control and Hypnosis. Journal of Mind-Body Regulation, 2, 7579.Google Scholar
Terhune, D. B., and Cardeña, E. (2015). Dissociative Subtypes in Posttraumatic Stress Disorders and Hypnosis: Neurocognitive Parallels and Clinical Implications. Current Directions in Psychological Science, 24, 452457.Google Scholar
Terhune, D. B., and Cardeña, E.(2016). Nuances and Uncertainties Regarding Hypnotic Inductions: Toward a Theoretically Informed Praxis. American Journal of Clinical Hypnosis, 59(2), 155174.Google Scholar
Terhune, D. B., Cardeña, E., and Lindgren, M. (2011). Dissociative Tendencies and Individual Differences in High Hypnotic Suggestibility. Cognitive Neuropsychiatry, 16(2), 113135.Google Scholar
Terhune, D. B., Cleeremans, A., Raz, A., and Lynn, S. J. (2017). Hypnosis and Top-Down Regulation of Consciousness. Neuroscience and Biobehavioral Reviews, 81(Pt A), 5974.Google Scholar
Terhune, D. B., and Hedman, L. R. A. (2017). Metacognition of Agency Is Reduced in High Hypnotic Suggestibility. Cognition, 168, 176181.Google Scholar
Varga, K., Nemeth, Z., and Szekely, A. (2011). Lack of Correlation between Hypnotic Susceptibility and Various Components of Attention. Consciousness and Cognition, 20(4), 1872–1881.Google Scholar
Vuilleumier, P. (2014). Brain Circuits Implicated in Psychogenic Paralysis in Conversion Disorders and Hypnosis. Neurophysiologie Clinique-Clinical Neurophysiology, 44(4), 323337.Google Scholar
Wallace, B., Allen, P. A., and Propper, R. E. (1996). Hypnotic Susceptibility, Imaging Ability, and Anagram-Solving Activity. International Journal of Clinical and Experimental Hypnosis, 44(4), 324337.Google Scholar
Walsh, E., Oakley, D. A., Halligan, P. W., Mehta, M. A., and Deeley, Q. (2015). The Functional Anatomy and Connectivity of Thought Insertion and Alien Control of Movement. Cortex, 64, 380393.Google Scholar
Walters, V. J., and Oakley, D. A. (2003). Does Hypnosis Make in Vitro, in Vivo? Hypnosis as a Possible Virtual Reality Context in Cognitive Behavioural Therapy for an Environmental Phobia. Clinical Case Studies, 2(4), 295305.Google Scholar
Walters, V. J., and Oakley, D. A.(2006). Hypnotic Imagery as an Adjunct to Therapy for Irritable Bowel Syndrome: An Experimental Case Report. Contemporary Hypnosis, 23(3), 141149.Google Scholar
Ward, N. S., Oakley, D. A., Frackowiak, R. S., and Halligan, P. W. (2003). Differential Brain Activations during Intentionally Simulated and Subjectively Experienced Paralysis. Cognitive Neuropsychiatry, 8(4), 295312.Google Scholar
Weitzenhoffer, A. M. (1974). When Is an “Instruction” an “Instruction”? International Journal of Clinical and Experimental Hypnosis, 22(3), 258269.Google Scholar
Whorwell, P. J., Prior, A., and Faragher, E. B. (1984). Controlled Trial of Hypnotherapy in the Treatment of Severe Refractory Irritable-Bowel Syndrome. Lancet, 2(8414), 12321234.Google Scholar
Wilson, S. C., and Barber, T. X. (1983). The Fantasy-Prone Personality: Implications for Understanding Imagery, Hypnosis, and Parapsychological Phenomena. In Sheik, A. A. (ed.), Imagery: Current Theory, Research and Application. New York, NY: Wiley, 340390.Google Scholar
Woody, E. Z., and Barnier, A. J. (2008). Hypnosis Scales for the Twenty-First Century: What Do We Know and How Should We Use Them? In Nash, M. R. and Barnier, A. J. (eds.), The Oxford Handbook of Hypnosis: Theory, Research and Practice. Oxford, UK: Oxford University Press, 255281.Google Scholar

References

Abraham, A. D., Fontaine, H. M., Song, A. J., et al. (2018). κ-Opioid Receptor Activation in Dopamine Neurons Disrupts Behavioural Inhibition. Neuropsychopharmacology, 43(2), 362372.Google Scholar
Addy, P. H., Garcia-Romeu, A., Metzger, M., and Wade, J. (2015). The Subjective Experience of Acute, Experimentally-Induced Salvia Divinorum Inebriation. Journal of Psychopharmacology, 29(4), 426435.Google Scholar
Akers, B. P., Ruiz, J. F., Piper, A., and Ruck, C. A. P. (2011) A Prehistoric Mural in Spain Depicting Neurotropic Psilocybe Mushrooms? Economic Botany, 65(2), 121128.Google Scholar
Aleman, A., and Larøi, F. (2008). Hallucinations: The Science of Idiosyncratic Perception. Washington, DC: American Psychological Association.Google Scholar
de Araujo, B., Ribeiro, S., Cecchi, G. A., et al. (2012) Seeing with the Eyes Shut: Neural Basis of Enhanced Imagery Following Ayahuasca Ingestion. Human Brain Mapping, 33(11), 25502560.Google Scholar
Bachner-Melman, R., Dina, C., Zohar, A. H., et al. (2005). AVPR1a and SLC6A4 Gene Polymorphisms Are Associated with Creative Dance Performance. PLoS Genetics, 1(3), e42.Google Scholar
Bliem, B., Unterrainer, H. F., Papousek, I., Weiss, E. M., and Fink, A. (2013). Creativity in Cannabis-Users and in Drug Addicts in Maintenance Treatment and in Rehabilitation. Neuropsychiatry, 27(1), 210.Google Scholar
Block, R. I., and Wittenborn, J. R. (1984). Marijuana Effects on Visual Imagery in a Paired-Associate Task. Perceptual and Motor Skills, 58(3), 759766.Google Scholar
Blom, J. D. (2015). Defining and Measuring Hallucinations and their Consequences – What Is Really the Difference between a Veridical Perception and a Hallucination? Categories of Hallucinatory Experiences. In Collerton, D, Mosimann, U, and Perry, E (eds.), The Neuroscience of Visual Hallucinations. West Sussex, UK: John Wiley & Sons, 2345.Google Scholar
Boot, N., Baas, M., van Gaal, S., et al. (2017). Creative Cognition and Dopaminergic Modulation of Fronto-Striatal Networks: Integrative Review and Research Agenda. Neuroscience & Biobehavioural Reviews, 78, 1323.Google Scholar
Canesi, M., Rusconi, M. L., Moroni, F., et al. (2016). Creative Thinking, Professional Artists, and Parkinson’s Disease. Journal of Parkinson’s Disease, 6(1), 239246.Google Scholar
Caruncho, M. V., and Fernández, F. B. (2011). The Hallucinations of Frédéric Chopin. Medical Humanities, 37(1), 58.Google Scholar
Collerton, D., Mosimann, U. P., and Perry, E. K. (eds.) (2015). The Neuroscience of Visual Hallucinations. West Sussex, UK; Hoboke, NJ: John Wiley & Sons.Google Scholar
Collerton, D., Perry, E., and McKeith, I. (2005). Why People See Things That Are Not There: A Novel Perception and Attention Deficit Model for Recurrent Complex Visual Hallucinations. Behavioral and Brain Sciences, 28(6), 737757.Google Scholar
Collerton, D., Taylor, J. P., Tsuda, I., et al. (2016). How Can We See Things That Are Not There? Current Insights into Complex Visual Hallucinations. Journal of Consciousness Studies, 23(7–8), 195227.Google Scholar
Cruz, A., Domingos, S., Gallardo, E., and Martinho, A. (2017). A Unique Natural Selective Kappa-Opioid Receptor Agonist, Salvinorin A, and Its Roles in Human Therapeutics. Phytochemistry, 137, 914.Google Scholar
Davis, R. E., Callahan, M. J., Dickerson, M., and Downs, D. A. (1992). Pharmacologic Activity of CI-977, a Selective Kappa Opioid Agonist, in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 261(3), 10441049.Google Scholar
De Dreu, C. K., Baas, M., and Boot, N. C. (2015). Oxytocin Enables Novelty Seeking and Creative Performance through Upregulated Approach: Evidence and Avenues for Future Research. Wiley Interdisciplinary Reviews: Cognitive Science, 6(5), 409417.Google Scholar
De Quincy, T. (1821) Confessions of an English Opium-Eater. London Magazine, IV(xxii), 353379.Google Scholar
