Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-04-30T11:47:39.140Z Has data issue: false hasContentIssue false

29 - Acute complications

from Section 4 - Complications and supportive care

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Introduction

The most common cause of early treatment failure among patients with childhood leukemia is death from the acute complications of the leukemia itself or its initial treatment. Despite the increasing intensity of treatment for acute lymphoblastic leukemia (ALL) in children, improvements in supportive care have reduced the rate of death from acute complications from 10% in the early 1970s to under 1% in recent years, and these improvements have had an important impact on event-free survival. In fact, studies of the UK Medical Research Council found that the rate of treatment-related death among children with ALL decreased from 9% in the 1980s (Medical Research Council Working Party on Childhood Leukaemia UKALL VIII trial) to 2% in the 1990s (UKALL X and XI trials). Hence, the 6% improvement in the 5-year event-free survival estimate during the same period (from 55 to 61%) can be attributed largely to advances in supportive care. The rate of toxic death associated with therapy for acute myeloid leukemia (AML) has also decreased over time, but remains unacceptably high at 5–13%. In countries with limited resources, death from toxicity accounts for more cases of treatment failure than does relapse in both AML and ALL.

Acute complications include “early” complications (those occurring within the 2 weeks of starting therapy) and “on-therapy” complications (those occurring after the first 2 weeks of therapy). “Late” complications are those occurring after recovery from the final dose of chemotherapy (Table 29.1). Early complications generally are caused by the leukemia itself, while on-therapy and late complications reflect the toxicity of leukemia therapy. This chapter discusses early and on-therapy complications. The most common early complications include metabolic disturbances, central airway compression, coagulopathy, hyperviscosity/leukostasis, and neurologic dysfunction; whereas, on-therapy complications include hematologic (thrombosis), endocrine (hyperglycemia), gastrointestinal (mucositis, typhlitis, pancreatitis), hepatic (hepatitis), skeletal (osteonecrosis), and neurologic (encephalopathy, myelopathy) disorders.

Type
Chapter
Information
Childhood Leukemias , pp. 660 - 700
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pui, CH, Evans, WE. Acute lymphoblastic leukemia. N Engl J Med 1998;339:605–615.CrossRefGoogle ScholarPubMed
Pui, CH. Acute lymphoblastic leukemia. Pediatr Clin North Am 1997;44:831–846.CrossRefGoogle ScholarPubMed
Hargrave, DR, Hann, II, Richards, SM, et al. Progressive reduction in treatment-related deaths in Medical Research Council childhood lymphoblastic leukaemia trials from 1980 to 1997 (UKALL VIII, X and XI). Br J Haematol 2001;112:293–299.CrossRefGoogle Scholar
Simone, JV, Verzosa, MS, Rudy, JA. Initial features and prognosis in 363 children with acute lymphocytic leukemia. Cancer 1975;36:2099–2108.CrossRefGoogle ScholarPubMed
Pui, CH, Campana, D, Pei, D, et al. Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med 2009;360:2730–2741.CrossRefGoogle ScholarPubMed
Chessells, JM, Harrison, G, Richards, SM, et al. Failure of a new protocol to improve treatment results in paediatric lymphoblastic leukaemia: lessons from the UK Medical Research Council trials UKALL X and UKALL XI. Br J Haematol 2002;118:445–455.CrossRefGoogle ScholarPubMed
Hann, I, Vora, A, Harrison, G, et al. Determinants of outcome after intensified therapy of childhood lymphoblastic leukaemia: results from Medical Research Council United Kingdom Acute Lymphoblastic Leukaemia XI protocol. Br J Haematol 2001;113:103–114.CrossRefGoogle ScholarPubMed
Rubnitz, JE, Inaba, H, Dahl, G, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol 2010;11:543–552.CrossRefGoogle ScholarPubMed
Creutzig, U, Zimmermann, M, Reinhardt, D, et al. Early deaths and treatment-related mortality in children undergoing therapy for acute myeloid leukemia: analysis of the multicenter clinical trials AML-BFM 93 and AML-BFM 98. J Clin Oncol 2004;22:4384–4393.CrossRefGoogle ScholarPubMed
Molgaard-Hansen, L, Mottonen, M, Glosli, H, et al. Treatment-related deaths in second complete remission in childhood acute myeloid leukaemia. Br J Haematol 2011;152:623–630.CrossRefGoogle ScholarPubMed
Metzger, ML, Howard, SC, Fu, LC, et al. Outcome of childhood acute lymphoblastic leukaemia in resource-poor countries. Lancet 2003;362:706–708.CrossRefGoogle ScholarPubMed
Gupta, S, Bonilla, M, Fuentes, SL, et al. Incidence and predictors of treatment-related mortality in paediatric acute leukaemia in El Salvador. Br J Cancer 2009;100:1026–1031.CrossRefGoogle ScholarPubMed
Jaime-Perez, JC, Gonzalez-Llano, O, Herrera-Garza, JL, et al. Assessment of nutritional status in children with acute lymphoblastic leukemia in northern Mexico: a 5-year experience. Pediatr Blood Cancer 2008;50:506–508.CrossRefGoogle ScholarPubMed
Rivera-Luna, R, Olaya-Vargas, A, Velasquez-Avina, M, et al. Early death in children with acute lymphoblastic leukemia: does malnutrition play a role? Pediatr Hematol Oncol 2008;25:17–26.CrossRefGoogle ScholarPubMed
Sala, A, Antillon, F, Pencharz, P, Barr, R. Nutritional status in children with cancer: a report from the AHOPCA Workshop held in Guatemala City, August 31–September 5, 2004. Pediatr Blood Cancer 2005;45:230–236.CrossRefGoogle ScholarPubMed
Sala, A, Pencharz, P, Barr, RD. Children, cancer, and nutrition: a dynamic triangle in review. Cancer 2004;100:677–687.CrossRefGoogle Scholar
Bonilla, M, Moreno, N, Marina, N, et al. Acute lymphoblastic leukemia in a developing country: preliminary results of a nonrandomized clinical trial in El Salvador. J Pediatr Hematol Oncol 2000;22:495–501.CrossRefGoogle Scholar
Pedrosa, F, Bonilla, M, Liu, A, et al. Effect of malnutrition at the time of diagnosis on the survival of children treated for cancer in El Salvador and northern Brazil. J Pediatr Hematol Oncol 2000;22:502–505.CrossRefGoogle ScholarPubMed
Ribeiro, RC, Bonilla, M. A leukaemia treatment programme in El Salvador. Lancet 2000;356(Suppl):s7.CrossRefGoogle ScholarPubMed
Thomas, X, Fiere, D, Archimbaud, E. Influence of increased body mass index on drug toxicity in patients with acute promyelocytic leukemia. Leukemia 1998;12:1503–1506.CrossRefGoogle ScholarPubMed
Hunter, RJ, Navo, MA, Thaker, PH, et al. Dosing chemotherapy in obese patients: actual versus assigned body surface area (BSA). Cancer Treat Rev 2009;35:69–78.CrossRefGoogle Scholar
Thompson, LA, Lawson, AP, Sutphin, SD, Steinke, D, Adams, VR. Description of current practices of empiric chemotherapy dose adjustment in obese adult patients. J Oncol Pract 2010;6:141–145.CrossRefGoogle ScholarPubMed
DeMille, D, Deming, P, Lupinacci, P, Jacobs, LA. The effect of the neutropenic diet in the outpatient setting: a pilot study. Oncol Nurs Forum 2006;33:337–343.CrossRefGoogle ScholarPubMed
Moody, K, Finlay, J, Mancuso, C, Charlson, M. Feasibility and safety of a pilot randomized trial of infection rate: neutropenic diet versus standard food safety guidelines. J Pediatr Hematol Oncol 2006;28:126–133.CrossRefGoogle ScholarPubMed
Jubelirer, SJ. The benefit of the neutropenic diet: fact or fiction? Oncologist 2011;16:704–707.CrossRefGoogle ScholarPubMed
Tarr, S, Allen, DH. Evidence does not support the use of a neutropenic diet. Clin J Oncol Nurs 2009;13:617–618.Google Scholar
Sandler, DP, Ross, JA. Epidemiology of acute leukemia in children and adults. Semin Oncol 1997;24:3–16.Google ScholarPubMed
Kearns, GL, Abdel-Rahman, SM, Alander, SW, et al. Developmental pharmacology: drug disposition, action, and therapy in infants and children. N Engl J Med 2003;349:1157–1167.CrossRefGoogle ScholarPubMed
Avramis, VI, Weinberg, KI, Sato, JK, et al. Pharmacology studies of 1-beta-d-arabinofuranosylcytosine in pediatric patients with leukemia and lymphoma after a biochemically optimal regimen of loading bolus plus continuous infusion of the drug. Cancer Res 1989;49:241–247.Google ScholarPubMed
Relling, MV, Crom, WR, Pieper, JA, et al. Hepatic drug clearance in children with leukemia: changes in clearance of model substrates during remission-induction therapy. Clin Pharmacol Ther 1987;41:651–660.CrossRefGoogle ScholarPubMed
McLeod, HL, Relling, MV, Crom, WR, et al. Disposition of antineoplastic agents in the very young child. Br J Cancer Suppl 1992;18:S23–S29.Google ScholarPubMed
Woods, WG, O'Leary, M, Nesbit, ME. Life-threatening neuropathy and hepatotoxicity in infants during induction therapy for acute lymphoblastic leukemia. J Pediatr 1981;98:642–645.CrossRefGoogle ScholarPubMed
Schmiegelow, K, Heyman, M, Gustafsson, G, et al. The degree of myelosuppression during maintenance therapy of adolescents with B-lineage intermediate risk acute lymphoblastic leukemia predicts risk of relapse. Leukemia 2010;24:715–720.CrossRefGoogle ScholarPubMed
Pui, CH, Pei, D, Campana, D, et al. Improved prognosis for older adolescents with acute lymphoblastic leukemia. J Clin Oncol 2011;29:386–391.CrossRefGoogle ScholarPubMed
Cairo, MS, Coiffier, B, Reiter, A, Younes, A. Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 2010;149:578–586.CrossRefGoogle ScholarPubMed
Gregory, RE, Pui, CH, Crom, WR. Raised plasma methotrexate concentrations following intrathecal administration in children with renal dysfunction. Leukemia 1991;5:999–1003.Google ScholarPubMed
Gillies, J, Hung, KA, Fitzsimons, E, Soutar, R. Severe vincristine toxicity in combination with itraconazole. Clin Lab Haematol 1998;20:123–124.CrossRefGoogle ScholarPubMed
Ozdemir, MA, Karakukcu, M, Patiroglu, T, Torun, YA, Kose, M. Management of hyperleukocytosis and prevention of tumor lysis syndrome with low-dose prednisone continuous infusion in children with acute lymphoblastic leukemia. Acta Haematol 2009;121:56–62.CrossRefGoogle ScholarPubMed
Buitenkamp, TD, Mathot, RA, de Haas, V, Pieters, R, Zwaan, CM. Methotrexate-induced side effects are not due to differences in pharmacokinetics in children with Down syndrome and acute lymphoblastic leukemia. Haematologica 2010;95:1106–1113.CrossRefGoogle Scholar
Shah, N, Al-Ahmari, A, Al-Yamani, A, et al. Outcome and toxicity of chemotherapy for acute lymphoblastic leukemia in children with Down syndrome. Pediatr Blood Cancer 2009;52:14–19.CrossRefGoogle ScholarPubMed
Pui, CH. Rasburicase: a potent uricolytic agent. Expert Opin Pharmacother 2002;3:433–442.CrossRefGoogle ScholarPubMed
