Skip to main content Accessibility help
×
Hostname: page-component-68c7f8b79f-kpv4p Total loading time: 0 Render date: 2025-12-27T08:10:06.416Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 November 2025

Felix Finster
Affiliation:
Universität Regensburg, Germany
Sebastian Kindermann
Affiliation:
Comenius Gymnasium Deggendorf, Germany
Jan‐Hendrik Treude
Affiliation:
Universität Konstanz, Germany
HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the 'Save PDF' action button.

Information

Type
Chapter
Information
Causal Fermion Systems
An Introduction to Fundamental Structures, Methods and Applications
, pp. 391 - 397
Publisher: Cambridge University Press
Print publication year: 2025
Creative Commons
Creative Common License - CCCreative Common License - BYCreative Common License - NC
This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC 4.0 https://creativecommons.org/cclicenses/

References

[1] Amann, H., and Escher, J. 2008. Analysis II. Basel: Birkhäuser Verlag.Google Scholar
[2] Arminjon, M., and Reifler, F. 2010. Basic quantum mechanics for three Dirac equations in a curved spacetime. Braz. J. Phys., 40(6), 242255. arXiv:0807.0570 [gr-qc].CrossRefGoogle Scholar
[3] Arminjon, M., and Reifler, F. 2011. A non-uniqueness problem of the Dirac theory in a curved spacetime. Ann. Phys., 523(7), 15213889. arXiv:0905.3686 [gr-qc].CrossRefGoogle Scholar
[4] Bär, C., and Fredenhagen, K. (eds.) 2009. Quantum Field Theory on Curved Spacetimes. Lecture Notes in Physics, vol. 786. Berlin: Springer Verlag.CrossRefGoogle Scholar
[5] Bär, C., Gauduchon, P., and Moroianu, A. 2005. Generalized cylinders in semi-Riemannian and spin geometry. Math. Z., 249(3), 545580. arXiv:math/0303095 [math.DG].CrossRefGoogle Scholar
[6] Bär, C., Ginoux, N., and Pfäffle, F. 2007. Wave Equations on Lorentzian Manifolds and Quantization. ESI Lectures in Mathematics and Physics. Zürich: European Mathematical Society (EMS). arXiv:0806.1036 [math.DG].CrossRefGoogle Scholar
[7] Barut, A. O. 1980. Electrodynamics and Classical Theory of Fields & Particles. Corrected reprint of the 1964 original. New York: Dover Publications, Inc.Google Scholar
[8] Bauer, H. 2001. Measure and Integration Theory. De Gruyter Studies in Mathematics, vol. 26. Translated from the German by Robert B. Burckel. Berlin: Walter de Gruyter & Co.CrossRefGoogle Scholar
[9] Baum, H. 1985. Spinor structures and Dirac operators on pseudo-Riemannian manifolds. Bull. Polish Acad. Sci. Math., 33(3–4), 165171.Google Scholar
[10] Bäuml, L., Finster, F., von der Mosel, H., and Schiefeneder, D. 2019. Singular support of minimizers of the causal variational principle on the sphere. Calc. Var. Partial Differ. Equ., 58(6), 205. arXiv:1808.09754 [math.CA].CrossRefGoogle Scholar
[11] Beem, J. K., Ehrlich, P. E., and Easley, K. L. 1996. Global Lorentzian Geometry. 2nd ed. Monographs and Textbooks in Pure and Applied Mathematics, vol. 202. New York: Marcel Dekker, Inc.Google Scholar
[12] Bernal, A. N., and Sánchez, M. 2003. On smooth Cauchy hypersurfaces and Geroch’s splitting theorem. Commun. Math. Phys., 243(3), 461470. arXiv:gr-qc/0306108.CrossRefGoogle Scholar
[13] Bernard, Y., and Finster, F. 2014. On the structure of minimizers of causal variational principles in the non-compact and equivariant settings. Adv. Calc. Var., 7(1), 2757. arXiv:1205.0403 [math-ph].CrossRefGoogle Scholar
[14] Bjorken, J. D., and Drell, S. D. 1964. Relativistic Quantum Mechanics. New York: McGraw-Hill Book Co.Google Scholar
[15] Bogachev, V. I. 2007. Measure Theory, vol. I. Berlin: Springer-Verlag.CrossRefGoogle Scholar