Dittrich, A., Bickel, P., Schöpf, J., and Zimmer, D. (1976). Comparison of Altered States of Consciousness Induced by the Hallucinogens (–)-Delta9-Trans- Tetrahydrocannabinol (Delta9-THC) and N,N-Dimethyltryptamine (DMT). Archiv für Psychiatrie und Nervenkrankheiten, 223(1), 7787.Google Scholar
Dos Santos, R. G., Osório, F. L., Crippa, J. A. S., and Hallak, J. E. C. (2016). Classical Hallucinogens and Neuroimaging: A Systematic Review of Human Studies: Hallucinogens and Neuroimaging. Neuroscience & Biobehavioural Reviews, 71, 715728.Google Scholar
Dudley, R., Wood, M., Spencer, H., et al. (2012). Identifying Specific Interpretations and Use of Safety Behaviours in People with Distressing Visual Hallucinations: An Exploratory Study. Behavioural and Cognitive Psychotherapy, 40(3), 367375.Google Scholar
Ellis, H. (1898). Mescal: A New Artificial Paradise. The Contemporary Review, 73, 130141.Google Scholar
Faust-Socher, A., Kenett, Y. N., Cohen, O. S., Hassin-Baer, S., and Inzelberg, R. (2014). Enhanced Creative Thinking under Dopaminergic Therapy in Parkinson Disease. Annals of Neurology, 75(6), 935942.Google Scholar
Ffytche, D. H., Howard, R. J., Brammer, M. J., et al. (1998). The Anatomy of Conscious Vision: An fMRI Study of Hallucinations. Nature Neuroscience, 1(8), 738742.Google Scholar
Finegersh, A., Rompala, G. R., Martin, D. I., and Homanics, G. E. (2015). Drinking beyond a Lifetime: New and Emerging Insights into Paternal Alcohol Exposure on Subsequent Generations. Alcohol, 49(5), 461470.Google Scholar
Finkelstein, H. (1975). Dali’s Paranoia-Criticism or the Exercise of Freedom. Twentieth Century Literature, 21(1), 5971.Google Scholar
Freeman, D. (2007). Suspicious Minds: The Psychology of Persecutory Delusions. Clinical Psychology Review, 27(4), 425457.Google Scholar
Frucht, S. J., and Bernsohn, L. (2002). Visual Hallucinations in PD. Neurology, 59(12), 1965.Google Scholar
Gallimore, A. R. (2015). Restructuring Consciousness – The Psychedelic State in Light of Integrated Information Theory. Frontiers in Human Neuroscience, 9, 346.Google Scholar
Gallimore, A. R., and Strassman, R. J. (2016). A Model for the Application of Target-Controlled Intravenous Infusion for a Prolonged Immersive DMT Psychedelic Experience. Frontiers in Pharmacology, 7, 211.Google Scholar
Gauther, T. (1846) Le Club des Haschischins. Revue des Deux Mondes, période initiale, 13(1846), 520535.Google Scholar
Goetz, C. G., Vaughan, C. L., Goldman, J. G., and Stebbins, G. T. (2014). I Finally See What You See: Parkinson’s Disease Visual Hallucinations Captured with Functional Neuroimaging. Movement Disorders, 29(1), 115117.Google Scholar
Heller, R. H. (1972) Edvard Munch: The Scream. New York, NY: Viking Press.Google Scholar
Holm-Hadulla, R. M., and Bertolino, A. (2014). Creativity, Alcohol and Drug Abuse: The Pop Icon Jim Morrison. Psychopathology, 47(3), 167173.Google Scholar
Holroyd, S., Currie, L., Wooten, G. F. (2001). Prospective Study of Hallucinations and Delusions in Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 70, 734738.Google Scholar
Howe, J. (2001). Edvard Munch: Psyche, Symbol and Expression. Boston, MA: Boston College, McMullen Museum of Art.Google Scholar
Huxley, A. (1954/2004). The Doors of Perception. London, UK: Vintage Books.Google Scholar
Inzelberg, R. (2013). The Awakening of Artistic Creativity and Parkinson’s Disease. Behavioral Neuroscience, 127(2), 256261.Google Scholar
Iwaki, H., and Nomoto, M. (2014). The Adverse Effects of Anticholinergic Drugs. Brain and Nerve, 66(5), 551560.Google Scholar
Janiker, O., and Dobkin de Rios, M. (1989). LSD and Creativity. Journal of Psychoactive Drugs, 21(1), 129134.Google Scholar
Kaelen, M., Roseman, L., Kahan, J., et al. (2016). LSD Modulates Music-Induced Imagery via Changes in Parahippocampal Connectivity. European Neuropsychopharmacology, 26(7), 10991109.Google Scholar
Kennaway, J. (2017). “Those Unheard Are Sweeter.” Musical Hallucinations in Nineteenth-Century Medicine and Culture. Terrain: Anthropologie & Sciences Humaines, 68, doi : 10.4000/terrain.16426.Google Scholar
Kenney, S. (1975). Two Endings: Virginia Woolf’s Suicide and Between the Acts. University of Toronto Quarterly, 44(4), 265289.Google Scholar
Klusonová, H., Vlková, J., and Visnovský, P. (2005). Natural Opium as One of the Possibilities for Drug Abusers. Biomedical Papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia, 149(2), 481483.Google Scholar
Kometer, M., Schmidt, A., Jäncke, L., and Vollenweider, F. X. (2013). Activation of Serotonin 2 A Receptors Underlies the Psilocybin-Induced Effects on α Oscillations, N170 Visual-Evoked Potentials, and Visual Hallucinations. Journal of Neuroscience, 33(25), 1054410551.Google Scholar
Koukkou, M., and Lehmann, D. (1976). Human EEG Spectra before and during Cannabis Hallucinations. Biological Psychiatry, 11(6), 663677.Google Scholar
Kowal, M. A., Hazekamp, A., Colzato, L. S., et al. (2015). Cannabis and Creativity: Highly Potent Cannabis Impairs Divergent Thinking in Regular Cannabis Users. Psychopharmacology, 232(6), 11231134.Google Scholar
Kulig, K. (1990). LSD. Emergency Medicine Clinics of North America, 8(3), 551558.Google Scholar
Kuypers, K. P., Riba, J., de la Fuente Revenga, M., et al. (2016). Ayahuasca Enhances Creative Divergent Thinking while Decreasing Conventional Convergent Thinking. Psychopharmacology, 233(18), 33953403.Google Scholar
Kyzar, E. J., Nichols, C. D., Gainetdinov, R. R., Nichols, D. E., and Kalueff, A. V. (2017). Psychedelic Drugs in Biomedicine. Trends in Pharmacological Sciences, 38(11), 9921005.Google Scholar
LaFrance, E. M., and Cuttler, C. (2017). Inspired by Mary Jane? Mechanisms underlying Enhanced Creativity in Cannabis Users. Consciousness and Cognition, 56, 6876.Google Scholar
Landon, M., and Fischer, R. (1970). On Similar Linguistic Structures in Creative Performance and Psilocybin-Induced Experience. Confinia Psychiatrica, 13(2), 115–138.Google Scholar
Leichti, M. E. (2017). Modern Clinical Research on LSD. Neuropsychopharmacology, 42(11), 21142127.Google Scholar
Leikin, J. B., Krantz, A. J., Zell-Kanter, M., Barkin, R. L., and Hryhorczuk, D. O. (1989). Clinical Features and Management of Intoxication due to Hallucinogenic Drugs. Medical Toxicology and Adverse Drug Experience, 4(5), 324350.Google Scholar
Lhommée, E., Batir, A., Quesada, J. L., et al. (2014). Dopamine and the Biology of Creativity: Lessons from Parkinson’s Disease. Frontiers in Neurology, 5, 55.Google Scholar
Liu, J., Li, J., Feng, L., et al. (2014). Seeing Jesus in Toast: Neural and Behavioral Correlates of Face Pareidolia. Cortex, 53, 6077.Google Scholar
Maqueda, A. E., Valle, M., Addy, P. H., et al. (2015). Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans. International Journal of Neuropsychopharmacology, 18(12), pyv065.Google Scholar
Martin, D. A., and Nichols, C. D. (2017). The Effects of Hallucinogens on Gene Expression. Current Topics in Behavioural Neurosciences, 36, 122.Google Scholar
McKenna, T. (1999). Food of the Gods: The Search for the Original Tree of Knowledge. A Radical History of Plants, Drugs and Human Evolution. London, UK: Random House.Google Scholar
McNorgan, C. (2012). A Meta-Analytic Review of Multisensory Imagery Identifies the Neural Correlates of Modality-Specific and Modality-General Imagery. Frontiers in Human Neuroscience, 6, 285.Google Scholar