Relling, MV, Hancock, ML, Rivera, GK, et al. Mercaptopurine therapy intolerance and heterozygosity at the thiopurine S-methyltransferase gene locus. J Natl Cancer Inst 1999;91:2001–2008.CrossRefGoogle ScholarPubMed
Donnan, JR, Ungar, WJ, Mathews, M, et al. A cost effectiveness analysis of thiopurine methyltransferase testing for guiding 6-mercaptopurine dosing in children with acute lymphoblastic leukemia. Pediatr Blood Cancer 2011;57:231–239.CrossRefGoogle ScholarPubMed
Peregud-Pogorzelski, J, Tetera-Rudnicka, E, Kurzawski, M, et al. Thiopurine S-methyltransferase (TPMT) polymorphisms in children with acute lymphoblastic leukemia, and the need for reduction or cessation of 6-mercaptopurine doses during maintenance therapy: The Polish multicenter analysis. Pediatr Blood Cancer 2011;57:578–582.CrossRefGoogle ScholarPubMed
Oliveira, LC, Romano, LG, Prado-Junior, BP, et al. Outcome of acute myeloid leukemia patients with hyperleukocytosis in Brazil. Med Oncol 2010;27:1254–1259.CrossRefGoogle Scholar
Haase, R, Merkel, N, Diwan, O, Elsner, K, Kramm, CM. Leukapheresis and exchange transfusion in children with acute leukemia and hyperleukocytosis. A single center experience. Klin Padiatr 2009;221:374–378.CrossRefGoogle ScholarPubMed
Inaba, H, Fan, Y, Pounds, S, et al. Clinical and biologic features and treatment outcome of children with newly diagnosed acute myeloid leukemia and hyperleukocytosis. Cancer 2008;113:522–529.CrossRefGoogle ScholarPubMed
Lantz, B, Adolfsson, J, Lagerlof, B, Reizenstein, P. Causes of death in leukemia and lymphoma with modern treatment. Acta Haematol 1980;63:61–67.CrossRefGoogle ScholarPubMed
Attarbaschi, A, Mann, G, Dworzak, M, et al. Mediastinal mass in childhood T-cell acute lymphoblastic leukemia: significance and therapy response. Med Pediatr Oncol 2002;39:558–565.CrossRefGoogle ScholarPubMed
Varma, S, Varma, N, Dhar, S, et al. Cytodiagnosis of granulocytic sarcoma presenting as superior vena cava syndrome in acute myeloblastic leukemia. A case report. Acta Cytol 1992;36:371–372.Google ScholarPubMed
Ahn, JY, Choi, EW, Kang, SH, Kim, YR. Isolated meningeal chloroma (granulocytic sarcoma) in a child with acute lymphoblastic leukemia mimicking a falx meningioma. Childs Nerv Syst 2002;18:153–156.CrossRefGoogle Scholar
Nijland, E, Wuisman, P, van Royen, B, Veerman, A, van Diest, P. Vertebral chloroma in a 1½-year-old boy with no evidence of leukemia. Med Pediatr Oncol 2001;36:341–342.3.0.CO;2-S>CrossRefGoogle Scholar
Pui, CH, Dahl, GV, Hustu, HO, Murphy, SB. Epidural spinal cord compression as the initial finding in childhood acute leukemia and non-Hodgkin lymphoma. J Pediatr 1985;106:788–792.CrossRefGoogle ScholarPubMed
Ribeiro, RC, Pui, C-H. The clinical and biological correlates of coagulopathy in children with acute leukemia. J Clin Oncol 1986;4:1212–1218.CrossRefGoogle ScholarPubMed
Einzig, AI, Dutcher, JP, Wiernik, PH. Life-threatening hyperleukocytosis and pulmonary compromise after priming with recombinant human granulocyte–macrophage colony-stimulating factor in a patient with acute myelomonocytic leukemia. J Clin Oncol 1995;13:304–305.CrossRefGoogle Scholar
Asano, T, Fukuda, Y, Katsube, Y, et al. Infantile acute monocytic leukemia with tumor formation in the skin expressing adhesion molecules as seen by electronmicroscopy. Leuk Lymphoma 1996;23:173–179.CrossRefGoogle ScholarPubMed
Hijiya, N, Metzger, ML, Pounds, S, et al. Severe cardiopulmonary complications consistent with systemic inflammatory response syndrome caused by leukemia cell lysis in childhood acute myelomonocytic or monocytic leukemia. Pediatr Blood Cancer 2005;44:63–69.CrossRefGoogle ScholarPubMed
Schrappe, M, Reiter, A, Zimmermann, M, et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin–Frankfurt–Münster. Leukemia 2000;14:2205–2222.CrossRefGoogle Scholar
Howard, SC, Jones, DP, Pui, CH. The tumor lysis syndrome. N Engl J Med 2011;364:1844–1854.CrossRefGoogle ScholarPubMed
Coiffier, B, Altman, A, Pui, CH, Younes, A, Cairo, MS. Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol 2008;26:2767–2778.CrossRefGoogle Scholar
Seth, R, Bhat, AS. Management of common oncologic emergencies. Indian J Pediatr 2011;78:709–717.CrossRefGoogle ScholarPubMed
Stapleton, FB, Strother, DR, Roy, S, III, et al. Acute renal failure at onset of therapy for advanced stage Burkitt lymphoma and B cell acute lymphoblastic lymphoma. Pediatrics 1988;82:863–869.Google ScholarPubMed
CRC. CRC Handbook of Chemistry and Physics. Boca Raton, FL: CRC Press, 2002.Google Scholar
Grases, F, Villacampa, AI, Sohnel, O, Konigsberger, E, May, PM. Phosphate composition of precipitates from urine-like liquors. Crystal Res Technol 1997;32:707–715.CrossRefGoogle Scholar
Konigsberger, E, Wang, ZH, Seidel, J, Wolf, G. Solubility and dissolution enthalpy of xanthine. J Chem Thermodynam 2001;33:1–9.CrossRefGoogle Scholar
Konigsberger, E, Wang, ZH. Solubility of uric acid in salt solutions and artificial urine. Monatsh Chem 1999;130:1067–1073.CrossRefGoogle Scholar
Konigsberger, E, Konigsberger, LC. Thermodynamic modeling of crystal deposition in humans. Pure Appl Chem 2001;73:785–797.CrossRefGoogle Scholar
Streit, J, Tran-Ho, LC, Konigsberger, E. Solubility of the three calcium oxalate hydrates in sodium chloride solutions and urine-like liquors. Monatsh Chem 1998;129:1225–1236.Google Scholar
Klinenberg, JR, Goldfinger, SE, Seegmiller, JE. The effectiveness of the xanthine oxidase inhibitor allopurinol in the treatment of gout. Ann Intern Med 1965;62:639–647.CrossRefGoogle ScholarPubMed
Mir, MA. Renal excretion of uric acid and its relation to relapse and remission in acute myeloid leukaemia. Nephron 1977;19:69–80.CrossRefGoogle ScholarPubMed
Pui, CH, Roy, S, Noe, HN. Urolithiasis in childhood acute leukemia and non-Hodgkin's lymphoma. J Urol 1986;136:1052–1054.CrossRefGoogle Scholar
Andreoli, SP, Clark, JH, McGuire, WA, Bergstein, JM. Purine excretion during tumor lysis in children with acute lymphocytic leukemia receiving allopurinol: relationship to acute renal failure. J Pediatr 1986;109:292–298.CrossRefGoogle ScholarPubMed
LaRosa, C, McMullen, L, Bakdash, S, et al. Acute renal failure from xanthine nephropathy during management of acute leukemia. Pediatr Nephrol 2007;22:132–135.CrossRefGoogle ScholarPubMed
O'Regan, S, Carson, S, Chesney, RW, Drummond, KN. Electrolyte and acid–base disturbances in the management of leukemia. Blood 1977;49:345–353.Google ScholarPubMed
Vachvanichsanong, P, Maipang, M, Dissaneewate, P, Wongchanchailert, M, Laosombat, V. Severe hyperphosphatemia following acute tumor lysis syndrome. Med Pediatr Oncol 1995;24:63–66.CrossRefGoogle ScholarPubMed
Zusman, J, Brown, DM, Nesbit, ME. Hyperphosphatemia, hyperphosphaturia and hypocalcemia in acute lymphoblastic leukemia. N Engl J Med 1973;289:1335–1340.CrossRefGoogle ScholarPubMed
Ejaz, AA, Mu, W, Kang, DH, et al. Could uric acid have a role in acute renal failure? Clin J Am Soc Nephrol 2007;2:16–21.CrossRefGoogle ScholarPubMed
Goldman, SC, Holcenberg, JS, Finklestein, JZ, et al. A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 2001;97:2998–3003.CrossRefGoogle ScholarPubMed
Jeha, S, Kantarjian, H, Irwin, D, et al. Efficacy and safety of rasburicase, a recombinant urate oxidase (Elitek), in the management of malignancy-associated hyperuricemia in pediatric and adult patients: final results of a multicenter compassionate use trial. Leukemia 2005;19:34–38.CrossRefGoogle ScholarPubMed
Bleyer, AJ, Burke, SK, Dillon, M, et al. A comparison of the calcium-free phosphate binder sevelamer hydrochloride with calcium acetate in the treatment of hyperphosphatemia in hemodialysis patients. Am J Kidney Dis 1999;33:694–701.CrossRefGoogle ScholarPubMed
Malluche, HH, Monier-Faugere, MC. Hyperphosphatemia: pharmacologic intervention yesterday, today and tomorrow. Clin Nephrol 2000;54:309–317.Google ScholarPubMed
Alkhuja, S, Ulrich, H. Acute renal failure from spontaneous acute tumor lysis syndrome: a case report and review. Ren Fail 2002;24:227–232.CrossRefGoogle ScholarPubMed
Agha-Razii, M, Amyot, SL, Pichette, V, et al. Continuous veno-venous hemodiafiltration for the treatment of spontaneous tumor lysis syndrome complicated by acute renal failure and severe hyperuricemia. Clin Nephrol 2000;54:59–63.Google ScholarPubMed
Jones, DP, Mahmoud, H, Chesney, RW. Tumor lysis syndrome: pathogenesis and management. Pediatr Nephrol 1995;9:206–212.CrossRefGoogle ScholarPubMed
Rajpurkar, M, Alcasabas, P, Warrier, I, et al. Effect of dialysis on all-trans retinoic acid levels in a child with acute promyelocytic leukemia and renal failure. Pediatr Blood Cancer 2007;49:994–996.CrossRefGoogle Scholar
Salahudeen, AK, Kumar, V, Madan, N, et al. Sustained low efficiency dialysis in the continuous mode (C-SLED): dialysis efficacy, clinical outcomes, and survival predictors in critically ill cancer patients. Clin J Am Soc Nephrol 2009;4:1338–1346.CrossRefGoogle ScholarPubMed
Crowley, JJ, Knight, L, Charan, N. Lysis pneumonopathy associated with the use of fludarabine phosphate. West J Med 1994;161:597–599.Google ScholarPubMed
Demirjian, S, Teo, BW, Guzman, JA, et al. Hypophosphatemia during continuous hemodialysis is associated with prolonged respiratory failure in patients with acute kidney injury. Nephrol Dial Transplant 2011;26:3508–3514.CrossRefGoogle ScholarPubMed
McKay, C, Furman, WL. Hypercalcemia complicating childhood malignancies. Cancer 1993;72:256–260.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Muler, JH, Valdez, R, Hayes, C, Kaminski, MS. Acute megakaryocytic leukemia presenting as hypercalcemia with skeletal lytic lesions. Eur J Haematol 2002;68:392–396.CrossRefGoogle ScholarPubMed
El Saleeby, CM, Grottkau, BE, Friedmann, AM, Westra, SJ, Sohani, AR. Case records of the Massachusetts General Hospital. Case 4–2011: a 4-year-old boy with back pain and hypercalcemia. N Engl J Med 2011;364:552–562.CrossRefGoogle ScholarPubMed
Chisholm, MA, Mulloy, AL, Taylor, AT. Acute management of cancer-related hypercalcemia. Ann Pharmacother 1996;30:507–513.CrossRefGoogle ScholarPubMed
Pui, CH, Behm, FG, Singh, B, et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990;75:174–179.Google ScholarPubMed
Liu, HW, Wong, KL, Chan, TY, Lau, CC, Liang, R. Superior vena cava syndrome: a rare presenting feature of acute myeloid leukemia. Acta Haematol 1988;79:213–216.CrossRefGoogle ScholarPubMed
ul Huda, A, Siddiqui, KM, Khan, FH. Emergency airway management of a patient with mediastinal mass. J Pak Med Assoc 2007;57:152–154.Google ScholarPubMed
McMahon, CC, Rainey, L, Fulton, B, Conacher, ID. Central airway compression. Anaesthetic and intensive care consequences. Anaesthesia 1997;52:158–162.CrossRefGoogle ScholarPubMed
Chang, SC, Chang, HI, Shiao, GM, Perng, RP. Effect of body position on gas exchange in patients with unilateral central airway lesions. Down with the good lung? Chest 1993;103:787–791.CrossRefGoogle ScholarPubMed