[16] Bognár, J. 1974. Indefinite Inner Product Spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 78. New York: Springer-Verlag.CrossRefGoogle Scholar
[17] Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. D. 1987. Space-time as a causal set. Phys. Rev. Lett., 59(5), 521524.CrossRefGoogle ScholarPubMed
[18] Bröcker, T. 1992. Analysis II. Mannheim: Bibliographisches Institut.Google Scholar
[19] Brunetti, R., Dappiaggi, C., Fredenhagen, K., and Yngvason, J. (eds.) 2015. Advances in Algebraic Quantum Field Theory. Mathematical Physics Studies. Berlin: Springer-Verlag.CrossRefGoogle Scholar
[20] Chandrasekhar, S. 1998. The Mathematical Theory of Black Holes. Oxford Classic Texts in the Physical Sciences. New York: Oxford University Press.CrossRefGoogle Scholar
[21] Curiel, E., Finster, F., and Isidro, J. M. 2020. Two-dimensional area and matter flux in the theory of causal fermion systems. Int. J. Mod. Phys. D, 29, 2050098. arXiv:1910.06161 [math-ph].CrossRefGoogle Scholar
[22] Dappiaggi, C., and Finster, F. 2020. Linearized fields for causal variational principles: Existence theory and causal structure. Methods Appl. Anal., 27(1), 156. arXiv:1811.10587 [math-ph].CrossRefGoogle Scholar
[23] Dappiaggi, C., Finster, F., and Oppio, M. 2022. Linear bosonic quantum field theories arising from causal variational principles. Lett. Math. Phys., 112, 38. arXiv:2112.10656 [math-ph].CrossRefGoogle Scholar
[24] Dappiaggi, C., Finster, F., Kamran, N., and Reintjes, M. 2025. Holographic mixing and Fock space dynamics of causal fermion systems. Ann. Henri Poincaré, arXiv:2410.18045 [math-ph].CrossRefGoogle Scholar
[25] Deckert, D.-A., and Merkl, F. 2014. Dirac equation with external potential and initial data on Cauchy Surfaces. J. Math. Phys., 55(12), 122305. arXiv:1404.1401 [math-ph].CrossRefGoogle Scholar
[26] Dieudonné, J. 1969. Foundations of Modern Analysis. Enlarged and corrected printing, Pure and Applied Mathematics, vol. 10-I. New York-London: Academic Press.Google Scholar
[27] Dimock, J. 1982. Dirac quantum fields on a manifold. Trans. Am. Math. Soc., 269(1), 133147.CrossRefGoogle Scholar
[28] Dirac, P. A. M. 1930. A theory of electrons and protons. Proc. R. Soc. Lond. A, 126, 360365.Google Scholar
[29] do Carmo, M. P. 1976. Differential Geometry of Curves and Surfaces. Englewood Cliffs, NJ: Prentice-Hall, Inc.Google Scholar
[30] Doković, D. Z., and Thang, N. Q. 1994. Conjugacy classes of maximal tori in simple real algebraic groups and applications. Canad. J. Math., 46(4), 699717. Correction: Canad. J. Math., 46 (1994), no. 6, 12081210.Google Scholar
[31] Elstrodt, J. 2005. Maß- und Integrationstheorie. 4th ed. Grundwissen Mathematik. Berlin: Springer-Verlag.Google Scholar
[32] Evans, L. C. 2010. Partial Differential Equations. 2nd ed. Graduate Studies in Mathematics, vol. 19. Providence, RI: American Mathematical Society.Google Scholar
[33] Evans, L. C., and Gariepy, R. F. 1992. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press.Google Scholar
[34] Fefferman, C. L. 2005. A sharp form of Whitney’s extension theorem. Ann. Math. (2), 161(1), 509577.CrossRefGoogle Scholar
[35] Finster, F. 1996. Derivation of field equations from the principle of the fermionic projector. (unpublished preprint in German). arXiv:gr-qc/9606040.Google Scholar
[36] Finster, F. 1997. Light-cone expansion of the Dirac sea with light cone integrals. unpublished preprint. arXiv:funct-an/9707003.Google Scholar
[37] Finster, F. 1998. Definition of the Dirac sea in the presence of external fields. Adv. Theor. Math. Phys., 2(5), 963985. arXiv:hep-th/9705006.CrossRefGoogle Scholar