Minor, K. S., Firmin, R. L., Bonfils, K. A., et al. (2014). Predicting Creativity: The Role of Psychometric Schizotypy and Cannabis Use in Divergent Thinking. Psychiatry Research, 220(1–2), 205210.Google Scholar
Naselaris, T., Olman, C. A., Stansbury, D. E., Ugurbil, K., and Gallant, J. L. (2015). A Voxel-Wise Encoding Model for Early Visual Areas Decodes Mental Images of Remembered Scenes. Neuroimage, 105, 215228.Google Scholar
Nielsen, T. A. (1992). A Self-Observational Study of Spontaneous Hypnagogic Imagery Using the Upright Napping Procedure. Imagination, Cognition and Personality, 11(4), 353366.Google Scholar
Novak, S. J. (1997). LSD Before Leary. Sidney Cohen’s Critique of 1950s Psychedelic Drug Research. Isis: An International Review Devoted to the History of Science and Its Cultural Influences, 88(1), 87110.Google Scholar
O’Craven, K. M., and Kanwisher, N. (2000). Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions. Journal of Cognitive Neuroscience, 126, 10131023.Google Scholar
Orsolini, L., Papanti, G. D., de Berardis, D., et al. (2017). The “Endless Trip” Among the NPS Users: Psychopathology and Psychopharmacology in the Hallucinogen-Persisting Perception Disorder. A Systematic Review. Frontiers in Psychiatry, 8, 240.Google Scholar
Osborne, A. L., Solowij, N., and Weston-Green, K. (2017). A Systematic Review of the Effect of Cannabidiol on Cognitive Function: Relevance to Schizophrenia. Neuroscience and Biobehavioural Reviews, 72, 310324.Google Scholar
Ostwald, P. F. (1987). Schumann: The Inner Voices of a Musical Genius. Boston, MA: Northeastern University Press.Google Scholar
Palhano-Fontes, F., Andrade, K. C., Tofoli, L. F., et al. (2015). The Psychedelic State Induced by Ayahuasca Modulates the Activity and Connectivity of the Default Mode Network. PLoS One, 10(2), e0118143.Google Scholar
Perry, E. K., and Perry, R. H. (1995). Acetylcholine and Hallucinations: Disease-Related Compared to Drug-Induced Alterations in Human Consciousness. Brain and Cognition, 28(3), 240258.Google Scholar
Perry, N., and Perry, E. (2018). Botanic Brain Balms. London, UK: Filbert Press.Google Scholar
Prado, V. F., Janickova, H., Al-Onaizi, M. A., and Prado, M. A. (2017). Cholinergic Circuits in Cognitive Flexibility. Neuroscience, 345, 130141.Google Scholar
Riley, S. C., and Blackman, G. (2008). Between Prohibitions: Patterns and Meanings of Magic Mushroom Use in the UK. Substance Use and Misuse, 43(1), 5571.Google Scholar
Rothenberg, A. (2001). Bipolar Illness, Creativity, and Treatment. Psychiatric Quarterly, 72(2), 131147.Google Scholar
Sessa, B. (2008). Is It Time to Revisit the Role of Psychedelic Drugs in Enhancing Human Creativity? Psychopharmacology, 22(8), 821827.Google Scholar
Shine, J. M., Keogh, R., O’Callaghan, C., et al. (2015). Imagine That: Elevated Sensory Strength of Mental Imagery in Individuals with Parkinson’s Disease and Visual Hallucinations. Proceedings of the Royal Society of London B: Biological Sciences, 282(1798), 20142047.Google Scholar
Sireteanu, R., Oertel, V., Mohr, H., Linden, D., and Singer, W. (2008). Graphical Illustration and Functional Neuroimaging of Visual Hallucinations during Prolonged Blindfolding: A Comparison to Visual Imagery. Perception, 37, 18051821.Google Scholar
Slotnick, S.D., Thompson., W.L., and Kosslyn, M. (2005). Visual Mental Imagery Induces Retinotopically Organised Activation of Early Visual Areas. Cerebral Cortex, 15, 15701583.Google Scholar
Sweat, N. W., Bates, L. W., and Hendricks, P. S. (2016). The Associations of Naturalistic Classic Psychedelic Use, Mystical Experience, and Creative Problem Solving. Journal of Psychoactive Drugs, 48(5), 344350.Google Scholar
Takahashi, K., and Watanabe, K. (2013). Gaze Cueing by Pareidolia Faces. i-Perception, 4, 490492.Google Scholar
Tan, M., and Gan, T. J. (2016). Opioid-Induced Hallucination: Distressful or Sought After? Anaesthesia and Analgesia, 123(4), 818819.Google Scholar
Teaktong, T., Piggott, M. A., Mckeith, I. G., et al. (2005). Muscarinic M2 and M4 Receptors in Anterior Cingulate Cortex: Relation to Neuropsychiatric Symptoms in Dementia with Lewy Bodies. Behavioural Brain Research, 161(2), 299305.Google Scholar
ten Berge, J. (2002). Jekyll and Hyde Revisited: Paradoxes in the Appreciation of Drug Experiences and Their Effects on Creativity. Journal of Psychoactive Drugs, 34(3), 249262.Google Scholar
Thirion, B., Duchesnay, E., Hubbard, E., et al. (2006). Inverse Retinotopy: Inferring the Visual Content of Images from Brain Activation Patterns. Neuroimage, 33, 11041116.Google Scholar
Thomson, C., Wilson, R., Collerton, D., Freeston, M., and Dudley, R. (2017). Cognitive Behavioural Therapy for Visual Hallucinations: An Investigation using a Single-Case Experimental Design. The Cognitive Behaviour Therapist, 10.Google Scholar
Uchiyama, M., Nishio, Y., Yokoi, K., et al. (2012). Pareidolias: Complex Visual Illusions in Dementia with Lewy Bodies. Brain, 135, 24582469.Google Scholar
Uchiyama, M., Nishio, Y., Yokoi, K.(2015). Pareidolia in Parkinson’s Disease without Dementia: A Positron Emission Tomography Study. Parkinsonism and Related Disorders, 21, 603609.Google Scholar
van Os, J., Linscott, R. J., Myin-Germeys, I., Delespaul, P., and Krabbendam, L. (2009). A Systematic Review and Meta-Analysis of the Psychosis Continuum: Evidence for a Psychosis Proneness–Persistence–Impairment Model of Psychotic Disorder. Psychological Medicine, 39(2), 179195.Google Scholar
Varrone, A., Svenningsson, P., Marklund, P., et al. (2015). 5-HT1B Receptor Imaging and Cognition: A Positron Emission Tomography Study in Control Subjects and Parkinson’s Disease Patients. Synapse, 69(7), 365374.Google Scholar
Vickers, N. (2015). Opium as a Literary Stimulant: The Case of Samuel Taylor Coleridge. International Review Neurobiology, 120, 327338.Google Scholar
Volf, N. V., Kulikov, A. V., Bortsov, C. U., and Popova, N. K. (2009). Association of Verbal and Figural Creative Achievement with Polymorphism in the Human Serotonin Transporter Gene. Neuroscience Letters, 463(2), 154157.Google Scholar
Vollenweider, F. X., Vontobel, P., Hell, D., and Leenders, K. L. (1999). 5-HT Modulation of Dopamine Release in Basal Ganglia in Psilocybin-Induced Psychosis in Man – a PET study with [11 C]raclopride. Neuropsychopharmacology, 20(5), 424433.Google Scholar
Waters, F., Collerton, D., Ffytche, D. H., et al. (2014). Visual Hallucinations in the Psychosis Spectrum and Comparative Information from Neurodegenerative Disorders and Eye Disease. Schizophrenia Bulletin, 40(suppl 4), S233S245.Google Scholar
Webster, R., and Holroyd, S. (2000). Prevalence of Psychotic Symptoms in Delirium. Psychosomatics, 41(6), 519522.Google Scholar
Wiebe, T. H., Sigurdson, E. S., and Katz, L. Y. (2006). Angel’s Trumpet (Datura stramonium) Poisoning and Delirium in Adolescents in Winnipeg, Manitoba: Summer 2006. Paediatrics and Child Health, 13(3), 193196.Google Scholar
Wood, L. D. (2010). Clinical Review and Treatment of Select Adverse Effects of Dopamine Receptor Agonists in Parkinson’s Disease. Drugs & Aging, 27(4), 295310.Google Scholar
Yokoi, K., Nishio, Y., Uchiyama, M., et al. (2014). Hallucinators Find Meaning in Noises: Pareidolic Illusions in Dementia with Lewy Bodies. Neuropsychologia, 56(1), 245254.Google Scholar

References

