Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T08:49:03.286Z Has data issue: false hasContentIssue false

5 - Measurement error and latent variables

Published online by Cambridge University Press:  05 April 2016

Bill Shipley
Affiliation:
Université de Sherbrooke, Canada
Get access

Summary

Ambient temperature affects the metabolic rate of animals. When it is cold a homeothermic animal has to burn stored energy reserves – first glycogen and fat and then, when these are exhausted, protein – in order to generate heat and maintain its body temperature. The scaling of surface area (the site of heat loss to the atmosphere) to body volume (where the heat is generated) means that small homeothermic animals, such as songbirds, can lose up to 15 per cent of their body fat in one cold night. To burn this fat the bird must increase its metabolic rate, which increases its oxygen consumption. Imagine that we conduct an experiment in which we place small birds inside metabolic chambers overnight and vary the air temperature. The hypothesised causal process is shown in Figure 5.1.

Unfortunately, we can't directly measure any of these three variables; they are unmeasured, or latent, and so I have enclosed them in circles following the conventions of path diagrams. If we measure the air temperature using a thermometer then we aren't directly measuring temperature – the average kinetic energy of the molecules in the air. Instead, we are measuring the height of a column of mercury in a vacuum and enclosed in a hollow glass tube. In fact, we can't even measure the actual height of the mercury exactly, since our observed height will include some measurement error. Nor can we directly measure metabolic rate. Typically, one measures the rate of gas exchange (oxygen decrease or carbon dioxide increase) between the air entering and leaving the metabolic chamber. If we measure oxygen consumption using an infrared gas analyser then we aren't even directly measuring oxygen consumption. Instead, we are measuring differences in the amount of light of particular wavelengths that is absorbed as the light passes through the air. Again, even this variable is not perfectly measured, since the observed values will also contain measurement error. When we measure the fat reserves that are burned by the birds we might actually be measuring the difference in body weight over the course of the experiment, and this too will include measurement error. One simplified representation of the actual causal process is depicted in Figure 5.2.

Type
Chapter
Information
Cause and Correlation in Biology
A User's Guide to Path Analysis, Structural Equations and Causal Inference with R
, pp. 126 - 152
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×