[38] Finster, F. 1998. Local U(2, 2) symmetry in relativistic quantum mechanics. J. Math. Phys., 39(12), 62766290. arXiv:hep-th/9703083.CrossRefGoogle Scholar
[39] Finster, F. 1999. Light-cone expansion of the Dirac sea to first order in the external potential. Michigan Math. J., 46(2), 377408. arXiv:hep-th/9707128.CrossRefGoogle Scholar
[40] Finster, F. 2000. Light-cone expansion of the Dirac sea in the presence of chiral and scalar potentials. J. Math. Phys., 41(10), 66896746. arXiv:hep-th/9809019.CrossRefGoogle Scholar
[41] Finster, F. 2006. The Principle of the Fermionic Projector. AMS/IP Studies in Advanced Mathematics, vol. 35. Providence, RI: American Mathematical Society. hep-th/0001048, hep-th/0202059, hep-th/0210121.Google Scholar
[42] Finster, F. 2007. A variational principle in discrete space-time: Existence of minimizers. Calc. Var. Partial. Differ. Equ., 29(4), 431453. arXiv:math-ph/0503069.CrossRefGoogle Scholar
[43] Finster, F. 2010. Causal variational principles on measure spaces. J. Reine Angew. Math., 646, 141194. arXiv:0811.2666 [math-ph].Google Scholar
[44] Finster, F. 2014. Perturbative quantum field theory in the framework of the fermionic projector. J. Math. Phys., 55(4), 042301. arXiv:1310.4121 [math-ph].CrossRefGoogle Scholar
[45] Finster, F. 2016. The Continuum Limit of Causal Fermion Systems. Fundamental Theories of Physics, vol. 186. Cham: Springer. arXiv:1605.04742 [math-ph].Google Scholar
[46] Finster, F. 2017. The chiral index of the fermionic signature operator. Math. Res. Lett., 24(1), 3766. arXiv:1404.6625 [math-ph].CrossRefGoogle Scholar
[47] Finster, F. 2018. Causal fermion systems: A primer for Lorentzian geometers. J. Phys.: Conf. Ser., 968, 012004. arXiv:1709.04781 [math-ph].Google Scholar
[48] Finster, F. 2019. Causal fermion systems: Discrete space-times, causation and finite propagation speed. J. Phys.: Conf. Ser., 1275, 012009. arXiv:1812.00238 [math-ph].Google Scholar
[49] Finster, F. 2019. Positive functionals induced by minimizers of causal variational principles. Vietnam J. Math., 47, 2337. arXiv:1708.07817 [math-ph].CrossRefGoogle Scholar
[50] Finster, F. 2020. The causal action in Minkowski space and surface layer integrals. SIGMA Symmetry Integrability Geom. Methods Appl., 16(091), 83. arXiv:1711.07058 [math-ph].Google Scholar
[51] Finster, F. 2020. Perturbation theory for critical points of causal variational principles. Adv. Theor. Math. Phys., 24(3), 563619. arXiv:1703.05059 [math-ph].CrossRefGoogle Scholar
[52] Finster, F. 2023. Solving the linearized field equations of the causal action principle in Minkowski space. Adv. Theor. Math. Phys., 27(7), 20872217. arXiv:2304.00965 [math-ph].CrossRefGoogle Scholar
[53] Finster, F., and Fischer, P. 2025. A canonical construction of the extended Hilbert space for causal fermion systems. arXiv:2504.18276 [math-ph (2025)].Google Scholar
[54] Finster, F., and Grotz, A. 2010. The causal perturbation expansion revisited: Rescaling the interacting Dirac sea. J. Math. Phys., 51(7), 072301. arXiv:0901.0334 [math-ph].CrossRefGoogle Scholar
[55] Finster, F., and Grotz, A. 2012. A Lorentzian quantum geometry. Adv. Theor. Math. Phys., 16(4), 11971290. arXiv:1107.2026 [math-ph].CrossRefGoogle Scholar
[56] Finster, F., and Kamran, N. 2019. Spinors on singular spaces and the topology of causal fermion systems. Mem. Amer. Math. Soc., 259(1251), v+83. arXiv:1403.7885 [math-ph].Google Scholar