Narang, S, Harte, BH, Body, SC. Anesthesia for patients with a mediastinal mass. Anesthesiol Clin North America 2001;19:559–579.CrossRefGoogle ScholarPubMed
Shamberger, RC. Preanesthetic evaluation of children with anterior mediastinal masses. Semin Pediatr Surg 1999;8:61–68.CrossRefGoogle ScholarPubMed
Shamberger, RC, Holzman, RS, Griscom, NT, et al. Prospective evaluation by computed tomography and pulmonary function tests of children with mediastinal masses. Surgery 1995;118:468–471.CrossRefGoogle ScholarPubMed
Frawley, G, Low, J, Brown, TC. Anaesthesia for an anterior mediastinal mass with ketamine and midazolam infusion. Anaesth Intensive Care 1995;23:610–612.Google ScholarPubMed
Mathew, PM, Prangnell, DR, Cole, AJ, et al. Clinical, haematological, and radiological features of children presenting with lymphoblastic mediastinal masses. Med Pediatr Oncol 1980;8:193–204.CrossRefGoogle ScholarPubMed
Savage, SA, Young, G, Reaman, GH. Catheter-directed thrombolysis in a child with acute lymphoblastic leukemia and extensive deep vein thrombosis. Med Pediatr Oncol 2000;34:215–217.3.0.CO;2-F>CrossRefGoogle Scholar
Lepper, PM, Ott, SR, Hoppe, H, et al. Superior vena cava syndrome in thoracic malignancies. Respir Care 2011;56:653–666.CrossRefGoogle ScholarPubMed
Astwood, E, Vora, A. Personal practice: how we manage the risk of bleeding and thrombosis in children and young adults with acute lymphoblastic leukaemia. Br J Haematol 2011;152:505–511.CrossRefGoogle Scholar
Nowak-Gottl, U, Kenet, G, Mitchell, LG. Thrombosis in childhood acute lymphoblastic leukaemia: epidemiology, aetiology, diagnosis, prevention and treatment. Best Pract Res Clin Haematol 2009;22:103–114.CrossRefGoogle Scholar
Rickles, FR, Falanga, A, Montesinos, P, et al. Bleeding and thrombosis in acute leukemia: what does the future of therapy look like? Thromb Res 2007;120(Suppl 2):S99–S106.CrossRefGoogle Scholar
Athale, U, Moghrabi, A, Nayiager, T, et al. Von Willebrand factor and thrombin activation in children with newly diagnosed acute lymphoblastic leukemia: an impact of peripheral blasts. Pediatr Blood Cancer 2010;54:963–969.CrossRefGoogle ScholarPubMed
Howard, SC, Gajjar, AJ, Cheng, C, et al. Risk factors for traumatic and bloody lumbar puncture in children with acute lymphoblastic leukemia. JAMA 2002;288:2001–2007.CrossRefGoogle ScholarPubMed
Pui, CH. Toward optimal central nervous system-directed treatment in childhood acute lymphoblastic leukemia. J Clin Oncol 2003;21:179–181.CrossRefGoogle ScholarPubMed
Tornebohm, E, Lockner, D, Paul, C. A retrospective analysis of bleeding complications in 438 patients with acute leukaemia during the years 1972–1991. Eur J Haematol 1993;50:160–167.CrossRefGoogle ScholarPubMed
Tallman, M, Douer, D, Gore, S, et al. Treatment of patients with acute promyelocytic leukemia: a consensus statement on risk-adapted approaches to therapy. Clin Lymphoma Myeloma Leuk 2010;10:S122–S126.CrossRefGoogle Scholar
Tallman, MS. Updates on the treatment of acute promyelocytic leukemia. Clin Adv Hematol Oncol 2010;8:89–90.Google ScholarPubMed
Goldberg, MA, Ginsburg, D, Mayer, RJ, et al. Is heparin administration necessary during induction chemotherapy for patients with acute promyelocytic leukemia? Blood 1987;69:187–191.Google ScholarPubMed
Ablain, J, de The, H. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 2011;117:5795–5802.CrossRefGoogle ScholarPubMed
Zhang, L, Zhu, X, Zou, Y, Chen, Y, Chen, X. Effect of arsenic trioxide on the treatment of children with newly diagnosed acute promyelocytic leukemia in China. Int J Hematol 2011;93:199–205.CrossRefGoogle Scholar
Fenaux, P, Le, Deley MC, Castaigne, S, et al. Effect of all-trans-retinoic acid in newly diagnosed acute promyelocytic leukemia. Results of a multicenter randomized trial. European APL 91 Group. Blood 1993;82: 3241–3249.Google ScholarPubMed
Rogers, JE, Yang, D. Differentiation syndrome in patients with acute promyelocytic leukemia. J Oncol Pharm Pract 2012;18:109–114.Google Scholar
Bick, RL. Disseminated intravascular coagulation: a review of etiology, pathophysiology, diagnosis, and management: guidelines for care. Clin Appl Thromb Hemost 2002;8: 1–31.CrossRefGoogle Scholar
Sampson, MT, Kakkar, AK. Coagulation proteases and human cancer. Biochem Soc Trans 2002;30:201–207.CrossRefGoogle ScholarPubMed
Falanga, A, Barbui, T. Coagulopathy of acute promyelocytic leukemia. Acta Haematol 2001;106:43–51.CrossRefGoogle ScholarPubMed
Joseph, L, Fink, LM, Hauer-Jensen, M. Cytokines in coagulation and thrombosis: a preclinical and clinical review. Blood Coagul Fibrinolysis 2002;13:105–116.CrossRefGoogle ScholarPubMed
Inaba, H, Fan, Y, Pounds, S, et al. Clinical and biologic features and treatment outcome of children with newly diagnosed acute myeloid leukemia and hyperleukocytosis. Cancer 2008;113:522–529.CrossRefGoogle ScholarPubMed
Bug, G, Anargyrou, K, Tonn, T, et al. Impact of leukapheresis on early death rate in adult acute myeloid leukemia presenting with hyperleukocytosis. Transfusion 2007;47: 1843–1850.CrossRefGoogle ScholarPubMed
Lowe, EJ, Pui, CH, Hancock, ML, et al. Early complications in children with acute lymphoblastic leukemia presenting with hyperleukocytosis. Pediatr Blood Cancer 2005;45: 10–15.CrossRefGoogle ScholarPubMed
Porcu, P, Cripe, LD, Ng, EW, et al. Hyperleukocytic leukemias and leukostasis: a review of pathophysiology, clinical presentation and management. Leuk Lymphoma 2000;39:1–18.CrossRefGoogle ScholarPubMed
Krance, RA, Hurwitz, CA, Head, DR, et al. Experience with 2-chlorodeoxyadenosine in previously untreated children with newly diagnosed acute myeloid leukemia and myelodysplastic diseases. J Clin Oncol 2001;19:2804–2811.CrossRefGoogle ScholarPubMed
Lichtman, MA, Heal, J, Rowe, JM. Hyperleukocytic leukaemia: rheological and clinical features and management. Baillieres Clin Haematol 1987;1:725–746.CrossRefGoogle ScholarPubMed
Brown, MM, Marshall, J. Regulation of cerebral blood flow in response to changes in blood viscosity. Lancet 1985;1:604–609.CrossRefGoogle ScholarPubMed
Chiang, CC, Begley, S, Henderson, SO. Central retinal vein occlusion due to hyperviscosity syndrome. J Emerg Med 2000;18:23–26.CrossRefGoogle ScholarPubMed
Coppell, J.Consider “hyperviscosity syndrome” in unexplained breathlessness. Acta Haematol 2000;104:52–53.CrossRefGoogle Scholar
Kwaan, HC, Bongu, A. The hyperviscosity syndromes. Semin Thromb Hemost 1999;25:199–208.CrossRefGoogle ScholarPubMed
Gertz, MA, Kyle, RA. Hyperviscosity syndrome. J Intensive Care Med 1995;10:128–141.CrossRefGoogle ScholarPubMed
Roath, S, Davenport, P. Leucocyte numbers and quality: their effect on viscosity. Clin Lab Haematol 1991;13:255–262.CrossRefGoogle ScholarPubMed
Chae, SW, Cho, JH, Lee, JH, Kang, HJ, Hwang, SJ. Sudden hearing loss in chronic myelogenous leukaemia implicating the hyperviscosity syndrome. J Laryngol Otol 2002;116:291–293.CrossRefGoogle ScholarPubMed
Resende, LS, Coradazzi, AL, Rocha-Junior, C, Zanini, JM, Niero-Melo, L. Sudden bilateral deafness from hyperleukocytosis in chronic myeloid leukemia. Acta Haematol 2000;104:46–49.CrossRefGoogle ScholarPubMed
Chillar, RK, Belman, MJ, Farbstein, M. Explanation for apparent hypoxemia associated with extreme leukocytosis: leukocytic oxygen consumption. Blood 1980;55:922–924.Google ScholarPubMed
Loke, J, Duffy, TP. Normal arterial oxygen saturation with the ear oximeter in patients with leukemia and leukocytosis. Cancer 1984;53:1767–1769.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Polak, R, Huisman, A, Sikma, MA, Kersting, S. Spurious hypokalaemia and hypophosphataemia due to extreme hyperleukocytosis in a patient with a haematological malignancy. Ann Clin Biochem 2010;47:179–181.CrossRefGoogle Scholar
Fong, C, Fung, W, McDonald, J, Dalla-Pozza, L, De, Lima J. Anesthesia for children with hyperleukocytosis a retrospective review. Paediatr Anaesth 2009;19:1191–1198.CrossRefGoogle ScholarPubMed
Eguiguren, JM, Schell, MJ, Crist, WM, Kunkel, K, Rivera, GK. Complications and outcome in childhood acute lymphoblastic leukemia with hyperleukocytosis. Blood 1992;79:871–875.Google ScholarPubMed
Nelson, SC, Bruggers, CS, Kurtzberg, J, Friedman, HS. Management of leukemic hyperleukocytosis with hydration, urinary alkalinization, and allopurinol. Are cranial irradiation and invasive cytoreduction necessary? Am J Pediatr Hematol Oncol 1993;15: 351–355.Google ScholarPubMed
Creutzig, U, Ritter, J, Budde, M, Sutor, A, Schellong, G. Early deaths due to hemorrhage and leukostasis in childhood acute myelogenous leukemia. Associations with hyperleukocytosis and acute monocytic leukemia. Cancer 1987;60:3071–3079.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Bunin, NJ, Kunkel, K, Callihan, TR. Cytoreductive procedures in the early management in cases of leukemia and hyperleukocytosis in children. Med Pediatr Oncol 1987;15:232–235.CrossRefGoogle ScholarPubMed
Del Vasto, F, Caldore, M, Russo, F, Bertuccioli, A, Pellegrini, F. Exchange transfusion in leukemia with hyperleukocytosis. J Pediatr 1982;100:1000.CrossRefGoogle ScholarPubMed
Flasshove, M, Schuette, J, Sauerwein, W, Hoeffken, K, Seeber, S. Pulmonary and cerebral irradiation for hyperleukocytosis in acute myelomonocytic leukemia. Leukemia 1994;8:1792.Google ScholarPubMed
Rubnitz, JE, Gibson, B, Smith, FO. Acute myeloid leukemia. Hematol Oncol Clin North Am 2010;24:35–63.CrossRefGoogle ScholarPubMed
Resnitzky, P, Shaft, D. Distinct lysozyme content in different subtypes of acute myeloid leukaemic cells: an ultrastructural immunogold study. Br J Haematol 1994;88:357–363.CrossRefGoogle ScholarPubMed
Berger, M, Motta, C, Boiret, N, et al. Membrane fluidity and adherence to extracellular matrix components are related to blast cell count in acute myeloid leukemia. Leuk Lymphoma 1994;15:297–302.CrossRefGoogle ScholarPubMed
Gallipoli, P, Leach, M. Gingival infiltration in acute monoblastic leukaemia. Br Dent J 2007;203:507–509.CrossRefGoogle ScholarPubMed
Perez-Zincer, F, Juturi, JV, Hsi, ED, et al. A pulmonary syndrome in patients with acute myelomonocytic leukemia and inversion of chromosome 16. Leuk Lymphoma 2003;44:103–109.CrossRefGoogle ScholarPubMed
Price, RA. Histopathology of CNS leukemia and complications of therapy. Am J Pediatr Hematol Oncol 1979;1:21–30.Google ScholarPubMed
Peterson, BA, Brunning, RD, Bloomfield, CD, et al. Central nervous system involvement in acute nonlymphocytic leukemia. A prospective study of adults in remission. Am J Med 1987;83:464–470.CrossRefGoogle ScholarPubMed