Acar, S., Chen, X., and Cayirdag, N. (2018). Schizophrenia and Creativity: A Meta-Analytic Review. Schizophrenia Research, 195, 2331.Google Scholar
Acredolo, L., Goodwyn, S., and Fulmer, A. (1995). Why Some Children Create Imaginary Companions: Clues from Infant and Toddler Play Preferences. Poster presented at the biennial meetings of the Society for Research in Child Development, Indianapolis, IN.Google Scholar
Alonso-Solís, A., Vives-Gilabert, Y., Grasa, E., et al. (2015). Resting-State Functional Connectivity Alterations in the Default Network of Schizophrenia Patients with Persistent Auditory Verbal Hallucinations. Schizophrenia Research, 161, 261268.Google Scholar
Arzy, S., Mohr, C., Molnar-Szakacs, I., and Blanke, O. (2011). Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity. PLoS One, 6, e16154.Google Scholar
Baas, M., Nijstad, B. A., Boot, N. C., and de Dreu, C. K. (2016). Mad Genius Revisited: Vulnerability to Psychopathology, Biobehavioral Approach-Avoidance, and Creativity. Psychological Bulletin, 142(6), 668.Google Scholar
Barnes, J. L., and Baron-Cohen, S. (2012). The Big Picture: Storytelling Ability in Adults with Autism Spectrum Conditions. Journal of Autism and Developmental Disorders, 42, 15571565.Google Scholar
Baron-Cohen, S. (2009). Autism: The Empathizing-Systemizing (E-S) Theory. Annals of the New York Academy of Sciences, 1156, 6880.Google Scholar
Baron-Cohen, S., and Lombardo, M. V. (2017). Autism and Talent: The Cognitive and Neural Basis of Systemizing. Dialogues in Clinical Neuroscience, 19(4), 345.Google Scholar
Batey, M., and Furnham, A. (2006). Creativity, Intelligence, and Personality: A Critical Review of the Scattered Literature. Genetic, Social, and General Psychology Monographs, 132(4), 355429.Google Scholar
Birchwood, M., Meaden, A., Trower, P., Gilbert, P., and Plaistow, J. (2000). The Power and Omnipotence of Voices: Subordination and Entrapment by Voices and Significant Others. Psychological Medicine, 30, 337344.Google Scholar
Bonne, O., Canetti, L., Bachar, E., De-Nour, A. K., and Shalev, A. (1999). Childhood Imaginary Companionship and Mental Health in Adolescence. Child Psychiatry and Human Development, 29, 277286.Google Scholar
Bottema-Beutel, K., and White, R. (2016). By the Book: An Analysis of Adolescents with Autism Spectrum Condition Co-Constructing Fictional Narratives with Peers. Journal of Autism and Developmental Disorders, 46(2), 361377.Google Scholar
Boucher, J. (2007). Memory and Generativity in Very High Functioning Autism: A Firsthand Account, and an Interpretation. Autism, 11(3), 255264.Google Scholar
Brébion, G., Ohlsen, R. I., Pilowsky, L. S., and David, A. S. (2008). Visual Hallucinations in Schizophrenia: Confusion between Imagination and Perception. Neuropsychologia, 22, 383.Google Scholar
Brewin, C. R., and Soni, M. (2011). Gender, Personality, and Involuntary Autobiographical Memory. Memory, 19, 559565.Google Scholar
Broyd, S. J., Demanuele, C., Debener, S., et al. (2009). Default-Mode Brain Dysfunction in Mental Disorders: A Systematic Review. Neuroscience and Biobehavioral Reviews, 33, 279296.Google Scholar
Brugger, P., and Mohr, C. (2008). The Paranormal Mind: How the Study of Anomalous Experiences and Beliefs May Inform Cognitive Neuroscience. Cortex, 44, 12911298.Google Scholar
Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The Brain’s Default Network. Annals of the New York Academy of Sciences, 1124, 138.Google Scholar
Campbell, B. C., and Wang, S. S. (2012). Familial Linkage between Neuropsychiatric Disorders and Intellectual Interests. PloS One, 7, e30405.Google Scholar
Carlson, S. M., Mandell, D. J., and Williams, L. (2004). Executive Function and Theory of Mind: Stability and Prediction From Ages 2 to 3. Developmental Psychology, 40, 1105.Google Scholar
Carlson, S. M., Tahiroglu, D., and Taylor, M. (2008). Links between Dissociation and Role Play in a Nonclinical Sample of Preschool Children. Journal of Trauma Dissociation, 9, 149171.Google Scholar
Carson, S. H. (2011). Creativity and Psychopathology: A Shared Vulnerability Model. Canadian Journal of Psychiatry, 56, 144153.Google Scholar
Choi-Kain, L. W., and Gunderson, J. G. (2008). Mentalization: Ontogeny, Assessment, and Application in the Treatment of Borderline Personality Disorder. American Journal of Psychiatry, 165, 11271135.Google Scholar
Clark, S. V., Mittal, V. A., Bernard, J. A., et al. (2018). Stronger Default Mode Network Connectivity Is Associated with Poorer Clinical Insight in Youth at Ultra High Risk for Psychotic Disorders. Schizophrenia Research, 193, 244250.Google Scholar
Coleman, J. R., Bryois, J., Gaspar, H. A., et al. (2018). Biological Annotation of Genetic Loci Associated with Intelligence in a Meta-Analysis of 87,740 Individuals. Molecular Psychiatry, 1.Google Scholar
Collerton, D., Perry, E., and McKeith, I. (2005). Why People See Things That Are Not There: A Novel Perception and Attention Deficit Model for Recurrent Complex Visual Hallucinations. The Behavioral and Brain Sciences, 28, 737757.Google Scholar
Conway, M., Meares, K., and Standart, S. (2004). Images and Goals. Memory, 12, 525531.Google Scholar
Cooper, R. A., and Simons, J. S. (2019). Exploring the Neurocognitive Basis of Episodic Recollection in Autism. Psychonomic Bulletin & Review, 26(1), 163181. doi:10.3758/s13423-018-1504-z.Google Scholar
Craig, J., and Baron-Cohen, S. (1999). Creativity and Imagination in Autism and Asperger Syndrome. Journal of Autism and Developmental Disorders, 29, 319326.Google Scholar
Craig, J., Baron-Cohen, S., and Scott, F. (2000). Story-Telling Ability in Autism: A Window into the Imagination. Israel Journal of Psychiatry, 37, 6470.Google Scholar
Crespi, B. J. (2016a). Autism as a Disorder of High Intelligence. Frontiers in Neuroscience, 10, 300.Google Scholar
Crespi, B. J.(2016b). The Evolutionary Etiologies of Autism Spectrum and Psychotic Affective Spectrum Disorders. In Alvergne, A, Jenkinson, C, and Faurie, C (eds.), Evolutionary Thinking in Medicine: From Research to Policy and Practice. Cham, Switzerland: Springer International Publishing AG, 299327.Google Scholar
Crespi, B., and Badcock, C. (2008). Psychosis and Autism as Diametrical Disorders of the Social Brain. The Behavioral and Brain Sciences, 31, 241261.Google Scholar
Crespi, B., Leach, E., Dinsdale, N., Mokkonen, M., and Hurd, P. (2016). Imagination in Human Social Cognition, Autism, and Psychotic-Affective Conditions. Cognition, 150, 181199.Google Scholar
Currie, G. (2000). Imagination, Delusion and Hallucinations. Mind & Language, 15, 168183.Google Scholar
Currie, G., and Jureidini, J. (2003). Art and Delusion. The Monist, 86(4), 556578.Google Scholar
Currie, G., and Ravenscroft, I. (2002). Recreative Minds: Imagination in Philosophy and Psychology. Oxford, UK: Oxford University Press.Google Scholar
Daniel, C., and Mason, O. J. (2015). Predicting Psychotic-Like Experiences during Sensory Deprivation. BioMed Research International, 2015, 439379.Google Scholar
Davis, P. E., Simon, H., Meins, E., and Robins, D. L. (2018). Imaginary Companions in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 48(8), 2790–2799.Google Scholar
de Oliveira, H., Cuervo-Lombard, C., Salamé, P., and Danion, J. (2009). Autonoetic Awareness Associated with the Projection of the Self into the Future: An Investigation in Schizophrenia. Psychiatry Research, 169, 8687.Google Scholar