[57] Finster, F., and Kamran, N. 2021. Complex structures on jet spaces and bosonic Fock space dynamics for causal variational principles. Pure Appl. Math. Q., 17(1), 55140. arXiv:1808.03177 [math-ph].CrossRefGoogle Scholar
[58] Finster, F., and Kamran, N. 2022. Fermionic Fock spaces and quantum states for causal fermion systems. Ann. Henri Poincaré, 23(4), 13591398. arXiv:2101.10793 [math-ph].CrossRefGoogle Scholar
[59] Finster, F., and Kamran, N. 2023. A positive quasilocal mass for causal variational principles. Calc. Var., 64(3), 91. arXiv:2310.07544 [math-ph].Google Scholar
[60] Finster, F., and Kindermann, S. 2020. A gauge fixing procedure for causal fermion systems. J. Math. Phys., 61(8), 082301. arXiv:1908.08445 [math-ph].CrossRefGoogle Scholar
[61] Finster, F., and Kleiner, J. 2016. Noether-like theorems for causal variational principles. Calc. Var. Partial Differ. Equ., 55:35(2), 41. arXiv:1506.09076 [math-ph].Google Scholar
[62] Finster, F., and Kleiner, J. 2017. A Hamiltonian formulation of causal variational principles. Calc. Var. Partial Differ. Equ., 56:73(3), 33. arXiv:1612.07192 [math-ph].Google Scholar
[63] Finster, F., and Kleiner, J. 2019. A class of conserved surface layer integrals for causal variational principles. Calc. Var. Partial Differ. Equ., 58:38(1), 34. arXiv:1801.08715 [math-ph].Google Scholar
[64] Finster, F., and Kraus, M. 2020. The regularized Hadamard expansion. J. Math. Anal. Appl., 491(2), 124340. arXiv:1708.04447 [math-ph].CrossRefGoogle Scholar
[65] Finster, F., and Kraus, M. 2023. Construction of global solutions to the linearized field equations for causal variational principles. Methods Appl. Anal., 30(2), 7794. arXiv:2210.16665 [math-ph].CrossRefGoogle Scholar
[66] Finster, F., and Langer, C. 2022. Causal variational principles in the σ-locally compact setting: Existence of minimizers. Adv. Calc. Var., 15(3), 551575. arXiv:2002.04412 [math-ph].CrossRefGoogle Scholar
[67] Finster, F., and Lottner, M. 2021. Banach manifold structure and infinite-dimensional analysis for causal fermion systems. Ann. Global Anal. Geom., 60(2), 313354. arXiv:2101.11908 [math-ph].CrossRefGoogle Scholar
[68] Finster, F., and Lottner, M. 2022. Elliptic methods for solving the linearized field equations of causal variational principles. Calc. Var. Partial Differ. Equ., 61(4), 133. arXiv:2111.08261 [math-ph].CrossRefGoogle Scholar
[69] Finster, F., and Müller, O. 2016. Lorentzian spectral geometry for globally hyperbolic surfaces. Adv. Theor. Math. Phys., 20(4), 751820. arXiv:1411.3578 [math-ph].CrossRefGoogle Scholar
[70] Finster, F., and Reintjes, M. 2015. A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds I – Space-times of finite lifetime. Adv. Theor. Math. Phys., 19(4), 761803. arXiv:1301.5420 [math-ph].CrossRefGoogle Scholar
[71] Finster, F., and Reintjes, M. 2016. A non-perturbative construction of the fermionic projector on globally hyperbolic manifolds II – Space-times of infinite lifetime. Adv. Theor. Math. Phys., 20(5), 10071048. arXiv:1312.7209 [math-ph].CrossRefGoogle Scholar
[72] Finster, F., and Röken, C. 2016. Self-adjointness of the Dirac Hamiltonian for a class of non-uniformly elliptic boundary value problems. Ann. Math. Sci. Appl., 1(2), 301320. arXiv:1512.00761 [math-ph].CrossRefGoogle Scholar
[73] Finster, F., and Röken, C. 2019. The fermionic signature operator in the exterior Schwarzschild geometry. Ann. Henri Poincaré, 20(10), 33893418. arXiv:1812.02010 [math-ph].CrossRefGoogle Scholar
[74] Finster, F., and Schiefeneder, D. 2013. On the support of minimizers of causal variational principles. Arch. Ration. Mech. Anal., 210(2), 321364. arXiv:1012.1589 [math-ph].CrossRefGoogle Scholar