Webb, DK, Harrison, G, Stevens, RF, et al. Relationships between age at diagnosis, clinical features, and outcome of therapy in children treated in the Medical Research Council AML 10 and 12 trials for acute myeloid leukemia. Blood 2001;98: 1714–1720.CrossRefGoogle ScholarPubMed
Kobayashi, Y, Takahashi, S, Mizuno, T, et al. Acute promyelocytic leukemia with central nervous system leukemia: a report of two cases. Gan No Rinsho 1988;34:1153–1158.Google ScholarPubMed
Byrd, JC, Edenfield, WJ, Shields, DJ, Dawson, NA. Extramedullary myeloid cell tumors in acute nonlymphocytic leukemia: a clinical review. J Clin Oncol 1995;13:1800–1816.CrossRefGoogle ScholarPubMed
Pui, CH, Howard, SC. Current management and challenges of malignant disease in the CNS in paediatric leukaemia. Lancet Oncol 2008;9:257–268.CrossRefGoogle ScholarPubMed
Hoogerbrugge, PM, Hagenbeek, A. Leptomeningeal infiltration in rat models for human acute myelocytic and lymphocytic leukemia. Leuk Res 1985;9:1397–1404.CrossRefGoogle ScholarPubMed
Stucki, A, Cordey, AS, Monai, N, et al. Cleaved L-selectin concentrations in meningeal leukaemia. Lancet 1995;345:286–289.CrossRefGoogle ScholarPubMed
Crazzolara, R, Bernhard, D. CXCR4 chemokine receptors, histone deacetylase inhibitors and acute lymphoblastic leukemia. Leuk Lymphoma 2005;46:1545–1551.CrossRefGoogle ScholarPubMed
Crazzolara, R, Kreczy, A, Mann, G, et al. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. Br J Haematol 2001;115:545–553.CrossRefGoogle ScholarPubMed
Cario, G, Izraeli, S, Teichert, A, et al. High interleukin-15 expression characterizes childhood acute lymphoblastic leukemia with involvement of the CNS. J Clin Oncol 2007;25:4813–4820.CrossRefGoogle ScholarPubMed
Bendall, SC, Simonds, EF, Qiu, P, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 2011;332:687–696.CrossRefGoogle ScholarPubMed
Price, RA, Johnson, WW. The central nervous system in childhood leukemia. I. The arachnoid. Cancer 1973;31:520–533.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
Gajjar, A, Harrison, PL, Sandlund, JT, et al. Traumatic lumbar puncture at diagnosis adversely affects outcome in childhood acute lymphoblastic leukemia. Blood 2000;96:3381–3384.Google ScholarPubMed
Sajjad, Z, Haq, N, Kandula, V. Case report: granulocytic sarcoma (GS) presenting as acute cord compression in a previously undiagnosed patient. Clin Radiol 1997;52:69–71.CrossRefGoogle Scholar
Wide, JM, Curtis, J. Granulocytic sarcoma as a cause of cord compression. Clin Radiol 1997;52:803.CrossRefGoogle ScholarPubMed
Fitoz, S, Atasoy, C, Yavuz, K, et al. Granulocytic sarcoma. Cranial and breast involvement. Clin Imaging 2002;26:166–169.CrossRefGoogle ScholarPubMed
Nikolic, B, Feigenbaum, F, Abbara, S, Martuza, RL, Schellinger, D. CT changes of an intracranial granulocytic sarcoma on short-term follow-up. AJR Am J Roentgenol 2003;180:78–80.CrossRefGoogle ScholarPubMed
Ooi, GC, Chim, CS, Khong, PL, et al. Radiologic manifestations of granulocytic sarcoma in adult leukemia. AJR Am J Roentgenol 2001;176:1427–1431.CrossRefGoogle ScholarPubMed
Pui, MH, Fletcher, BD, Langston, JW. Granulocytic sarcoma in childhood leukemia: imaging features. Radiology 1994;190:698–702.CrossRefGoogle ScholarPubMed
Sauter, C, Jacky, E. Images in clinical medicine. Chloroma in acute myelogenous leukemia. N Engl J Med 1998;338:969.CrossRefGoogle ScholarPubMed
Neiman, RS, Barcos, M, Berard, C, et al. Granulocytic sarcoma: a clinicopathologic study of 61 biopsied cases. Cancer 1981;48:1426–1437.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Davey, FR, Olson, S, Kurec, AS, et al. The immunophenotyping of extramedullary myeloid cell tumors in paraffin-embedded tissue sections. Am J Surg Pathol 1988;12:699–707.CrossRefGoogle ScholarPubMed
Takaue, Y, Culbert, SJ, Baram, T, Cork, A, Trujillo, JM. Therapeutic modalities for central nervous system involvement by granulocytic sarcoma (chloroma) in children with acute nonlymphocytic leukemia. J Neurooncol 1987;4: 371–381.CrossRefGoogle ScholarPubMed
Trousseau, A.Phlegmasia alba dolens. Clinique Medicale de L'Hotel-Dieu de Paris. London: New Sydenham Society, 1865.Google Scholar
Blann, AD, Lip, GY. Virchow's triad revisited: the importance of soluble coagulation factors, the endothelium, and platelets. Thromb Res 2001;101:321–327.CrossRefGoogle ScholarPubMed
Wahrenbrock, M, Borsig, L, Le, D, Varki, N, Varki, A. Selectin-mucin interactions as a probable molecular explanation for the association of Trousseau syndrome with mucinous adenocarcinomas. J Clin Invest 2003;112:853–862.CrossRefGoogle ScholarPubMed
Colovic, M, Miljic, P, Colovic, N, Jankovic, G, Stojkovic, M. Reversible portal vein thrombosis complicating induction therapy of acute promyelocytic leukemia. Thromb Res 2001;101:101–103.CrossRefGoogle ScholarPubMed
Musa, MO, Al Fair, F, Al Mohareb, F, Al Saeed, H, Aljurf, M. Cryoprecipitate-induced mesenteric venous thrombosis during l-asparaginase therapy for acute lymphoblastic leukaemia. Leuk Lymphoma 2001;40:429–431.CrossRefGoogle ScholarPubMed
Torromeo, C, Latagliata, R, Avvisati, G, Petti, MC, Mandelli, F. Intraventricular thrombosis during all-trans retinoic acid treatment in acute promyelocytic leukemia. Leukemia 2001;15:1311–1313.CrossRefGoogle ScholarPubMed
Ho, CL, Chen, CY, Chen, YC, Chao, TY. Cerebral dural sinus thrombosis in acute lymphoblastic leukemia with early diagnosis by fast fluid-attenuated inversion recovery (FLAIR) MR image: a case report and review of the literature. Ann Hematol 2000;79:90–94.CrossRefGoogle ScholarPubMed
Miljic, P, Milosevic-Jovicic, N, Antunovic, P, et al. Recurrent venous thrombosis in a patient with chronic lymphocytic leukemia and acquired protein S deficiency. Haematologia (Budap) 2000;30:51–54.CrossRefGoogle Scholar
Athale, UH, Chan, AK. Thrombosis in children with acute lymphoblastic leukemia: part I. Epidemiology of thrombosis in children with acute lymphoblastic leukemia. Thromb Res 2003;111:125–131.CrossRefGoogle ScholarPubMed
Grace, RF, Dahlberg, SE, Neuberg, D, et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol 2011;152:452–459.CrossRefGoogle ScholarPubMed
Wermes, C, Fleischhack, G, Junker, R, et al. Cerebral venous sinus thrombosis in children with acute lymphoblastic leukemia carrying the MTHFR TT677 genotype and further prothrombotic risk factors. Klin Padiatr 1999;211:211–214.CrossRefGoogle ScholarPubMed
Nowak-Gottl, U, Wermes, C, Junker, R, et al. Prospective evaluation of the thrombotic risk in children with acute lymphoblastic leukemia carrying the MTHFR TT677 genotype, the prothrombin G20210A variant, and further prothrombotic risk factors. Blood 1999;93:1595–1599.Google ScholarPubMed
Caruso, V, Iacoviello, L, Di, CA, et al. Thrombotic complications in childhood acute lymphoblastic leukemia: a meta-analysis of 17 prospective studies comprising 1752 pediatric patients. Blood 2006;108:2216–2222.CrossRefGoogle ScholarPubMed
Kaste, SC, Gronemeyer, SA, Hoffer, FA, Mandrell, BN, Wilimas, JA. Pilot study of noninvasive detection of venous occlusions from central venous access devices in children treated for acute lymphoblastic leukemia. Pediatr Radiol 1999;29:570–574.CrossRefGoogle ScholarPubMed
Male, C, Chait, P, Andrew, M, et al. Central venous line-related thrombosis in children: association with central venous line location and insertion technique. Blood 2003;101:4273–4278.CrossRefGoogle ScholarPubMed
Freytes, CO. Thromboembolic complications related to indwelling central venous catheters in children. Curr Opin Oncol 2003;15:289–292.CrossRefGoogle ScholarPubMed
Mitchell, LG. A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with l-asparaginase. Cancer 2003;97:508–516.CrossRefGoogle Scholar
Lyon, RD, Griggs, KA, Johnson, AM, Olsen, JR. Long-term follow-up of upper extremity implanted venous access devices in oncology patients. J Vasc Interv Radiol 1999;10:463–471.CrossRefGoogle ScholarPubMed
Nowak-Gottl, U, Heinecke, A, von Kries, R, et al. Thrombotic events revisited in children with acute lymphoblastic leukemia: impact of concomitant Escherichia coli asparaginase/prednisone administration. Thromb Res 2001;103:165–172.CrossRefGoogle ScholarPubMed
Sutor, AH, Mall, V, Thomas, KB. Bleeding and thrombosis in children with acute lymphoblastic leukaemia, treated according to the ALL-BFM-90 protocol. Klin Padiatr 1999;211:201–204.CrossRefGoogle ScholarPubMed
Farinasso, L, Bertorello, N, Garbarini, L, et al. Risk factors of central venous lines-related thrombosis in children with acute lymphoblastic leukemia during induction therapy: a prospective study. Leukemia 2007;21:552–556.CrossRefGoogle ScholarPubMed
Pihko, H, Tyni, T, Virkola, K, et al. Transient ischemic cerebral lesions during induction chemotherapy for acute lymphoblastic leukemia. J Pediatr 1993;123:718–724.CrossRefGoogle ScholarPubMed
Halton, JM, Mitchell, LG, Vegh, P, Eves, M, Andrew, ME. Fresh frozen plasma has no beneficial effect on the hemostatic system in children receiving l-asparaginase. Am J Hematol 1994;47:157–161.Google ScholarPubMed
Monagle, P, Chalmers, E, Chan, A, et al. Antithrombotic therapy in neonates and children: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th edition). Chest 2008;133:887S–968S.CrossRefGoogle Scholar
Yee, DL, Chan, AK, Williams, S, et al. Varied opinions on thrombolysis for venous thromboembolism in infants and children: findings from a survey of pediatric hematology–oncology specialists. Pediatr Blood Cancer 2009;53:960–966.CrossRefGoogle ScholarPubMed
Goldenberg, NA, Durham, JD, Knapp-Clevenger, R, Manco-Johnson, MJ. A thrombolytic regimen for high-risk deep venous thrombosis may substantially reduce the risk of postthrombotic syndrome in children. Blood 2007;110:45–53.CrossRefGoogle ScholarPubMed
Godfrey, AL, Higgins, JN, Beer, PA, Craig, JI, Vassiliou, GS. In situ thrombolysis for cerebral venous thrombosis complicating anti-leukemic therapy. Leuk Res 2011;35:1127–1129.CrossRefGoogle ScholarPubMed
Dentali, F, Squizzato, A, Gianni, M, et al. Safety of thrombolysis in cerebral venous thrombosis. A systematic review of the literature. Thromb Haemost 2010;104:1055–1062.Google ScholarPubMed
Kerlin, BA. Thrombolysis for pediatric venous thromboembolism: is it time for a trial? Pediatr Blood Cancer 2009;53:920–921.CrossRefGoogle ScholarPubMed
Louzada, ML, Majeed, H, Dao, V, Wells, PS. Risk of recurrent venous thromboembolism according to malignancy characteristics in patients with cancer-associated thrombosis: a systematic review of observational and intervention studies. Blood Coagul Fibrinolysis 2011;22:86–91.CrossRefGoogle ScholarPubMed
Tan, M, Mos, IC, Klok, FA, Huisman, MV. Residual venous thrombosis as predictive factor for recurrent venous thromboembolism in patients with proximal deep vein thrombosis: a sytematic review. Br J Haematol 2011;Epub ahead of print (PMID: 21375522).