Dentico, D., Cheung, B. L., Chang, J., et al. (2014). Reversal of Cortical Information Flow during Visual Imagery as Compared to Visual Perception. NeuroImage, 100, 237243.Google Scholar
DeYoung, C. G., Grazioplene, R. G., and Peterson, J. B. (2012). From Madness to Genius: The Openness/Intellect Trait Domain as a Paradoxical Simplex. Journal of Research in Personality, 46(1), 6378.Google Scholar
Dichter, G. S., Lam, K. S. L., Turner-Brown, L. M., et al. (2009). Generativity Abilities Predict Communication Deficits but not Repetitive Behaviors in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 39, 12981304.Google Scholar
Dickerson, A. S., Pearson, D. A., Loveland, K. A., et al. (2014). Role of Parental Occupation in Autism Spectrum Disorder Diagnosis and Severity. Research in Autism Spectrum Disorders, 8, 9971007.Google Scholar
Dierker, L. C., Davis, K. F., and Sanders, B. (1995). The Imaginary Companion Phenomenon: An Analysis of Personality Correlates and Developmental Antecedents. Dissociation, 4, 220228.Google Scholar
Elsworth, C. (2013). We Did Not Know That Our Schizophrenic Daughter January Schofield’s Imaginary Friends Were Hallucinations. The Telegraph, January 27. www.telegraph.co.uk/news/health/children/9828583/We-did-not-know-that-our-schizophrenic-daughter-January-Schofields-imaginary-friends-were-hallucinations.html.Google Scholar
Ferretti, F., Adornetti, I., Chiera, A., et al. (2018). Time and Narrative: An Investigation of Storytelling Abilities in Children with Autism Spectrum Disorder. Frontiers in Psychology, 9, 944.Google Scholar
Fink, A., Weber, B., Koschutnig, K., et al. (2014). Creativity and Schizotypy from the Neuroscience Perspective. Cognitive, Affective & Behavioral Neuroscience, 14, 378387.Google Scholar
Frith, U. (2012). Why We Need Cognitive Explanations of Autism. The Quarterly Journal of Experimental Psychology, 65, 20732092.Google Scholar
Fyfe, S., Williams, C., Mason, O. J., and Pickup, G. J. (2008). Apophenia, Theory of Mind and Schizotypy: Perceiving Meaning and Intentionality in Randomness. Cortex, 44, 13161325.Google Scholar
Gleason, T. R., Jarudi, R. N., and Cheek, J. M. (2003). Imagination, Personality, and Imaginary Companions. Social Behavior and Personality, 31, 721737.Google Scholar
Goddard, L., Howlin, P., Dritschel, B., and Patel, T. (2007). Autobiographical Memory and Social Problem-Solving in Asperger Syndrome. Journal of Autism and Developmental Disorders, 37, 291300.Google Scholar
Grandin, T. (1995). Thinking in Pictures. New York, NY: Vintage Press Random House.Google Scholar
Grandin, T.(2009). How Does Visual Thinking Work in the Mind of a Person with Autism? A Personal Account. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 14371442.Google Scholar
Greicius, M. D., and Menon, V. (2004). Default-Mode Activity during a Passive Sensory Task: Uncoupled from Deactivation but Impacting Activation. Journal of Cognitive Neuroscience, 16, 14841492.Google Scholar
Guo, W., Liu, F., Chen, J., et al. (2017). Hyperactivity of the Default-Mode Network in First-Episode, Drug-Naive Schizophrenia at Rest Revealed by Family-Based Case-Control and Traditional Case-Control Designs. Medicine, 96(13).Google Scholar
Hach, S., Tippett, L. J., and Addis, D. R. (2014). Neural Changes Associated with the Generation of Specific Past and Future Events in Depression. Neuropsychologia, 65, 4155.Google Scholar
Hanson, L. K., and Atance, C. M. (2014). Brief Report: Episodic Foresight in Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 44, 674684.Google Scholar
Happé, F., and Frith, U. (2006). The Weak Coherence Account: Detail-Focused Cognitive Style in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 36, 525.Google Scholar
Hoff, E. V. (2005). Imaginary Companions, Creativity, and Self-Image in Middle Childhood. Creativity Research Journal, 17, 167180.Google Scholar
Ivins, A., Di Simplicio, M., Close, H., Goodwin, G. M., and Holmes, E. (2014). Mental Imagery in Bipolar Affective Disorder versus Unipolar Depression: Investigating Cognitions at Times of “Positive” Mood. Journal of Affective Disorders, 166, 234242.Google Scholar
Jarrold, C. (2003). A Review of Research into Pretend Play in Autism. Autism, 7, 379390.Google Scholar
Jarrold, C., Boucher, J., and Smith, P. K. (1996). Generativity Deficits in Pretend Play in Autism. British Journal of Developmental Psychology, 14, 275300.Google Scholar
Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., and Benedek, M. (2015). Gray Matter Correlates of Creative Potential: A Latent Variable Voxel-Based Morphometry Study. NeuroImage, 111, 312320.Google Scholar
Javitt, D. C. (2009a). When Doors of Perception Close: Bottom-Up Models of Disrupted Cognition in Schizophrenia. Annual Review of Clinical Psychology, 5, 249275.Google Scholar
Javitt, D. C.(2009b). Sensory Processing in Schizophrenia: Neither Simple nor Intact. Schizophrenia Bulletin, 35, 10591064.Google Scholar
Jensen, J., and Kapur, S. (2009). Salience and Psychosis: Moving from Theory to Practise: A Commentary on: “Do Patients with Schizophrenia Exhibit Aberrant Salience?” by Roiser et al. (2008). Psychological Medicine, 39(2), 197198.Google Scholar
Johnson, S. L., Edge, M. D., Holmes, M. K., and Carver, C. S. (2012). The Behavioral Activation System and Mania. Annual Review of Clinical Psychology, 8, 243267.Google Scholar
Jolliffe, T., and Baron-Cohen, S. (1999). A Test of Central Coherence Theory: Linguistic Processing in High-Functioning Adults with Autism or Asperger Syndrome: Is Local Coherence Impaired? Cognition, 71, 149185.Google Scholar
Jones, V., and Steel, C. (2012). Schizotypal Personality and Vulnerability to Involuntary Autobiographical Memories. Journal of Behavior Therapy and Experimental Psychiatry, 43, 871876.Google Scholar
Jung, R. E., and Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of Intelligence: Converging Neuroimaging Evidence. Behavioral and Brain Sciences, 30(2), 135154.Google Scholar
Kana, R. K., Libero, L. E., Hu, C. P., Deshpande, H. D., and Colburn, J. S. (2014). Functional Brain Networks and White Matter Underlying Theory-of-Mind in Autism. Social Cognitive and Affective Neuroscience, 9, 98105.Google Scholar
Kanner, L. (1943). Autistic Disturbances of Affective Contact. The Nervous Child, 2, 217250. Reprinted (1968) in Acta Paedopsychiatrica, 35, 100–136.Google Scholar
Karbasforoushan, H., and Woodward, N. D. (2012). Resting-State Networks in Schizophrenia. Current Topics in Medicinal Chemistry, 12, 24042414.Google Scholar
Kasari, C., Chang, Y. C., and Patterson, S. (2013). Pretending to Play or Playing to Pretend: The Case of Autism. American Journal of Play, 6(1), 124.Google Scholar
Kennedy, D. P., and Courchesne, E. (2008). Functional Abnormalities of the Default Network during Self- and Other-Reflection in Autism. Social Cognitive and Affective Neuroscience, 3, 177190.Google Scholar
King, M. J., Williams, L., MacDougall, A. G., et al. (2011). Patients with Bipolar Disorder Show a Selective Deficit in the Episodic Simulation of Future Events. Consciousness and Cognition, 20, 18011807.Google Scholar
Krapohl, E., Euesden, J., Zabaneh, D., et al. (2016). Phenome-Wide Analysis of Genome-Wide Polygenic Scores. Molecular Psychiatry, 21(9), 1188.Google Scholar
Kunihira, Y., Senju, A., Dairoku, H., Wakabayashi, A., and Hasegawa, T. (2006). “Autistic” Traits in Non-Autistic Japanese Populations: Relationships with Personality Traits and Cognitive Ability. Journal of Autism and Developmental Disorders, 36(4), 553566.Google Scholar
Kyaga, S. (2014). Creativity and Mental Illness: The Mad Genius in Question. Hampshire, UK: Palgrave Macmillan.Google Scholar
Landin-Romero, R., McKenna, P. J., Salgado-Pineda, P., et al. (2014). Failure of Deactivation in the Default Mode Network: A Trait Marker for Schizophrenia? Psychological Medicine, 45(6), 13151325.Google Scholar
MacCabe, J. H., Sariaslan, A., Almqvist, C., et al. (2018). Artistic Creativity and Risk for Schizophrenia, Bipolar Disorder and Unipolar Depression: A Swedish Population-Based Case–Control Study and Sib-Pair Analysis. The British Journal of Psychiatry, 212(6), 370376.Google Scholar
Markram, K., and Markram, H. (2010). The Intense World Theory – A Unifying Theory of the Neurobiology of Autism. Frontiers in Human Neuroscience, 4 : 224.Google Scholar
Matthews, N.L., Collins, K. P., Thakkar, K. N., and Park, S. (2014). Visuospatial Imagery and Working Memory in Schizophrenia. Cognitive Neuropsychiatry, 19, 1735.Google Scholar
McGill, B., and Moulds, M. L. (2014). Characteristics of Autobiographical Memories and Prospective Imagery across a Spectrum of Hypomanic Personality Traits. Memory, 22, 11391148.Google Scholar
Meyer, M. L., Davachi, L., Ochsner, K. N., and Lieberman, M. D. (2019). Evidence that Default Network Connectivity during Rest Consolidates Social Information. Cerebral Cortex, 29(5), 19101920. doi.org/10.1093/cercor/bhy071.Google Scholar
Meyer, T. D., Finucane, L., and Jordan, G. (2011). Is Risk for Mania Associated with Increased Daydreaming as a Form of Mental Imagery? Journal of Affective Disorders, 135, 380383.Google Scholar
Mottron, L., Dawson, M., and Soulières, I. (2009). Enhanced Perception in Savant Syndrome: Patterns, Structure and Creativity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364, 13851391.Google Scholar
Mottron, L., Dawson, M., Soulières, I., Hubert, B., and Burack, J. A. (2006). Enhanced Perceptual Functioning in Autism: An Update, and Eight Principles of Autistic Perception. Journal of Autism and Developmental Disorders, 36, 2743.Google Scholar
Mullally, S. L., and Maguire, E. A. (2013). Memory, Imagination, and Predicting the Future: A Common Brain Mechanism? Neuroscientist, 20, 220234.Google Scholar
Nesse, R. M. (2000). Is Depression an Adaptation? Archives of General Psychiatry, 57(1), 1420.Google Scholar
Nettle, D. (2001). Strong Imagination: Madness, Creativity and Human Nature. New York, NY: Oxford University Press.Google Scholar
Neufeld, J., Kuja-Halkola, R., Mevel, K., et al. (2017). Alterations in Resting State Connectivity Along the Autism Trait Continuum: A Twin Study. Molecular Psychiatry [Epub ahead of print]. doi:10.1038/mp.2017.160.Google Scholar
Peeters, S. C., van de Ven, V., Gronenschild, E. H., et al. (2015). Default Mode Network Connectivity as a Function of Familial and Environmental Risk for Psychotic Disorder. PLoS One, 10, e0120030.Google Scholar
Pignon, B., Geoffroy, P. A., Gharib, A., et al. (2018). Very Early Hallucinatory Experiences: A School‐Based Study. Journal of Child Psychology and Psychiatry, 59(1), 6875.Google Scholar
Power, R. A., Steinberg, S., Bjornsdottir, G., et al. (2015). Polygenic Risk Scores for Schizophrenia and Bipolar Disorder Predict Creativity. Nature Neuroscience, 18(7), 953.Google Scholar
Raffard, S., D’Argembeau, A., Lardi, C., et al. (2010). Narrative Identity in Schizophrenia. Consciousness and Cognition, 19, 328340.Google Scholar
Roth, I. (2007). Autism and the Imaginative Mind. In Roth, I (ed.), Proceedings of the British Academy: Imaginative Minds. Oxford, UK: Oxford University Press, 277306.Google Scholar
Sahyoun, C. P., Belliveau, J. W., Soulières, I., Schwartz, S., and Mody, M. (2010). Neuroimaging of the Functional and Structural Networks Underlying Visuospatial vs. Linguistic Reasoning in High-Functioning Autism. Neuropsychologia, 48, 8695.Google Scholar
Santarnecchi, E., Emmendorfer, A., and Pascual-Leone, A. (2017). Dissecting the Parieto-Frontal Correlates of Fluid Intelligence: A Comprehensive ALE Meta-Analysis Study. Intelligence, 63, 928.Google Scholar
Schacter, D. L., Addis, D. R., Hassabis, D., et al. (2012). The Future of Memory: Remembering, Imagining, and the Brain. Neuron, 76, 677694.Google Scholar
Scott, F. J., and Baron-Cohen, S. (1996). Imagining Real and Unreal Things: Evidence of a Dissociation in Autism. Journal of Cognitive Neuroscience, 8, 371382.Google Scholar
Simeonova, D. I., Chang, K. D., Strong, C., and Ketter, T. A. (2005). Creativity in Familial Bipolar Disorder. Journal of Psychiatric Research, 39(6), 623631.Google Scholar
Slotnick, S. D., Thompson, W. L., and Kosslyn, S. M. (2012). Visual Memory and Visual Mental Imagery Recruit Common Control and Sensory Regions of the Brain. Cognitive Neuroscience, 3, 1420.Google Scholar
Snyder, A. W., and Thomas, M. (1997). Autistic Artists Give Clues to Cognition. Perception, 26, 9396.Google Scholar
Soulières, I., Dawson, M., Samson, F., et al. (2009). Enhanced Visual Processing Contributes to Matrix Reasoning in Autism. Human Brain Mapping, 30, 40824107.Google Scholar
Spek, A. A., and Velderman, E. (2013). Examining the Relationship between Autism Spectrum Disorders and Technical Professions in High Functioning Adults. Research in Autism Spectrum Disorders, 7, 606612.Google Scholar
Spencer, M. D., Chura, L. R., Holt, R. J., et al. (2012). Failure to Deactivate the Default Mode Network Indicates a Possible Endophenotype of Autism. Molecular Autism, 3, 19.Google Scholar
Takeuchi, H., Taki, Y., Hashizume, H., et al. (2011). Failing to Deactivate: The Association between Brain Activity during a Working Memory Task and Creativity. NeuroImage, 55, 681687.Google Scholar
Tanweer, T., Rathbone, C. J., and Souchay, C. (2010). Autobiographical Memory, Autonoetic Consciousness, and Identity in Asperger Syndrome. Neuropsychologia, 48(4), 900908.Google Scholar
Tavassoli, T., Miller, L. J., Schoen, S. A., Nielsen, D. M., and Baron-Cohen, S. (2014). Sensory Over-Responsivity in Adults with Autism Spectrum Conditions. Autism, 18(4), 428432.Google Scholar
Taylor, C. L. (2017). Creativity and Mood Disorder: A Systematic Review and Meta-Analysis. Perspectives on Psychological Science, 12(6), 10401076.Google Scholar
Taylor, E. H. (1998). Advances in the Diagnosis and Treatment of Children with Serious Mental Illness. Child Welfare, 77(3), 311332.Google Scholar
Taylor, M., and Carlson, S. M. (1997). The Relation between Individual Differences in Fantasy and Theory of Mind. Child Development, 68, 436455.Google Scholar
Ten Eycke, K. D., and Müller, U. (2015). Brief Report: New Evidence for a Social-Specific Imagination Deficit in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 45, 213220.Google Scholar
Terrett, G., Rendell, P. G., Raponi-Saunders, S., et al. (2013). Episodic Future Thinking in Children with Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 43, 25582568.Google Scholar
van Os, J. (2009). “Salience Syndrome” Replaces “Schizophrenia” in DSM-V and ICD-11: Psychiatry’s Evidence-Based Entry into the 21st Century? Acta Psychiatrica Scandinavica, 120, 363372.Google Scholar
Vygotsky, L. S. (2004). Imagination and Creativity in Childhood. Journal of Russian and East European Psychology, 42, 797.Google Scholar
Wagner-Martin, L. (1987). Sylvia Plath: A Biography. New York, NY: St. Martin’s Griffin.Google Scholar
Warrier, V., Toro, R., Chakrabarti, B., et al. (2018). Genome-Wide Analyses of Self-Reported Empathy: Correlations with Autism, Schizophrenia, and Anorexia Nervosa. Translational Psychiatry, 8(1), 35.Google Scholar
Wible, C. G. (2012a). Schizophrenia as a Disorder of Social Communication. Schizophrenia Research and Treatment, 2012, 920485.Google Scholar
Wible, C. G.(2012b). Hippocampal Temporal-Parietal Junction Interaction in the Production of Psychotic Symptoms: A Framework for Understanding the Schizophrenic Syndrome. Frontiers in Human Neuroscience, 6.Google Scholar
Winfield, H., and Kamboj, S. K. (2010). Schizotypy and Mental Time Travel. Consciousness and Cognition, 19, 321327.Google Scholar
Wise, R. J. S., and Braga, R. M. (2014). Default Mode Network: The Seat of Literary Creativity? Trends in Cognitive Sciences, 18, 116117.Google Scholar
Wolfberg, P. J. (2009). Play and Imagination in Children with Autism. Shawnee Mission, KS: AAPC Publishing.Google Scholar
Woodard, C. R., Chung, J., and Korn, M. (2014). A Pilot Study of the Meta-Play Method: A Novel Play Intervention for Toddlers with Autism. Journal of Autism, 1, 3.Google Scholar

References

Abraham, A. (2016). The Imaginative Mind. Human Brain Mapping, 37(11), 41974211. doi.org/10.1002/hbm.23300.Google Scholar
Crangle, E. F. (1994). The Origin and Development of Early Indian Contemplative Practices. Wiesbaden, Germany: Otto Harrassowitz Verlag.Google Scholar
Dennett, D. (1978). Two Approaches to Mental Images. In Brainstorms: Philosophical Essays on Mind and Psychology. Cambridge, MA: MIT Press.Google Scholar
Dvivedi, V. V. (ed.). (1992). Mahārthamañjarī of Maheśvarānanda. With the Auto-Commentary, Parimala. Varanasi, India: Sampurnananda University.Google Scholar
Fodor, J. (1975). Imagistic Representation. In Block, N (ed.), The Language of Thought. Cambridge, MA.: Harvard University Press, 6386.Google Scholar
Gregory, D. (2016). Imagination and Mental Imagery. In Kind, A (ed.), The Routledge Handbook of Philosophy of Imagination. London, UK; New York, NY: Routledge, 97110.Google Scholar
Hayes, G. A. (2006). The Guru’s Tongue: Metaphor, Imagery, and Vernacular Language in Vaiṣṇava Sahajiyā Traditions. Pacific World: Journal of the Institute of Buddhist Studies, 3(8), 4171.Google Scholar
Hayes, G. A.(2013). Possible Selves, Body Schemas, and Sādhana: Using Neuroscience in the Study of Medieval Vaiṣṇava Hindu Tantric Texts. Religions, 2014(5), 684699. doi:10.3390/rel5030684.Google Scholar
Kind, A. (2016). Introduction. The Routledge Handbook of Philosophy of Imagination. London, UK; New York, NY: Routledge, 111.Google Scholar
Kosslyn, S. M. (1980). Image and Mind. Cambridge, MA: Harvard University Press.Google Scholar
Pylyshyn, Z. (1978). Imagery and Artificial Intelligence. In Wade Savage, C (ed.), Perception and Cognition: Issues in the Foundation of Psychology. Minneapolis, MN: University of Minnesota Press, 1956.Google Scholar
Shastri, M. R. (ed.) (1918). Tantrasāra of Abhinavagupta. Bombay, India: Nirnaya Sagar Press.Google Scholar
Shulman, D. (2012). More than Real: A History of the Imagination in South India. Cambridge, MA: Harvard University Press.Google Scholar
Stevenson, L. (2003). Twelve Conceptions of Imagination. The British Journal of Aesthetics, 43(3), 238259. doi.org/10.1093/bjaesthetics/43.3.238.Google Scholar
Timalsina, S. (2005). Meditating Mantras: Meaning and Visualization in Tantric Literature. In Jacobsen, K. A. (ed.), Theory and Practice of Yoga: Essays in Honour of Gerard James Larson. Leiden, Netherlands: Brill, 213236.Google Scholar
Timalsina, S. (2006). Seeing and Appearance: History of the Advaita Doctrine of Dṛṣṭisṛṣṭi. Indo-Halle Series 10. Aachen, Germany: Shaker Verlag.Google Scholar
Timalsina, S. (2007). Metaphors, Rasa, and Dhvani: Suggested Meaning in Tantric Esotericism. Method and Theory in the Study of Religion, 19(1–2), 134162.Google Scholar
Timalsina, S. (2013). Gauḍapāda on Imagination. Journal of Indian Philosophy, 41(6), 591602.Google Scholar
Timalsina, S.(2015a). Tantric Visual Culture: A Cognitive Approach. London, UK: Routledge.Google Scholar
Timalsina, S.(2015b). Language of Images: Visualization and Meaning in Tantras. New York, NY: Peter Lang.Google Scholar
Timalsina, S.(2017). Visualization in Hindu Practice. Oxford Research Encyclopedia of Religion.Google Scholar

References

Abraham, A. (2016). The Imaginative Mind. Human Brain Mapping, 37(11), 41974211.Google Scholar
Beaty, R. E., Kenett, Y. N., Christensen, A. P., et al. (2018). Robust Prediction of Individual Creative Ability from Brain Functional Connectivity. Proceedings of the National Academy of Sciences of the United States of America, 115(5), 10871092.Google Scholar
Beilock, S. L., Carr, T. H., MacMahon, C., and Starkes, J. L. (2002). When Paying Attention becomes Counterproductive: Impact of Divided versus Skill-Focused Attention on Novice and Experienced Performance of Sensorimotor Skills. Journal of Experimental Psychology-Applied, 8(1), 616.Google Scholar
Butković, A., Ullén, F., and Mosing, M. A. (2015). Personality and Related Traits as Predictors of Music Practice: Underlying Environmental and Genetic Influences. Personality and Individual Differences, 74, 133138.Google Scholar
Clarke, E. F. (1988). Generative Principles in Music Performance. In Sloboda, J. A. (ed.), Generative Processes in Music: The Psychology of Performance, Improvisation, and Composition. New York, NY: Clarendon Press/Oxford University Press, 126.Google Scholar
Cseh, G. M., Phillips, L. H., and Pearson, D. G. (2015). Flow, Affect and Visual Creativity. Cognition & Emotion, 29(2), 281291.Google Scholar
Csíkszentmihályi, M. (1990). Flow: The Psychology of Optimal Experience. New York, NY: Harper & Row.Google Scholar
Csíkszentmihályi, M.(1997). Creativity: Flow and the Psychology of Discovery and Invention. New York, NY: HarperPerennial.Google Scholar
Csíkszentmihályi, M.(2014). The Systems Model of Creativity: The Collected Works of Mihaly Csikszentmihalyi. New York, NY: Springer.Google Scholar
Csíkszentmihályi, M., and Getzels, J. W. (1970). Concern for Discovery – An Attitudinal Component of Creative Production. Journal of Personality, 38(1), 91105.Google Scholar
de Manzano, Ö., Cervenka, S., Jucaite, A., et al. (2013). Individual Differences in the Proneness to Have Flow Experiences Are Linked to Dopamine D2-Receptor Availability in the Striatum. NeuroImage, 67, 16.Google Scholar
de Manzano, Ö., Theorell, T., Harmat, L., and Ullén, F. (2010). The Psychophysiology of Flow during Piano Playing. Emotion, 10(3), 301311.Google Scholar
de Manzano, Ö., and Ullén, F. (2018). Same Genes, Different Brains: Neuroanatomical Differences between Monozygotic Twins Discordant for Musical Training. Cerebral Cortex, 28(1), 387394.Google Scholar
Dietrich, A. (2004). Neurocognitive Mechanisms Underlying the Experience of Flow. Consciousness and Cognition, 13(4), 746761.Google Scholar
Doyon, J., and Benali, H. (2005). Reorganization and Plasticity in the Adult Brain during Learning of Motor Skills. Current Opinion in Neurobiology, 15, 161167.Google Scholar
Eysenck, H. J. (1995). Genius. The Natural History of Creativity. Volume 12. Cambridge, UK: Cambridge University Press.Google Scholar
Feist, G. J. (1999). The Influence of Personality on Artistic and Scientific Creativity. In Sternberg, R. J. (ed.), Handbook of Creativity. Cambridge, UK: Cambridge University Press, 273296.Google Scholar
Goschke, T., and Bolte, A. (2014). Emotional Modulation of Control Dilemmas: The Role of Positive Affect, Reward, and Dopamine in Cognitive Stability and Flexibility. Neuropsychologia, 62, 403423.Google Scholar
Gray, R. (2004). Attending to the Execution of a Complex Sensorimotor Skill: Expertise Differences, Choking, and Slumps. Journal of Experimental Psychology-Applied, 10(1), 4254.Google Scholar
Guilford, J. P., Christensen, P. R., Merrifield, P. R., and Wilson, R. C. (1960). Alternate Uses Manual. Menlo Park, CA: Mind Garden Inc.Google Scholar
Harmat, L., de Manzano, Ö., Theorell, T., et al. (2015). Physiological Correlates of the Flow Experience during Computer Game Playing. International Journal of Psychophysiology, 97, 17.Google Scholar
Heller, K., Bullerjahn, C., and von Georgi, R. (2015). The Relationship between Personality Traits, Flow-Experience, and Different Aspects of Practice Behavior of Amateur Vocal Students. Frontiers in Psychology, 6, 1901.Google Scholar
Herholz, S. C., Coffey, E. B., Pantev, C., and Zatorre, R. J. (2016). Dissociation of Neural Networks for Predisposition and for Training-Related Plasticity in Auditory-Motor Learning. Cerebral Cortex, 26(7), 31253134.Google Scholar
Jackson, S. A., and Eklund, R. C. (2004). The Flow Scales Manual. Morgantown, WV: Publishers Graphics.Google Scholar
Kahneman, D. (1973). Attention and Effort. Englewood, NJ: Prentice-Hall.Google Scholar
Keller, P. E., Dalla Bella, S., and Koch, I. (2010). Auditory Imagery Shapes Movement Timing and Kinematics: Evidence from a Musical Task. Journal of Experimental Psychology: Human Perception and Performance, 36(2), 508513.Google Scholar
Lahav, A., Saltzman, E., and Schlaug, G. (2007). Action Representation of Sound: Audiomotor Recognition Network while Listening to Newly Acquired Actions. Journal of Neuroscience, 27(2), 308314.Google Scholar
Land, M. F., and McLeod, P. (2000). From Eye Movements to Actions: How Batsmen Hit the Ball. Nature Neuroscience, 3(12), 13401345.Google Scholar
MacDonald, R., Byrne, C., and Carlton, L. (2006). Creativity and Flow in Musical Composition: An Empirical Investigation. Psychology of Music, 34(3), 292306.Google Scholar
Marin, M. M., and Bhattacharya, J. (2013). Getting into the Musical Zone: Trait Emotional Intelligence and Amount of Practice Predict Flow in Pianists. Frontiers in Psychology, 4, 853.Google Scholar
Markham, J. A., and Greenough, W. T. (2004). Experience-Driven Brain Plasticity: Beyond the Synapse. Neuron Glia Biology, 1, 351363.Google Scholar
Martindale, C. (1999). Biological Bases of Creativity. In Sternberg, R. J. (ed.), Handbook of Creativity. Cambridge, UK: Cambridge University Press, 137152.Google Scholar
McGuire, J. T., and Botvinick, M. M. (2010). The Impact of Anticipated Cognitive Demand on Attention and Behavioral Choice. In Bruya, B (ed.), Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action. Cambridge, MA: MIT Press, 103120.Google Scholar
Nijstad, B. A., de Dreu, C. K. W., Rietzschel, E. F., and Baas, M. (2010). The Dual Pathway to Creativity Model: Creative Ideation as a Function of Flexibility and Persistence. European Review of Social Psychology, 21, 3477.Google Scholar
Novembre, G., and Keller, P. E. (2014). A Conceptual Review on Action-Perception Coupling in the Musician’s Brain: What Is It Good For? Frontiers in Human Neuroscience, 8, 603.Google Scholar
Petersen, S. E., van Mier, H., Fiez, J. A., and Raichle, M. E. (1998). The Effects of Practice on the Functional Anatomy of Task Performance. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 853860.Google Scholar
Pinho, A. L., de Manzano, Ö., Fransson, P., Eriksson, H., and Ullén, F. (2014). Connecting to Create – Expertise in Musical Improvisation Is Associated with Increased Functional Connectivity between Premotor and Prefrontal Areas. Journal of Neuroscience, 34(18), 61566163.Google Scholar
Pinho, A. L., Ullén, F., Castelo-Branco, M., Fransson, P., and de Manzano, Ö. (2016). Addressing a Paradox: Dual Strategies for Creative Performance in Introspective and Extrospective Networks. Cerebral Cortex, 26(7), 30523063.Google Scholar
Raichle, M. E. (2015). The Brain’s Default Mode Network. Annual Review of Neuroscience, 38, 433447.Google Scholar
Roy, M., Peretz, I., and Rainville, P. (2008). Emotional Valence Contributes to Music-Induced Analgesia. Pain, 134(1–2), 140147.Google Scholar
Seamans, J. K., and Yang, C. R. (2004). The Principal Features and Mechanisms of Dopamine Modulation in the Prefrontal Cortex. Progress in Neurobiology, 74(1), 158.Google Scholar
Ullén, F., de Manzano, Ö., Theorell, T., and Harmat, L. (2010). The Physiology of Effortless Attention. In Bruya, B (ed.), Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action. Cambridge, MA: MIT Press, 205218.Google Scholar
Ullén, F., Hambrick, D. Z., and Mosing, M. A. (2016). Rethinking Expertise: A Multi-Factorial Gene-Environment Interaction Model of Expert Performance. Psychological Bulletin, 142(4), 427446.Google Scholar
Ulrich, M., Keller, J., and Gron, G. (2016). Neural Signatures of Experimentally Induced Flow Experiences Identified in a Typical fMRI Block Design with BOLD Imaging. Social Cognitive and Affective Neuroscience, 11(3), 496507.Google Scholar
Vanlessen, N., de Raedt, R., Koster, E. H. W., and Pourtois, G. (2016). Happy Heart, Smiling Eyes: A Systematic Review of Positive Mood Effects on Broadening of Visuospatial Attention. Neuroscience & Biobehavioral Reviews, 68, 816837.Google Scholar
Vuorre, M., and Metcalfe, J. (2016). The Relation between the Sense of Agency and the Experience of Flow. Consciousness and Cognition, 43, 133142.Google Scholar
Weber, R., Alicea, B., Huskey, R., and Mathiak, K. (2018). Network Dynamics of Attention during a Naturalistic Behavioral Paradigm. Frontiers in Human Neuroscience, 12, 182.Google Scholar
Weber, R., Tamborini, R., Westcott-Baker, A., and Kantor, B. (2009). Theorizing Flow and Media Enjoyment as Cognitive Synchronization of Attentional and Reward Networks. Communication Theory, 19, 397422.Google Scholar
Willingham, D. B. (1998). A Neuropsychological Theory of Motor Skill Learning. Psychological Review, 105(3), 558584.Google Scholar
Wulf, G., and Lewthwaite, R. (2010). Effortless Motor Learning?: An External Focus of Attention Enhances Movement Effectiveness and Efficiency. In Bruya, B (ed.), Effortless Attention: A New Perspective in the Cognitive Science of Attention and Action. Cambridge, MA: MIT Press, 75101.Google Scholar
Wulf, G., and Su, J. (2007). An External Focus of Attention Enhances Golf Shot Accuracy in Beginners and Experts. Research Quarterly for Exercise and Sport, 78(4), 384389.Google Scholar
Yasuno, F., Suhara, T., Okubo, Y., et al. (2004). Low Dopamine D(2) Receptor Binding in Subregions of the Thalamus in Schizophrenia. American Journal of Psychiatry, 161(6), 10161022.Google Scholar

Bibliography

Starobinski, J. (2001). La relation critique. Paris, France: Editions Gallimard.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×