[75] Finster, F., and Tolksdorf, J. 2014. Perturbative description of the fermionic projector: Normalization, causality and Furry’s theorem. J. Math. Phys., 55(5), 052301. arXiv:1401.4353 [math-ph].CrossRefGoogle Scholar
[76] Finster, F., Smoller, J., and Yau, S.-T. 2000. Non-existence of time-periodic solutions of the Dirac equation in a Reissner-Nordström black hole background. J. Math. Phys., 41(4), 21732194. arXiv:gr-qc/9805050.CrossRefGoogle Scholar
[77] Finster, F., Kamran, N., Smoller, J., and Yau, S.-T. 2000. Nonexistence of time-periodic solutions of the Dirac equation in an axisymmetric black hole geometry. Comm. Pure Appl. Math., 53(7), 902929. arXiv:gr-qc/9905047.3.0.CO;2-4>CrossRefGoogle Scholar
[78] Finster, F., Kamran, N., Smoller, J., and Yau, S.-T. 2002. Decay rates and probability estimates for massive Dirac particles in the Kerr-Newman black hole geometry. Commun. Math. Phys., 230(2), 201244. arXiv:gr-qc/0107094.CrossRefGoogle Scholar
[79] Finster, F., Kamran, N., Smoller, J., and Yau, S.-T. 2003. The long-time dynamics of Dirac particles in the Kerr-Newman black hole geometry. Adv. Theor. Math. Phys., 7(1), 2552. arXiv:gr-qc/0005088.CrossRefGoogle Scholar
[80] Finster, F., Grotz, A., and Schiefeneder, D. 2012. Causal fermion systems: A quantum space-time emerging from an action principle. Pages 157–182 of: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., and Zeidler, E. (eds), Quantum Field Theory and Gravity. Basel: Birkhäuser Verlag. arXiv:1102.2585 [math-ph].CrossRefGoogle Scholar
[81] Finster, F., Murro, S., and Röken, C. 2016. The fermionic projector in a time-dependent external potential: Mass oscillation property and Hadamard states. J. Math. Phys., 57(7), 072303. arXiv:1501.05522 [math-ph].CrossRefGoogle Scholar
[82] Finster, F., Kamran, N., and Oppio, M. 2021. The linear dynamics of wave functions in causal fermion systems. J Differ. Equ., 293, 115187. arXiv:2101.08673 [math-ph].CrossRefGoogle Scholar
[83] Finster, F., Jonsson, R. H., and Kilbertus, N. 2025. Numerical analysis of the causal action principle in low dimensions. Comm. Math. Sci. arXiv:2201.06382 [math-ph].CrossRefGoogle Scholar
[84] Finster, F., Kamran, N., and Reintjes, M. 2023. Entangled quantum states of causal fermion systems and unitary group integrals. Adv. Theor. Math. Phys., 27(5), 14631589. arXiv:2207.13157 [math-ph].CrossRefGoogle Scholar
[85] Finster, F., Frankl, M., and Langer, C. 2024. The homogeneous causal action principle on a compact domain in momentum space. Adv. Calc. Var., 17(3), 559585. arXiv:2205.04085 [math-ph].CrossRefGoogle Scholar
[86] Finster, F., Guendelman, E., and Paganini, C. 2024. Modified measures as an effective theory for causal fermion systems. Class. Quant. Gravity, 41(3), 035007, 25. arXiv:2303.16566 [gr-qc].CrossRefGoogle Scholar
[87] Folland, G. B. 1999. Real Analysis: Modern Techniques and Their Applications. 2nd edn. Pure and Applied Mathematics (New York). New York: John Wiley & Sons, Inc.Google Scholar
[88] Friedlander, F. G. 1975. The Wave Equation on a Curved Space-Time. Cambridge: Cambridge University Press.Google Scholar
[89] Friedlander, F. G. 1998. Introduction to the Theory of Distributions. 2nd edn. Cambridge: Cambridge University Press, With additional material by M. Joshi.Google Scholar
[90] Friedrich, T. 2000. Dirac Operators in Riemannian Geometry. Graduate Studies in Mathematics, vol. 25. Providence, RI: American Mathematical Society.Google Scholar
[91] Friedrichs, K. O. 1954. Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math., 7, 345392.CrossRefGoogle Scholar
[92] Friedrichs, K. O. 1958. Symmetric positive linear differential equations. Comm. Pure Appl. Math., 11, 333418.CrossRefGoogle Scholar
[93] Glimm, J., and Jaffe, A. 1987. Quantum Physics: A Functional Integral Point of View. 2nd edn. New York: Springer-Verlag.CrossRefGoogle Scholar
[94] Gohberg, I., Lancaster, P., and Rodman, L. 2005. Indefinite Linear Algebra and Applications. Basel: Birkhäuser Verlag.Google Scholar
[95] Goldstein, H. 1980. Classical Mechanics. 2nd edn. Reading, MA: Addison-Wesley Publishing Co.Google Scholar
[96] Gradshteyn, I. S., and Ryzhik, I. M. 1965. Table of Integrals, Series, and Products. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Tseytlin. New York: Academic Press.Google Scholar
[97] Greene, R. E., and Shiohama, K. 1979. Diffeomorphisms and volume-preserving embeddings of noncompact manifolds. Trans. Amer. Math. Soc., 255, 403414.CrossRefGoogle Scholar
[98] Hack, T.-P. 2010. On the Backreaction of Scalar and Spinor Quantum Fields in Curved Spacetimes – From the Basic Foundations to Cosmological Applications. Dissertation Universität Hamburg, viii+254. arXiv:1008.1776 [gr-qc].Google Scholar
[99] Hadamard, J. 1953. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New York: Dover Publications.CrossRefGoogle Scholar
[100] Halmos, P. R. 1958. Finite-Dimensional Vector Spaces. The University Series in Undergraduate Mathematics. 2nd ed. Princeton-Toronto-New York-London: D. Van Nostrand Co., Inc.Google Scholar
[101] Halmos, P. R. 1974. Measure Theory. New York: Springer.Google Scholar
[102] Hawking, S. W., and Ellis, G. F. R. 1973. The Large Scale Structure of Space-Time. London: Cambridge University Press.CrossRefGoogle Scholar
[103] Hawking, S. W., King, A. R., and McCarthy, P. J. 1976. A new topology for curved space-time which incorporates the causal, differential, and conformal structures. J. Math. Phys., 17(2), 174181.CrossRefGoogle Scholar
[104] Helgason, S. 2000. Groups and Geometric Analysis. Mathematical Surveys and Monographs, vol. 83. Providence, RI: American Mathematical Society. Integral geometry, invariant differential operators, and spherical functions, Corrected reprint of the 1984 original.Google Scholar
[105] Hörmander, L. 1990. The Analysis of Linear Partial Differential Operators. I. 2nd edn. Grundlehren der Mathematischen Wissenschaften, vol. 256. Berlin: Springer-Verlag.Google Scholar
[106] Jänich, K. 1984. Topology. Undergraduate Texts in Mathematics. New York: Springer-Verlag, With a chapter by Theodor Bröcker, Translated from the German by Levy, Silvio.CrossRefGoogle Scholar
[107] John, F. 1991. Partial Differential Equations. 4th edn. Applied Mathematical Sciences, vol. 1. New York: Springer-Verlag.Google Scholar
[108] Kato, T. 1995. Perturbation Theory for Linear Operators. Classics in Mathematics. Berlin: Springer-Verlag.Google Scholar
[109] Kilbertus, N. 2015. Numerical analysis of causal fermion systems on ℝ × S3. Masterarbeit Mathematik, Universität Regensburg.Google Scholar
[110] Kleinert, H. 2006. Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets. 4th edn. Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd.CrossRefGoogle Scholar
[111] Landau, L. D., and Lifshitz, E. M. 1958. Quantum Mechanics: Non-Relativistic Theory. Course of Theoretical Physics, vol. 3. Translated from the Russian by J. B. Sykes and J. S. Bell, Addison-Wesley Series in Advanced Physics. London-Paris: Pergamon Press Ltd.Google Scholar
[112] Landau, L. D., and Lifshitz, E. M. 1962. The Classical Theory of Fields. Revised 2nd edition. Course of Theoretical Physics, vol. 2. Translated from the Russian by M. Hamermesh. Oxford: Pergamon Press.Google Scholar
[113] Lang, S. 1999. Fundamentals of Differential Geometry. Graduate Texts in Mathematics, vol. 191. New York: Springer-Verlag.Google Scholar
[114] Finster, F. and Gmeineder, F. 2025. Action-driven flows for causal variational principles. arXiv:2503.00526 [math-ph].Google Scholar
[115] Lawson, Jr., H. B., and Michelsohn, M.-L. 1989. Spin Geometry. Princeton Mathematical Series, vol. 38. Princeton, NJ: Princeton University Press.Google Scholar
[116] Lax, P. D. 2002. Functional Analysis. Pure and Applied Mathematics (New York). New York: Wiley-Interscience [John Wiley & Sons].Google Scholar
[117] Lee, J. M. 2009. Manifolds and Differential Geometry. Graduate Studies in Mathematics, vol. 107. Providence, RI: American Mathematical Society.Google Scholar
[118] Lee, J. M. 2013. Introduction to Smooth Manifolds. 2nd edn. Graduate Texts in Mathematics, vol. 218. New York: Springer.Google Scholar
[119] Malament, D. B. 1977. The class of continuous timelike curves determines the topology of spacetime. J. Math. Phys., 18(7), 13991404.CrossRefGoogle Scholar
[120] Milnor, J. W., and Stasheff, J. D. 1974. Characteristic Classes. Princeton, NJ: Princeton University Press. Annals of Mathematics Studies, No. 76.CrossRefGoogle Scholar
[121] Naber, G. L. 2012. The Geometry of Minkowski Spacetime. Applied Mathematical Sciences, vol. 92. New York: Springer, An introduction to the mathematics of the special theory of relativity, 2nd edition [of MR1174969].Google Scholar
[122] Noether, E. 1918. Invariante Variationsprobleme. Nachr. d. König. Gesellsch. d. Wiss. Math-phys. Klasse, Berlin, 1918, 235257.Google Scholar
[123] Nomizu, K., and Ozeki, H. 1961. The existence of complete Riemannian metrics. Proc. Amer. Math. Soc., 12, 889891.CrossRefGoogle Scholar
[124] Olver, F. W. J., Lozier, D. W., Boisvert, R. F., and Clark, C. W. (eds). 2010. Digital Library of Mathematical Functions. Washington, DC: National Institute of Standards and Technology from http://dlmf.nist.gov/ (release date December 15, 2019).Google Scholar
[125] O’Neill, B. 1983. Semi-Riemannian Geometry. Pure and Applied Mathematics, vol. 103. New York: Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers].Google Scholar
[126] Palais, R. S. 1979. The principle of symmetric criticality. Commun. Math. Phys., 69(1), 1930.CrossRefGoogle Scholar
[127] Penrose, R., and Rindler, W. 1987. Spinors and Space-Time, vol. 1. Cambridge Monographs on Mathematical Physics. Cambridge: Cambridge University Press.Google Scholar
[128] Peskin, M. E., and Schroeder, D. V. 1995. An Introduction to Quantum Field Theory. Reading, MA: Addison-Wesley Publishing Company Advanced Book Program.Google Scholar
[129] Radzikowski, M. J. 1996. Micro-local approach to the Hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys., 179(3), 529553.CrossRefGoogle Scholar
[130] Rauch, J. 1991. Partial Differential Equations. Graduate Texts in Mathematics, vol. 128. New York: Springer-Verlag.CrossRefGoogle Scholar
[131] Reed, M., and Simon, B. 1980. Methods of Modern Mathematical Physics. I, Functional Analysis. 2nd edn. New York: Academic Press Inc.Google Scholar
[132] Rejzner, K. 2016. Perturbative Algebraic Quantum Field Theory. Mathematical Physics Studies Springer.CrossRefGoogle Scholar
[133] Rendall, A. D. 2008. Partial Differential Equations in General Relativity. Oxford Graduate Texts in Mathematics, vol. 16. Oxford: Oxford University Press.Google Scholar