Egede, LE, Moses, H, Wang, H. Spinal subdural hematoma: a rare complication of lumbar puncture. Case report and review of the literature. Md Med J 1999;48:15–17.Google ScholarPubMed
Wildforster, U, Schregel, W, Harders, A, Horlocker, TT, Wedel, DJ. Delayed lumbar epidural hematoma. Discussion of the risk factors: hypertension, anticoagulation and spinal anesthesia. Anasthesiol Intensivmed Notfallmed Schmerzther 1998;33:517–520.Google ScholarPubMed
Choquet, O, Krivosic-Horber, R, Delecroix, M, Huriau, M, Pruvo, JP. Subarachnoid hematoma after spinal anesthesia and low molecular weight heparin. Ann Fr Anesth Reanim 1993;12:428–430.CrossRefGoogle ScholarPubMed
Ott, N, Ramsay, NK, Priest, JR, et al. Sequelae of thrombotic or hemorrhagic complications following l-asparaginase therapy for childhood lymphoblastic leukemia. Am J Pediatr Hematol Oncol 1988;10:191–195.CrossRefGoogle ScholarPubMed
Kuhle, S, Spavor, M, Massicotte, P, et al. Prevalence of post-thrombotic syndrome following asymptomatic thrombosis in survivors of acute lymphoblastic leukemia. J Thromb Haemost 2008;6:589–594.CrossRefGoogle ScholarPubMed
Mitchell, LG, Andrew, M, Hanna, K, et al. A prospective cohort study determining the prevalence of thrombotic events in children with acute lymphoblastic leukemia and a central venous line who are treated with l-asparaginase: results of the Prophylactic Antithrombin Replacement in Kids with Acute Lymphoblastic Leukemia Treated with Asparaginase (PARKAA) Study. Cancer 2003;97:508–516.CrossRefGoogle Scholar
Abbott, LS, Deevska, M, Fernandez, CV, et al. The impact of prophylactic fresh-frozen plasma and cryoprecipitate on the incidence of central nervous system thrombosis and hemorrhage in children with acute lymphoblastic leukemia receiving asparaginase. Blood 2009;114:5146–5151.CrossRefGoogle ScholarPubMed
Lloyd, NS, Douketis, JD, Moinuddin, I, Lim, W, Crowther, MA. Anticoagulant prophylaxis to prevent asymptomatic deep vein thrombosis in hospitalized medical patients: a systematic review and meta-analysis. J Thromb Haemost 2008;6:405–414.CrossRefGoogle ScholarPubMed
Bowen, A, Carapetis, J. Advances in the diagnosis and management of central venous access device infections in children. Adv Exp Med Biol 2011;697:91–106.CrossRefGoogle ScholarPubMed
Baskin, JL, Pui, CH, Reiss, U, et al. Management of occlusion and thrombosis associated with long-term indwelling central venous catheters. Lancet 2009;374:159–169.CrossRefGoogle ScholarPubMed
Fratino, G, Molinari, AC, Parodi, S, et al. Central venous catheter-related complications in children with oncological/hematological diseases: an observational study of 418 devices. Ann Oncol 2005;16:648–654.CrossRefGoogle ScholarPubMed
Skinner, R, Koller, K, McIntosh, N, McCarthy, A, Pizer, B. Prevention and management of central venous catheter occlusion and thrombosis in children with cancer. Pediatr Blood Cancer 2008;50:826–830.CrossRefGoogle ScholarPubMed
de Mendonca, RM, de Araújo, M, Levy, CE, et al. Prospective evaluation of HSV, Candida spp., and oral bacteria on the severity of oral mucositis in pediatric acute lymphoblastic leukemia. Support Care Cancer 2011;Epub ahead of print (PMID: 21597938).
Ramirez-Amador, V, Anaya-Saavedra, G, Crespo-Solis, E, et al. Prospective evaluation of oral mucositis in acute leukemia patients receiving chemotherapy. Support Care Cancer 2010;18:639–646.CrossRefGoogle ScholarPubMed
Pastore, D, Specchia, G, Mele, G, et al. Typhlitis complicating induction therapy in adult acute myeloid leukemia. Leuk Lymphoma 2002;43:911–914.CrossRefGoogle ScholarPubMed
El-Matary, W, Soleimani, M, Spady, D, Belletrutti, M. Typhlitis in children with malignancy: a single center experience. J Pediatr Hematol Oncol 2011;33:e98–e100.CrossRefGoogle ScholarPubMed
Arnaout, MK, Radomski, KM, Srivastava, DK, et al. Treatment of childhood acute myelogenous leukemia with an intensive regimen (AML-87) that individualizes etoposide and cytarabine dosages: short- and long-term effects. Leukemia 2000;14:1736–1742.CrossRefGoogle ScholarPubMed
Woods, WG, Kobrinsky, N, Buckley, JD, et al. Timed-sequential induction therapy improves postremission outcome in acute myeloid leukemia: a report from the Children's Cancer Group. Blood 1996;87:4979–4989.Google ScholarPubMed
Creutzig, U, Ritter, J, Zimmermann, M, et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia 2001;15:348–354.CrossRefGoogle ScholarPubMed
Hutchinson, RJ, Gaynon, PS, Sather, H, et al. Intensification of therapy for children with lower-risk acute lymphoblastic leukemia: long-term follow-up of patients treated on Children's Cancer Group Trial 1881. J Clin Oncol 2003;21: 1790–1797.CrossRefGoogle ScholarPubMed
Rask, C, Albertioni, F, Schroder, H, Peterson, C. Oral mucositis in children with acute lymphoblastic leukemia after high-dose methotrexate treatment without delayed elimination of methotrexate: relation to pharmacokinetic parameters of methotrexate. Pediatr Hematol Oncol 1996;13:359–367.CrossRefGoogle ScholarPubMed
Rask, C, Albertioni, F, Bentzen, SM, Schroeder, H, Peterson, C. Clinical and pharmacokinetic risk factors for high-dose methotrexate-induced toxicity in children with acute lymphoblastic leukemia: a logistic regression analysis. Acta Oncol 1998;37:277–284.CrossRefGoogle ScholarPubMed
Nachman, JB, Sather, HN, Sensel, MG, et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 1998;338:1663–1671.CrossRefGoogle Scholar
Moe, PJ. Methotrexate and oral mucositis. Pediatr Hematol Oncol 1996;13:313–314.CrossRefGoogle ScholarPubMed
Albertioni, F, Rask, C, Schroeder, H, Peterson, C. Monitoring of methotrexate and 7-hydroxymethotrexate in saliva from children with acute lymphoblastic leukemia receiving high-dose consolidation treatment: relation to oral mucositis. Anticancer Drugs 1997;8:119–124.CrossRefGoogle ScholarPubMed
Montecucco, C, Caporali, R, Rossi, S, Porta, C. Allopurinol mouthwashes in methotrexate-induced stomatitis. Arthritis Rheum 1994;37:777–778.CrossRefGoogle ScholarPubMed
Relling, MV, Fairclough, D, Ayers, D, et al. Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 1994;12:1667–1672.CrossRefGoogle ScholarPubMed
Dodd, MJ, Larson, PJ, Dibble, SL, et al. Randomized clinical trial of chlorhexidine versus placebo for prevention of oral mucositis in patients receiving chemotherapy. Oncol Nurs Forum 1996;23:921–927.Google ScholarPubMed
Wymenga, AN, van der Graaf, WT, Hofstra, LS, et al. Phase I study of transforming growth factor-beta3 mouthwashes for prevention of chemotherapy-induced mucositis. Clin Cancer Res 1999;5:1363–1368.Google ScholarPubMed
Mantovani, G, Massa, E, Astara, G, et al. Phase II clinical trial of local use of GM-CSF for prevention and treatment of chemotherapy- and concomitant chemoradiotherapy-induced severe oral mucositis in advanced head and neck cancer patients: an evaluation of effectiveness, safety and costs. Oncol Rep 2003;10:197–206.Google ScholarPubMed
Giles, FJ, Miller, CB, Hurd, DD, et al. A phase III, randomized, double-blind, placebo-controlled, multinational trial of iseganan for the prevention of oral mucositis in patients receiving stomatotoxic chemotherapy (PROMPT-CT trial). Leuk Lymphoma 2003;44:1165–1172.CrossRefGoogle Scholar
Awidi, A, Homsi, U, Kakail, RI, et al. Double-blind, placebo-controlled cross-over study of oral pilocarpine for the prevention of chemotherapy-induced oral mucositis in adult patients with cancer. Eur J Cancer 2001;37:2010–2014.CrossRefGoogle ScholarPubMed
Cheng, KK, Molassiotis, A, Chang, AM, Wai, WC, Cheung, SS. Evaluation of an oral care protocol intervention in the prevention of chemotherapy-induced oral mucositis in paediatric cancer patients. Eur J Cancer 2001;37:2056–2063.CrossRefGoogle ScholarPubMed
Bensadoun, RJ, Magne, N, Marcy, PY, Demard, F. Chemotherapy- and radiotherapy-induced mucositis in head and neck cancer patients: new trends in pathophysiology, prevention and treatment. Eur Arch Otorhinolaryngol 2001;258: 481–487.CrossRefGoogle ScholarPubMed
Foncuberta, MC, Cagnoni, PJ, Brandts, CH, et al. Topical transforming growth factor-beta3 in the prevention or alleviation of chemotherapy-induced oral mucositis in patients with lymphomas or solid tumors. J Immunother 2001;24:384–388.CrossRefGoogle ScholarPubMed
Knox, JJ, Puodziunas, AL, Feld, R. Chemotherapy-induced oral mucositis. Prevention and management. Drugs Aging 2000;17:257–267.CrossRefGoogle ScholarPubMed
Clarkson, JE, Worthington, HV, Eden, OB. Prevention of oral mucositis or oral candidiasis for patients with cancer receiving chemotherapy (excluding head and neck cancer). Cochrane Database Syst Rev 2000;(2):CD000978.
Worthington, HV, Clarkson, JE. Prevention of oral mucositis and oral candidiasis for patients with cancer treated with chemotherapy: Cochrane Systematic Review. J Dent Educ 2002;66:903–911.Google ScholarPubMed
Elad, S, Luboshitz-Shon, N, Cohen, T, et al. A randomized controlled trial of visible-light therapy for the prevention of oral mucositis. Oral Oncol 2011;47:125–130.CrossRefGoogle ScholarPubMed
Prisciandaro, LD, Geier, MS, Butler, RN, Cummins, AG, Howarth, GS. Evidence supporting the use of probiotics for the prevention and treatment of chemotherapy-induced intestinal mucositis. Crit Rev Food Sci Nutr 2011;51:239–247.CrossRefGoogle ScholarPubMed
Noe, JE. l-Glutamine use in the treatment and prevention of mucositis and cachexia: a naturopathic perspective. Integr Cancer Ther 2009;8:409–415.CrossRefGoogle ScholarPubMed
Bensinger, W, Schubert, M, Ang, KK, et al. NCCN Task Force Report prevention and management of mucositis in cancer care. J Natl Compr Canc Netw 2008;6(Suppl 1):S1–S21.Google ScholarPubMed
Gori, E, Arpinati, M, Bonifazi, F, et al. Cryotherapy in the prevention of oral mucositis in patients receiving low-dose methotrexate following myeloablative allogeneic stem cell transplantation: a prospective randomized study of the Gruppo Italiano Trapianto di Midollo Osseo nurses group. Bone Marrow Transplant 2007;39:347–352.CrossRefGoogle ScholarPubMed
McDonnell, AM, Lenz, KL. Palifermin: role in the prevention of chemotherapy- and radiation-induced mucositis. Ann Pharmacother 2007;41:86–94.CrossRefGoogle ScholarPubMed
Mullassery, D, Bader, A, Battersby, AJ, et al. Diagnosis, incidence, and outcomes of suspected typhlitis in oncology patients: experience in a tertiary pediatric surgical center in the United Kingdom. J Pediatr Surg 2009;44:381–385.CrossRefGoogle Scholar
McCarville, MB. Evaluation of typhlitis in children: CT versus US. Pediatr Radiol 2006;36:890–891.CrossRefGoogle ScholarPubMed
McCarville, MB, Adelman, CS, Li, C, et al. Typhlitis in childhood cancer. Cancer 2005;104:380–387.CrossRefGoogle ScholarPubMed
Segal, I, Rassekh, SR, Bond, MC, Senger, C, Schreiber, RA. Abnormal liver transaminases and conjugated hyperbilirubinemia at presentation of acute lymphoblastic leukemia. Pediatr Blood Cancer 2010;55:434–439.CrossRefGoogle ScholarPubMed
Berkovitch, M, Matsui, D, Zipursky, A, et al. Hepatotoxicity of 6-mercaptopurine in childhood acute lymphocytic leukemia: pharmacokinetic characteristics. Med Pediatr Oncol 1996;26:85–89.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
King, PD, Perry, MC. Hepatotoxicity of chemotherapy. Oncologist 2001;6:162–176.CrossRefGoogle ScholarPubMed
Goodman, ZD. Drug hepatotoxicity. Clin Liver Dis 2002;6:381–397.CrossRefGoogle ScholarPubMed
Lee, WM. Drug-induced hepatotoxicity. N Engl J Med 2003;349:474–485.CrossRefGoogle ScholarPubMed
Evans, WE, Relling, MV, Rodman, JH, et al. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia. N Engl J Med 1998;338:499–505.CrossRefGoogle ScholarPubMed
Weber, BL, Tanyer, G, Poplack, DG, et al. Transient acute hepatotoxicity of high-dose methotrexate therapy during childhood. NCI Monogr 1987:207–212.
Farrow, AC, Buchanan, GR, Zwiener, RJ, Bowman, WP, Winick, NJ. Serum aminotransferase elevation during and following treatment of childhood acute lymphoblastic leukemia. J Clin Oncol 1997;15:1560–1566.CrossRefGoogle ScholarPubMed
Schmiegelow, K, Pulczynska, M. Prognostic significance of hepatotoxicity during maintenance chemotherapy for childhood acute lymphoblastic leukaemia. Br J Cancer 1990;61:767–772.CrossRefGoogle ScholarPubMed
De Bruyne, R, Portmann, B, Samyn, M, et al. Chronic liver disease related to 6-thioguanine in children with acute lymphoblastic leukaemia. J Hepatol 2006;44:407–410.CrossRefGoogle ScholarPubMed
Garrington, T, Bensard, D, Ingram, JD, Silliman, CC. Successful management with octreotide of a child with l-asparaginase induced hemorrhagic pancreatitis. Med Pediatr Oncol 1998;30:106–109.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Benifla, M, Weizman, Z. Acute pancreatitis in childhood: analysis of literature data. J Clin Gastroenterol 2003;37:169–172.CrossRefGoogle ScholarPubMed
Sahu, S, Saika, S, Pai, SK, Advani, SH. l-Asparaginase (Leunase) induced pancreatitis in childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol 1998;15:533–538.CrossRefGoogle ScholarPubMed
Flores-Calderon, J, Exiga-Gonzalez, E, Moran-Villota, S, Martin-Trejo, J, Yamamoto-Nagano, A. Acute pancreatitis in children with acute lymphoblastic leukemia treated with l-asparaginase. J Pediatr Hematol Oncol 2009;31:790–793.CrossRefGoogle ScholarPubMed
Kearney, SL, Dahlberg, SE, Levy, DE, et al. Clinical course and outcome in children with acute lymphoblastic leukemia and asparaginase-associated pancreatitis. Pediatr Blood Cancer 2009;53:162–167.CrossRefGoogle ScholarPubMed
Treepongkaruna, S, Thongpak, N, Pakakasama, S, et al. Acute pancreatitis in children with acute lymphoblastic leukemia after chemotherapy. J Pediatr Hematol Oncol 2009;31:812–815.CrossRefGoogle ScholarPubMed
Abou, CL, Ghosn, M, Ghayad, E, Honein, K. A case of pancreatitis associated with all-trans-retinoic acid therapy in acute promyelocytic leukemia. Hematol J 2001;2:406–407.CrossRefGoogle Scholar
Willert, JR, Dahl, GV, Marina, NM. Recurrent mercaptopurine-induced acute pancreatitis: a rare complication of chemotherapy for acute lymphoblastic leukemia in children. Med Pediatr Oncol 2002;38: 73–74.CrossRefGoogle ScholarPubMed
McGrail, LH, Sehn, LH, Weiss, RB, et al. Pancreatitis during therapy of acute myeloid leukemia: cytarabine related? Ann Oncol 1999;10:1373–1376.CrossRefGoogle ScholarPubMed
Steinherz, PG. Transient, severe hyperlipidemia in patients with acute lymphoblastic leukemia treated with prednisone and asparaginase. Cancer 1994;74:3234–3239.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Haskell, CM, Canellos, GP, Leventhal, BG, et al. l-Asparaginase: therapeutic and toxic effects in patients with neoplastic disease. N Engl J Med 1969;281:1028–1034.CrossRefGoogle ScholarPubMed
Bostrom, BC, Sensel, MR, Sather, HN, et al. Dexamethasone versus prednisone and daily oral versus weekly intravenous mercaptopurine for patients with standard-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2003;101:3809–3817.CrossRefGoogle ScholarPubMed
Lange, BJ, Bostrom, BC, Cherlow, JM, et al. Double-delayed intensification improves event-free survival for children with intermediate-risk acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 2002;99:825–833.CrossRefGoogle ScholarPubMed
Karsenti, D, Viguier, J, Bourlier, P, et al. Enteral nutrition during acute pancreatitis: feasibility study of a self-propeeling spiral distal end jejunal tube. Gastroenterol Clin Biol 2003;27:614–617.Google ScholarPubMed
Al Omran, M, Groof, A, Wilke, D. Enteral versus parenteral nutrition for acute pancreatitis. Cochrane Database Syst Rev 2003;(1):CD002837.
McClave, SA. Nutritional support in acute pancreatitis. Nestle Nutr Workshop Ser Clin Perform Program 2003;8:207–215.CrossRefGoogle ScholarPubMed
Zhao, G, Wang, CY, Wang, F, Xiong, JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol 2003;9:2105–2108.CrossRefGoogle ScholarPubMed
Suzuki, M, Takata, O, Sakaguchi, S, et al. Retherapy using l-asparaginase with octreotide in a patient recovering from l-asparaginase-induced pancreatitis. Exp Hematol 2008;36:253–254.CrossRefGoogle Scholar
Spraker, HL, Spyridis, GP, Pui, CH, Howard, SC. Conservative management of pancreatic pseudocysts in children with acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2009;31:957–959.CrossRefGoogle ScholarPubMed
Ranson, JH, Rifkind, KM, Roses, DF, et al. Prognostic signs and the role of operative management in acute pancreatitis. Surg Gynecol Obstet 1974;139:69–81.Google ScholarPubMed
Halonen, KI, Leppaniemi, AK, Lundin, JE, et al. Predicting fatal outcome in the early phase of severe acute pancreatitis by using novel prognostic models. Pancreatology 2003;3:309–315.CrossRefGoogle ScholarPubMed
Blamey, SL, Imrie, CW, O'Neill, J, Gilmour, WH, Carter, DC. Prognostic factors in acute pancreatitis. Gut 1984;25:1340–1346.CrossRefGoogle ScholarPubMed
Kamps, WA, Bokkerink, JP, Hakvoort-Cammel, FGAJ, et al. BFM oriented treatment for children with acute lymphoblastic leukemia without cranial irradiation and treatment reduction for standard risk patients; results of DCLSG protocol ALL-8 (1991–1996). Leukemia 2002;16:1099–1111.CrossRefGoogle Scholar
Clarke, M, Gaynon, P, Hann, I, et al. CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. J Clin Oncol 2003;21:1798–1809.CrossRefGoogle Scholar
Parasole, R, Petruzziello, F, Menna, G, et al. Central nervous system complications during treatment of acute lymphoblastic leukemia in a single pediatric institution. Leuk Lymphoma 2010;51:1063–1071.CrossRefGoogle Scholar
Brennan, RC, Helton, KJ, Pei, D, et al. Spinal epidural lipomatosis in children with hematologic malignancies. Ann Hematol 2011;90:1067–1074.CrossRefGoogle ScholarPubMed
Laningham, FH, Kun, LE, Reddick, WE, et al. Childhood central nervous system leukemia: historical perspectives, current therapy, and acute neurological sequelae. Neuroradiology 2007;49:873–888.CrossRefGoogle ScholarPubMed
Inaba, H, Khan, RB, Laningham, FH, et al. Clinical and radiological characteristics of methotrexate-induced acute encephalopathy in pediatric patients with cancer. Ann Oncol 2008;19:178–184.CrossRefGoogle ScholarPubMed
Rao, RD, Swanson, JW, Dejesus, RS, Hunt, CH, Tefferi, A. Methotrexate induced seizures associated with acute reversible magnetic resonance imaging (MRI) changes in a patient with acute lymphoblastic leukemia. Leuk Lymphoma 2002;43:1333–1336.CrossRefGoogle Scholar
Kishi, S, Griener, J, Cheng, C, et al. Homocysteine, pharmacogenetics, and neurotoxicity in children with leukemia. J Clin Oncol 2003;21:3084–3091.CrossRefGoogle ScholarPubMed
Demopoulos, A, DeAngelis, LM. Neurologic complications of leukemia. Curr Opin Neurol 2002;15:691–699.CrossRefGoogle ScholarPubMed
Spencer, MD. Leukoencephalopathy after CNS prophylaxis for acute lymphoblastic leukaemia. Pediatr Rehabil 1998;2:33–39.CrossRefGoogle ScholarPubMed
Relling, MV, Pui, CH, Sandlund, JT, et al. Adverse effect of anticonvulsants on efficacy of chemotherapy for acute lymphoblastic leukaemia. Lancet 2000;356:285–290.CrossRefGoogle ScholarPubMed
Baker, DK, Relling, MV, Pui, CH, et al. Increased teniposide clearance with concomitant anticonvulsant therapy. J Clin Oncol 1992;10:311–315.CrossRefGoogle ScholarPubMed
Khan, RB, Hunt, DL, Thompson, SJ. Gabapentin to control seizures in children undergoing cancer treatment. J Child Neurol 2004;19:97–101.CrossRefGoogle ScholarPubMed
Reddick, WE, Glass, JO, Langston, JW, Helton, KJ. Quantitative MRI assessment of leukoencephalopathy. Magn Reson Med 2002;47:912–920.CrossRefGoogle ScholarPubMed
Henderson, RD, Rajah, T, Nicol, AJ, Read, SJ. Posterior leukoencephalopathy following intrathecal chemotherapy with MRA-documented vasospasm. Neurology 2003;60:326–328.CrossRefGoogle ScholarPubMed
Cohen, Y, Lossos, A, Polliack, A. Neurotoxicity with leukoencephalopathy after a single intravenous high dose of methotrexate in a patient with lymphoma. Acta Haematol 2002;107:185–186.CrossRefGoogle Scholar
Vaughn, DJ, Jarvik, JG, Hackney, D, Peters, S, Stadtmauer, EA. High-dose cytarabine neurotoxicity: MR findings during the acute phase. AJNR Am J Neuroradiol 1993;14:1014–1016.Google ScholarPubMed
Schrappe, M, Beck, J, Brandeis, WE, et al. [Treatment of acute lymphoblastic leukemia in childhood and adolescence: results of the multicenter therapy study ALL-BFM 81.]Klin Padiatr 1987;199:133–150.CrossRefGoogle Scholar
Riehm, H, Reiter, A, Schrappe, M, et al. Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin Padiatr 1987;199:151–160.CrossRefGoogle Scholar
Janka, GE, Winkler, K, Jurgens, H, et al. Acute lymphoblastic leukemia in childhood: the COALL studies. Klin Padiatr 1986;198:171–177.CrossRefGoogle ScholarPubMed
Hertzberg, BS, Kliewer, MA, DeLong, DM, et al. Sonographic assessment of lower limb vein diameters: implications for the diagnosis and characterization of deep venous thrombosis. AJR Am J Roentgenol 1997;168: 1253–1257.CrossRefGoogle ScholarPubMed
Reddick, WE, White, HA, Glass, JO, et al. Developmental model relating white matter volume to neurocognitive deficits in pediatric brain tumor survivors. Cancer 2003;97:2512–2519.CrossRefGoogle ScholarPubMed
Baytan, B, Ozdemir, O, Demirkaya, M, Evim, MS, Gunes, AM. Reversible posterior leukoencephalopathy induced by cancer chemotherapy. Pediatr Neurol 2010;43:197–201.CrossRefGoogle ScholarPubMed
Saito, B, Nakamaki, T, Nakashima, H, et al. Reversible posterior leukoencephalopathy syndrome after repeat intermediate-dose cytarabine chemotherapy in a patient with acute myeloid leukemia. Am J Hematol 2007;82:304–306.CrossRefGoogle Scholar
de Laat, P, Te Winkel, ML, Devos, AS, et al. Posterior reversible encephalopathy syndrome in childhood cancer. Ann Oncol 2011;22:472–478.CrossRefGoogle ScholarPubMed
Feske, SK. Posterior reversible encephalopathy syndrome: a review. Semin Neurol 2011;31:202–215.CrossRefGoogle ScholarPubMed
Panis, B, Vlaar, AM, van Well, GT, et al. Posterior reversible encephalopathy syndrome in paediatric leukaemia. Eur J Paediatr Neurol 2010;14:539–545.CrossRefGoogle ScholarPubMed
Lucchini, G, Grioni, D, Colombini, A, et al. Encephalopathy syndrome in children with hemato-oncological disorders is not always posterior and reversible. Pediatr Blood Cancer 2008;51:629–633.CrossRefGoogle Scholar
Morris, EB, Laningham, FH, Sandlund, JT, Khan, RB. Posterior reversible encephalopathy syndrome in children with cancer. Pediatr Blood Cancer 2007;48:152–159.CrossRefGoogle ScholarPubMed
Greenwood, MJ, Dodds, AJ, Garricik, R, Rodriguez, M. Posterior leukoencephalopathy in association with the tumour lysis syndrome in acute lymphoblastic leukaemia: a case with clinicopathological correlation. Leuk Lymphoma 2003;44:719–721.CrossRefGoogle ScholarPubMed
Belgaumi, AF, Al, Bakrah M, Al, Mahr M, et al. Dexamethasone-associated toxicity during induction chemotherapy for childhood acute lymphoblastic leukemia is augmented by concurrent use of daunomycin. Cancer 2003;97:2898–2903.CrossRefGoogle ScholarPubMed
Watterson, J, Toogood, I, Nieder, M, et al. Excessive spinal cord toxicity from intensive central nervous system-directed therapies. Cancer 1994;74:3034–3041.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Bay, A, Oner, AF, Etlik, O, Yilmaz, C, Caksen, H. Myelopathy due to intrathecal chemotherapy: report of six cases. J Pediatr Hematol Oncol 2005;27:270–272.CrossRefGoogle ScholarPubMed
Levien, MG. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. Clin Pediatr 2002;41:63–64.Google ScholarPubMed
Gupta, D, Gaiha, M, Siddaraju, N, Daga, MK, Anuradha, S. Chronic myeloid leukemia presenting with avascular necrosis of femur head. J Assoc Physicians India 2003;51:214–215.Google ScholarPubMed
Kraemer, M, Weissinger, F, Kraus, R, et al. Aseptic necrosis of both femoral heads as first symptom of chronic myelogenous leukemia. Ann Hematol 2003;82:44–46.Google ScholarPubMed
Zalavras, CG, Vartholomatos, G, Dokou, E, Malizos, KN. Factor V Leiden and prothrombin gene mutations in femoral head osteonecrosis. Thromb Haemost 2002;87:1079–1080.CrossRefGoogle ScholarPubMed
Zalavras, CG, Malizos, KN, Dokou, E, Vartholomatos, G. The 677C→T mutation of the methylene-tetrahydrofolate reductase gene in the pathogenesis of osteonecrosis of the femoral head. Haematologica 2002;87: 111–112.Google ScholarPubMed
Gangji, V, Hauzeur, JP, Schoutens, A, et al. Abnormalities in the replicative capacity of osteoblastic cells in the proximal femur of patients with osteonecrosis of the femoral head. J Rheumatol 2003;30:348–351.Google ScholarPubMed
Jones, LC, Mont, MA, Le, TB, et al. Procoagulants and osteonecrosis. J Rheumatol 2003;30:783.Google ScholarPubMed
Giri, N, Nair, CN, Pai, SK, et al. Avascular necrosis of bone in acute lymphoblastic leukemia. Am J Pediatr Hematol Oncol 1987;9:143–145.CrossRefGoogle ScholarPubMed
Bomelburg, T, von Lengerke, HJ, Ritter, J. Incidence of aseptic osteonecrosis following the therapy of childhood leukemia. Hamatol Bluttransfus 1990;33:577–579.Google ScholarPubMed
Strauss, AJ, Su, JT, Dalton, VM, et al. Bony morbidity in children treated for acute lymphoblastic leukemia. J Clin Oncol 2001;19:3066–3072.CrossRefGoogle ScholarPubMed
Steinberg, ME, Hayken, GD, Steinberg, DR. A quantitative system for staging avascular necrosis. J Bone Joint Surg Br 1995;77:34–41.CrossRefGoogle ScholarPubMed
Ficat, RP. Idiopathic bone necrosis of the femoral head. Early diagnosis and treatment. J Bone Joint Surg [Br] 1985;67:3–9.CrossRefGoogle ScholarPubMed
Murphy, RG, Greenberg, ML. Osteonecrosis in pediatric patients with acute lymphoblastic leukemia. Cancer 1990;65:1717–1721.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Mattano, LA, Jr., Sather, HN, Trigg, ME, Nachman, JB. Osteonecrosis as a complication of treating acute lymphoblastic leukemia in children: a report from the Children's Cancer Group. J Clin Oncol 2000;18:3262–3272.CrossRefGoogle ScholarPubMed
Hanif, I, Mahmoud, H, Pui, CH. Avascular femoral head necrosis in pediatric cancer patients. Med Pediatr Oncol 1993;21:655–660.CrossRefGoogle ScholarPubMed
Jones, DN. Multifocal osteonecrosis following chemotherapy and short-term corticosteroid therapy in a patient with small-cell bronchogenic carcinoma. J Nucl Med 1994;35:1347–1350.Google Scholar
Geusens, P, Dequeker, J. Locomotor side-effects of corticosteroid. Baillieres Clin Rheumatol 1991;5:99–118.CrossRefGoogle Scholar
Ribeiro, RC, Fletcher, BD, Kennedy, W, et al. Magnetic resonance imaging detection of avascular necrosis of the bone in children receiving intensive prednisone therapy for acute lymphoblastic leukemia or non-Hodgkin lymphoma. Leukemia 2001;15:891–897.CrossRefGoogle ScholarPubMed
Ojala, AE, Paakko, E, Lanning, FP, Lanning, M. Osteonecrosis during the treatment of childhood acute lymphoblastic leukemia: a prospective MRI study. Med Pediatr Oncol 1999;32:11–17.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Mazieres, B, Marin, F, Chiron, P, et al. Influence of the volume of osteonecrosis on the outcome of core decompression of the femoral head. Ann Rheum Dis 1997;56: 747–750.CrossRefGoogle ScholarPubMed
Koo, KH, Kim, R. Quantifying the extent of osteonecrosis of the femoral head. A new method using MRI. J Bone Joint Surg Br 1995;77:875–880.CrossRefGoogle ScholarPubMed
Koo, KH, Kim, R, Ko, GH, et al. Preventing collapse in early osteonecrosis of the femoral head. A randomised clinical trial of core decompression. J Bone Joint Surg Br 1995;77:870–874.CrossRefGoogle ScholarPubMed
Kim, YH, Oh, SH, Kim, JS, Koo, KH. Contemporary total hip arthroplasty with and without cement in patients with osteonecrosis of the femoral head. J Bone Joint Surg Am 2003;85A: 675–681.CrossRefGoogle ScholarPubMed
Lieberman, JR, Berry, DJ, Mont, MA, et al. Osteonecrosis of the hip: management in the 21st century. Instr Course Lect 2003;52:337–355.Google ScholarPubMed
Plakseychuk, AY, Kim, SY, Park, BC, et al. Vascularized compared with nonvascularized fibular grafting for the treatment of osteonecrosis of the femoral head. J Bone Joint Surg Am 2003;85A:589–596.CrossRefGoogle ScholarPubMed
Arlet, J. Nontraumatic avascular necrosis of the femoral head. Past, present, and future. Clin Orthop 1992:12–21.
Atkinson, K, Cohen, M, Biggs, J. Avascular necrosis of the femoral head secondary to corticosteroid therapy for graft-versus-host disease after marrow transplantation: effective therapy with hip arthroplasty. Bone Marrow Transplant 1987;2:421–426.Google ScholarPubMed
Chang, CC, Greenspan, A, Gershwin, ME. Osteonecrosis: current perspectives on pathogenesis and treatment. Semin Arthritis Rheum 1993;23:47–69.CrossRefGoogle ScholarPubMed
Fisher, DE, Bickel, WH. Corticosteroid-induced avascular necrosis. A clinical study of seventy-seven patients. J Bone Joint Surg 1971;53:859–873.CrossRefGoogle ScholarPubMed
Bradway, JK, Morrey, BF. The natural history of the silent hip in bilateral atraumatic osteonecrosis. J Arthroplasty 1993;8:383–387.CrossRefGoogle ScholarPubMed
Jacobs, B. Epidemiology of traumatic and nontraumatic osteonecrosis. Clin Orthop 1978:51–67.
