Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-04T14:07:47.249Z Has data issue: false hasContentIssue false

32 - Infectious disease complications in leukemia

from Part IV - Complications and supportive care

Published online by Cambridge University Press:  01 July 2010

Jeremy A. Franklin
Affiliation:
Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Assistant Professor Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX, USA
Patricia M. Flynn
Affiliation:
Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Member, Department of Infectious Diseases, Arthur Ashe Chair in Pediatric AIDS Research, St. Jude Children's Research Hospital, Professor, Department of Pediatrics and Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Children with leukemia experience the common infections of childhood – such as upper respiratory tract infection, otitis media, and gastroenteritis – which are generally managed in the same manner as those occurring in the immunocompetent host. However, the immunocompromised status of many of these children leaves them susceptible to various opportunistic infections, which generally occur at times when the host defense mechanisms are at nadirs of efficiency. This chapter reviews the factors that contribute to infectious complications in patients with leukemia and suggests strategies for the prevention and management of these infections.

Defects in the host defense mechanisms associated with leukemia

Numerous factors contribute to the decreased efficacy of the host defense mechanisms in patients with leukemia. The malignancy itself and the therapeutic modalities necessary for a successful outcome can affect the physical barriers to infection, impair immune system functioning, disrupt cytokine mediators, and alter the normal microbiological flora. A major defense against infection is the integrity of the mucosal membranes and the integument, which act as biologic barriers against potential pathogens. Breaches in these barriers provide ready access for endogenous microbiological flora and other opportunistic pathogens. Venipuncture, catheter entry sites, bone marrow aspirates, mucosal ulcerations, and mucositis are common defects in these important barriers encountered in patients with leukemia.

A variety of deficiencies may occur in the immune system of patients with leukemia, including impaired humoral antibody responses, impaired cell-mediated immunity, quantitative and qualitative phagocytic defects, and the disruption of cytokine mediators.

Type
Chapter
Information
Childhood Leukemias , pp. 805 - 828
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kaplan, J. E., Masur, H., Holmes, K. K., et al.An overview of the 1999 US Public Health Service/Infectious Diseases Society of America guidelines for preventing opportunistic infections in human immunodeficiency virus-infected persons. Clin Infect Dis, 2000; 30: S15–28.CrossRefGoogle Scholar
Mera, J. R., Whimby, E., Elting, L., et al.Cytomegalovirus pneumonia in adult nontransplantation patients with cancer: review of 20 cases occurring from 1964 through 1990. Clin Infect Dis, 1996; 22: 1046–50.CrossRefGoogle ScholarPubMed
Knox, K. K., Pietryga, D., Harrington, D. J., et al.Progressive immunodeficiency and fatal pneumonitis associated with human herpesvirus 6 infection in an infant. Clin Infect Dis, 1995; 20: 406–13.CrossRefGoogle ScholarPubMed
Herbein, G., Strasswiminer, J., Altieri, M., et al.Longitudinal study of human herpesvirus 6 infection in organ transplant recipients. Clin Infect Dis, 1996; 22: 191–3.CrossRefGoogle ScholarPubMed
Okano, M. & Gross, T. G.A review of Epstein-Barr virus infection in patients with immunodeficiency disorders. Am J Med Sci, 2000; 319: 392–6.CrossRefGoogle ScholarPubMed
Feldman, S., Hughes, W. T., & Daniel, C. B.Varicella in children with cancer: seventy-seven cases. Pediatrics, 1975; 56: 388–97.Google ScholarPubMed
Feldman, S., & Lott, L.Varicella in children with cancer: impact of antiviral therapy and prophylaxis. Pediatrics, 1987; 80: 415–22.Google ScholarPubMed
Gnann, J. W. Jr.Varicella-zoster virus: atypical presentations and unusual complications. J Infect Dis, 2002; 186(Suppl. 1): S91–8.CrossRefGoogle ScholarPubMed
Laiskonis, A., Thune, T., Neldam, S., et al.Valacyclovir in the treatment of facial herpes simplex virus infection. J Infect Dis, 2002; 186(Suppl. 1): S66–70.CrossRefGoogle ScholarPubMed
LeBlanc, R. A., Pesnicak, L., Godleski, M., et al.The comparative effects of famciclovir and valacyclovir on herpes simplex virus type 1 infection, latency, and reactivation in mice. J Infect Dis, 1999; 594–9.CrossRefGoogle ScholarPubMed
Balfour, H. H., Bean, B., & Laskin, O. L.Acyclovir halts progression of herpes zoster in immunocompromised patients. N Engl J Med, 1983; 308: 1448–53.CrossRefGoogle ScholarPubMed
Novelli, V. M., Marshall, W. C., Yeo, J., et al.Acyclovir administered perorally in immunocompromised children with varicella-zoster infections. J Infect Dis, 1984; 149: 478.CrossRefGoogle ScholarPubMed
Weller, S., Blum, M. R., Doucette, M., et al.Pharmacokinetics of the acyclovir prodrug, valacyclovir, after escalating single and multiple-dose administration to normal volunteers. Clin Pharmacol Ther, 1993; 54: 595–605.CrossRefGoogle ScholarPubMed
Bentner, K. R., Friedman, D. J., Forszpanik, C., et al.Valacyclovir compared with acyclovir for improved therapy for herpes zoster in immunocompetent adults. Antimicrob Agents Chemother, 1995; 92: 219–22.Google Scholar
Tyring, S. K.Advances in the treatment of herpesvirus infection: the role of famciclovir. Clin Ther, 1998; 20: 661–70.CrossRefGoogle ScholarPubMed
Snoeck, R. & De Clercq, E.Role of cidofovir in the treatment of DNA virus infections, other than CMV infections, in immunocompromised patients. Curr Opin Invest Drugs, 2002; 3: 1561–6.Google ScholarPubMed
Sawyer, M. H., Chamberlin, C. J., Wu, Y. N., et al.Detection of varicella-zoster virus DNA in air samples from hospital rooms. J Infect Dis, 1994; 169: 91–4.CrossRefGoogle ScholarPubMed
Belay, E. D., Bresee, J. S., Holman, R. C., et al.Reye's syndrome in the United States from 1981 through 1997. N Engl J Med, 1999; 340: 1377–82.CrossRefGoogle ScholarPubMed
Asano, Y., Yoshikawa, T., Suga, S., et al.Postexposure prophylaxis of varicella in family contact by oral acyclovir. Pediatrics, 1993; 92: 219–22.Google ScholarPubMed
Ishida, Y., Tanchi, H., Higaki, A., et al.Postexposure prophylaxis of varicella in children with leukemia by oral acyclovir. Pediatrics, 1996; 97: 150–1.Google ScholarPubMed
De Clercq, E.Clinical potential of the acyclic nucleoside phosphonates cidofovir, adefovir, and tenofovir in treatment of DNA virus and retovirus infections. Clin Microbiol Rev, 2003; 16: 569–96.CrossRefGoogle ScholarPubMed
Groll, A. H., Irwin, R. S., Lee, J. W., et al. Management of specific infectious complications in children with leukemias and lymphomas In , C. Patrick, ed., Clinical Management of Infections in Immunocompromised Infants and Children (Baltimore, MD: Lippincott, Williams & Wilkins, 2001), pp. 111–43.Google Scholar
Mermel, L. A., Farr, B. M., Sherertz, R. J., et al.Guidelines for the management of intravascular catheter-related infections. Clin Infect Dis, 2001; 32: 1249–72.CrossRefGoogle ScholarPubMed
Capdevila, J. A., Planes, A. M., Palomar, M., et al.Value of differential quantitative blood cultures in the diagnosis of catheter-related sepsis. Eur J Clin Microbiol Infect Dis, 1992; 11: 403–7.CrossRefGoogle Scholar
Bouza, E., Burillo, A., & Munoz, P.Catheter-related infections: diagnosis and intravascular treatment. Clin Microbiol Infect, 2002; 8: 265–74.CrossRefGoogle ScholarPubMed
Flynn, P. M.Diagnosis, management, and prevention of catheter-related infections. Semin Pediatr Infect Dis, 2000; 11: 113–21.CrossRefGoogle Scholar
Malgrange, V. B., Escande, M. C., & Theobald, S.Validity of earlier positivity of central venous blood cultures in comparison with peripheral blood cultures for diagnosing catheter-related bacteremia in cancer patients. J Clin Microbiol, 2001; 39: 274–8.CrossRefGoogle ScholarPubMed
Blot, F., Nitenberg, G., Chachaty, E., et al.Diagnosis of catheter-related bacteraemia: a prospective comparison of time to positivity of hub-blood versus peripheral-blood cultures. Lancet, 1999; 354: 1071–7.CrossRefGoogle ScholarPubMed
Daghistani, D., Horn, M., Rodriguez, Z., et al.Prevention of indwelling central venous catheter sepsis. Med Pediatr Oncol, 1996; 26: 405–8.3.0.CO;2-L>CrossRefGoogle ScholarPubMed
Kropec, A., Huebner, J., Frank, U., et al.In vitro activity of sodium bisulfite and heparin against staphylococci: new strategies in the treatment of catheter-related infection. J Infect Dis, 1993; 168: 235–7.CrossRefGoogle ScholarPubMed
Elliot, T. S. & Curran, A.Effects of heparin and chlorbutol on bacterial colonisation of intravascular cannulae in an in vitro model. J Hosp Infect, 1989; 14: 193–200.CrossRefGoogle Scholar
Freeman, R., