Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-18T22:52:58.165Z Has data issue: false hasContentIssue false

1 - Overview of carbon nanotubes

Published online by Cambridge University Press:  05 June 2012

H.-S. Philip Wong
Affiliation:
Stanford University
Deji Akinwande
Affiliation:
University of Texas, Austin
Get access

Summary

Nature is the origin of all things.

Introduction

Carbon is an old but new material. It has been used forcenturies going back to antiquity, but yet many new crystalline forms of carbon have only recently been experimentally discovered in the last few decades. These newer crystalline forms include buckyballs, carbon nanotubes (CNTs), and graphene, where the latter two are illustrated in Figure 1.1. Furthermore, carbon nanotubes come in two major flavors, the single-wall and multi-wall varieties, as shown in Figure 1.1a and b respectively. The newer forms of carbon have significantly contrasting properties compared with the older forms of carbon, which are graphite and diamond. In particular, they share in common a hexagonal lattice or arrangement of carbon atoms. In addition, CNTs and graphene occupy a reduced amount of space compared with their older siblings; hence, they are often referred to as reduced-dimensional or low-dimensional solids or nanomaterials for short. To give a comparative (order of magnitude) idea of the critical size scales of these nanomaterials, nanotubes are about 10 000 times thinner than human hair, and graphene is about 300 000 times thinner than a sheet of paper. The typical diameter of nanotubes range from about 1 to 100 nm, and graphene ideally has the thickness of a single atomic layer (∼3.4 Å). Fundamentally, it is the combination of the reduced dimensions and the different lattice structure that leads to the fascinating properties unique to nanotubes and graphene.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×