Ohzono, K, Saito, M, Sugano, N, Takaoka, K, Ono, K. The fate of nontraumatic avascular necrosis of the femoral head. A radiologic classification to formulate prognosis. Clin Orthop 1992:73–78.
Bozic, KJ, Zurakowski, D, Thornhill, TS. Survivorship analysis of hips treated with core decompression for nontraumatic osteonecrosis of the femoral head. J Bone Joint Surg Am 1999;81:200–209.CrossRefGoogle ScholarPubMed
Houpt, JB, Pritzker, KP, Alpert, B, Greyson, ND, Gross, AE. Natural history of spontaneous osteonecrosis of the knee (SONK): a review. Semin Arthritis Rheum 1983;13:212–227.CrossRefGoogle ScholarPubMed
Mattano, LA., Sather, H, La, MK, Nachman, JB, Seibel, NL. Modified dexamethasone reduces the incidence of treatment-related osteonecrosis in children and adolescents with higher risk acute lymphoblastic leukemia: a report of CCG-1961. Blood 2003;102: 221a.Google Scholar
Howard, SC, Pui, CH. Endocrine complications in pediatric patients with acute lymphoblastic leukemia. Blood Rev 2002;16:225–243.CrossRefGoogle ScholarPubMed
Oeffinger, KC, Mertens, AC, Sklar, CA, et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol 2003;21:1359–1365.CrossRefGoogle ScholarPubMed
Mayer, EI, Reuter, M, Dopfer, RE, Ranke, MB. Energy expenditure, energy intake and prevalence of obesity after therapy for acute lymphoblastic leukemia during childhood. Horm Res 2000;53:193–199.Google ScholarPubMed
Sathiapalan, RK, Al Nasser, A, El Solh, H, Al Mohsen, I, Al Jumaah, S. Vincristine–itraconazole interaction: cause for increasing concern. J Pediatr Hematol Oncol 2002;24:591.CrossRefGoogle ScholarPubMed
Kamaluddin, M, McNally, P, Breatnach, F, et al. Potentiation of vincristine toxicity by itraconazole in children with lymphoid malignancies. Acta Paediatr 2001;90:1204–1207.CrossRefGoogle ScholarPubMed
Jeng, MR, Feusner, J. Itraconazole-enhanced vincristine neurotoxicity in a child with acute lymphoblastic leukemia. Pediatr Hematol Oncol 2001;18:137–142.CrossRefGoogle Scholar
Bohme, A, Ganser, A, Hoelzer, D. Aggravation of vincristine-induced neurotoxicity by itraconazole in the treatment of adult ALL. Ann Hematol 1995;71:311–312.CrossRefGoogle ScholarPubMed
Demura, R. The role of antidiuretic hormone in hyponatremia in adrenal insufficiency: is the guideline for the diagnosis of syndrome of inappropriate secretion of the antidiuretic hormone appropriate? Intern Med 1999;38:382–383.CrossRefGoogle Scholar
Kamoi, K, Tamura, T, Tanaka, K, Ishibashi, M, Yamaji, T. Hyponatremia and osmoregulation of thirst and vasopressin secretion in patients with adrenal insufficiency. J Clin Endocrinol Metab 1993;77:1584–1588.Google ScholarPubMed
Spital, A. Hyponatremia in adrenal insufficiency: review of pathogenetic mechanisms. South Med J 1982;75:581–585.CrossRefGoogle ScholarPubMed
Krutisch, G, Valentin, A. Comatose state due to severe hyponatremia in a patient with the syndrome of inappropriate antidiuretic hormone secretion. Intensive Care Med 2001;27:944.CrossRefGoogle Scholar
Kloster, R, Borresen, HC, Hoff-Olsen, P. Sudden death in two patients with epilepsy and the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Seizure 1998;7:419–420.CrossRefGoogle Scholar
Haycock, GB. The syndrome of inappropriate secretion of antidiuretic hormone. Pediatr Nephrol 1995;9:375–381.CrossRefGoogle ScholarPubMed
Moritz, ML, Ayus, JC. New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children. Pediatr Nephrol 2010;25:1225–1238.CrossRefGoogle ScholarPubMed
Moritz, ML, Ayus, JC. 100 cc 3% sodium chloride bolus: a novel treatment for hyponatremic encephalopathy. Metab Brain Dis 2010;25:91–96.CrossRefGoogle ScholarPubMed
Omari, A, Kormas, N, Field, M. Delayed onset of central pontine myelinolysis despite appropriate correction of hyponatraemia. Intern Med J 2002;32:273–274.CrossRefGoogle ScholarPubMed
Lampl, C, Yazdi, K. Central pontine myelinolysis. Eur Neurol 2002;47:3–10.CrossRefGoogle ScholarPubMed
Stuart, MJ, Cuaso, C, Miller, M, Oski, FA. Syndrome of recurrent increased secretion of antidiuretic hormone following multiple doses of vincristine. Blood 1975;45:315–320.Google ScholarPubMed
Carpentieri, U, Balch, MT. Hyperglycemia associated with the therapeutic use of l-asparaginase: possible role of insulin receptors. J Pediatr 1978;93:775–778.CrossRefGoogle ScholarPubMed
Gailani, S, Nussbaum, A, Onuma, T, Freeman, A. Diabetes in patients treated with asparaginase. Clin Pharmacol Ther 1971;12:487–490.CrossRefGoogle ScholarPubMed
Roberson, JR, Spraker, HL, Shelso, J, et al. Clinical consequences of hyperglycemia during remission induction therapy for pediatric acute lymphoblastic leukemia. Leukemia 2009;23:245–250.CrossRefGoogle ScholarPubMed
Cetin, M, Yetgin, S, Kara, A, et al. Hyperglycemia, ketoacidosis and other complications of l-asparaginase in children with acute lymphoblastic leukemia. J Med 1994;25:219–229.Google ScholarPubMed
Iyer, RS, Rao, SR, Pai, S, Advani, SH, Magrath, IT. l-Asparaginase related hyperglycemia. Indian J Cancer 1993;30:72–76.Google ScholarPubMed
Pui, CH, Burghen, GA, Bowman, WP, Aur, RJ. Risk factors for hyperglycemia in children with leukemia receiving l-asparaginase and prednisone. J Pediatr 1981;99:46–50.CrossRefGoogle ScholarPubMed
Ridgway, D, Neerhout, RC, Bleyer, A. Attenuation of asparaginase-induced hyperglycemia after substitution of the Erwinia carotovora for the Escherichia coli enzyme preparation. Cancer 1989;63:561–563.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Lavine, RL, DiCinto, DM. L-Asparaginase diabetes mellitus in rabbits: differing effects of two different schedules of l-asparaginase administration. Horm Metab Res 1984;16(Suppl 1):92–96.CrossRefGoogle ScholarPubMed
Silverman, LB, Gelber, RD, Dalton, VK, et al. Improved outcome for children with acute lymphoblastic leukemia: results of Dana-Farber Consortium Protocol 91-01. Blood 2001;97:1211–1218.CrossRefGoogle ScholarPubMed
Silverman, LB, Declerck, L, Gelber, RD, et al. Results of Dana-Farber Cancer Institute Consortium protocols for children with newly diagnosed acute lymphoblastic leukemia (1981–1995). Leukemia 2000;14:2247–2256.CrossRefGoogle Scholar
Harms, DO, Janka-Schaub, GE. Co-operative study group for childhood acute lymphoblastic leukemia (COALL): long-term follow-up of trials 82, 85, 89 and 92. Leukemia 2000;14:2234–2239.CrossRefGoogle Scholar
Ziino, O, Russo, D, Orlando, MA, et al. Symptomatic hypoglycemia in children receiving oral purine analogues for treatment of childhood acute lymphoblastic leukemia. Med Pediatr Oncol 2002;39:32–34.CrossRefGoogle ScholarPubMed
Halonen, P, Salo, MK, Makipernaa, A. Fasting hypoglycemia is common during maintenance therapy for childhood acute lymphoblastic leukemia. J Pediatr 2001;138:428–431.CrossRefGoogle ScholarPubMed
Trelinska, J, Fendler, W, Szadkowska, A, et al. Hypoglycemia and glycemic variability among children with acute lymphoblastic leukemia during maintenance therapy. Leuk Lymphoma 2011;52:1704–1710.CrossRefGoogle ScholarPubMed
Artavia-Loria, E, Chaussain, JL, Bougneres, PF, Job, JC. Frequency of hypoglycemia in children with adrenal insufficiency. Acta Endocrinol Suppl 1986;279:275–278.Google ScholarPubMed
Giona, F, Annino, L, Donato, P, Ermini, M. Gonadal, adrenal, androgen and thyroid functions in adults treated for acute lymphoblastic leukemia. Haematologica 1994;79:141–147.Google ScholarPubMed
Krasner, AS. Glucocorticoid-induced adrenal insufficiency. JAMA 1999;282:671–676.CrossRefGoogle ScholarPubMed
Rosmond, R, Chagnon, YC, Holm, G, et al. A glucocorticoid receptor gene marker is associated with abdominal obesity, leptin, and dysregulation of the hypothalamic–pituitary–adrenal axis. Obes Res 2000;8:211–218.CrossRefGoogle ScholarPubMed
Kuperman, H, Damiani, D, Chrousos, GP, et al. Evaluation of the hypothalamic–pituitary–adrenal axis in children with leukemia before and after 6 weeks of high-dose glucocorticoid therapy. J Clin Endocrinol Metab 2001;86:2993–2996.CrossRefGoogle ScholarPubMed
Felner, EI, Thompson, MT, Ratliff, AF, White, PC, Dickson, BA. Time course of recovery of adrenal function in children treated for leukemia. J Pediatr 2000;137:21–24.CrossRefGoogle ScholarPubMed
Petersen, KB, Muller, J, Rasmussen, M, Schmiegelow, K. Impaired adrenal function after glucocorticoid therapy in children with acute lymphoblastic leukemia. Med Pediatr Oncol 2003;41:110–114.CrossRefGoogle ScholarPubMed
Cooper, MS, Stewart, PM. Corticosteroid insufficiency in acutely ill patients. N Engl J Med 2003;348:727–734.CrossRefGoogle ScholarPubMed
August, GP. Treatment of adrenocortical insufficiency. Pediatr Rev 1997;18:59–62.CrossRefGoogle ScholarPubMed
Agwu, JC, Spoudeas, H, Hindmarsh, PC, Pringle, PJ, Brook, CG. Tests of adrenal insufficiency. Arch Dis Child 1999;80:330–333.CrossRefGoogle ScholarPubMed
Zaloga, GP. Sepsis-induced adrenal deficiency syndrome. Crit Care Med 2001;29:688–690.CrossRefGoogle ScholarPubMed
Zaloga, GP, Marik, P. Hypothalamic–pituitary–adrenal insufficiency. Crit Care Clin 2001;17:25–41.CrossRefGoogle ScholarPubMed
Leman, P.Addison's disease. Hydrocortisone should be started immediately adrenal insufficiency is considered. BMJ 1996;313:427.CrossRefGoogle ScholarPubMed
Graber, AL, Ney, RL, Nicholson, WE, Island, DP, Liddle, GW. Natural history of pituitary–adrenal recovery following long-term suppression with corticosteroids. J Clin Endocrinol Metab 1965;25:11–16.CrossRefGoogle ScholarPubMed
Coursin, DB, Wood, KE. Corticosteroid supplementation for adrenal insufficiency. JAMA 2002;287: 236–240.CrossRefGoogle ScholarPubMed
Jeffcoate, W.Assessment of corticosteroid replacement therapy in adults with adrenal insufficiency. Ann Clin Biochem 1999;36:151–157.CrossRefGoogle ScholarPubMed
Meacham, LR, Mazewski, C, Krawiecki, N. Mechanism of transient adrenal insufficiency with megestrol acetate treatment of cachexia in children with cancer. J Pediatr Hematol Oncol 2003;25:414–417.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×