[134] Rindler, W. 1991. Introduction to Special Relativity. 2nd edn. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press.Google Scholar
[135] Ringström, H. 2009. The Cauchy Problem in General Relativity. ESI Lectures in Mathematics and Physics. Zürich: European Mathematical Society (EMS).Google Scholar
[136] Rudin, W. 1987. Real and Complex Analysis. 3rd edn. New York: McGraw-Hill Book Co.Google Scholar
[137] Rudin, W. 1991. Functional Analysis. 2nd edn. International Series in Pure and Applied Mathematics. New York: McGraw-Hill Inc.Google Scholar
[138] Sahlmann, H., and Verch, R. 2001. Microlocal spectrum condition and Hadamard form for vector-valued quantum fields in curved spacetime. Rev. Math. Phys., 13(10), 12031246. arXiv:math-ph/0008029.CrossRefGoogle Scholar
[139] Sakurai, J. J., and Napolitano, J. 1994. Advanced Quantum Mechanics. 2nd edn. San Francisco: Addison-Wesley Publishing Company.Google Scholar
[140] Schubert, H. 1968. Topology. Boston, Mass: Allyn and Bacon, Inc., Translated from the German by Siegfried Moran.Google Scholar
[141] Schwabl, F. 2002. Quantum Mechanics. 3rd edn. Berlin: Springer-Verlag.Google Scholar
[142] Strang, G. 1980. Linear Algebra and Its Applications. 2nd edn. New York-London: Academic Press.Google Scholar
[143] Taylor, M. E. 1996. Partial Differential Equations. I. Applied Mathematical Sciences, vol. 115. New York: Springer-Verlag.Google Scholar
[144] Taylor, M. E. 1997. Partial Differential Equations. III. Applied Mathematical Sciences, vol. 117. New York: Springer-Verlag.Google Scholar
[145] Taylor, M. E. 2011. Partial Differential Equations. II. 2nd edn. Applied Mathematical Sciences, vol. 116. New York: Springer.CrossRefGoogle Scholar
[146] Thaller, B. 1992. The Dirac Equation. Texts and Monographs in Physics. Berlin: Springer-Verlag.CrossRefGoogle Scholar
[147] Weinberg, S. 1996. The Quantum Theory of Fields, vol. I. Cambridge: Cambridge University Press. Foundations, Corrected reprint of the 1995 original.CrossRefGoogle Scholar
[148] Finster, F., Murro, S., and Schmid, G. 2025. The Cauchy problem for symmetric hyperbolic systems with nonlocal potentials. arXiv:2507.05004 [math.AP].Google Scholar

Accessibility standard: WCAG 2.2 A

Why this information is here

This section outlines the accessibility features of this content - including support for screen readers, full keyboard navigation and high-contrast display options. This may not be relevant for you.

Accessibility Information

The PDF of this book complies with version 2.2 of the Web Content Accessibility Guidelines (WCAG), offering more comprehensive accessibility measures for a broad range of users and meets the basic (A) level of WCAG compliance, addressing essential accessibility barriers.

Content Navigation

Table of contents navigation
Allows you to navigate directly to chapters, sections, or non‐text items through a linked table of contents, reducing the need for extensive scrolling.
Index navigation
Provides an interactive index, letting you go straight to where a term or subject appears in the text without manual searching.

Reading Order & Textual Equivalents

Single logical reading order
You will encounter all content (including footnotes, captions, etc.) in a clear, sequential flow, making it easier to follow with assistive tools like screen readers.
Short alternative textual descriptions
You get concise descriptions (for images, charts, or media clips), ensuring you do not miss crucial information when visual or audio elements are not accessible.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×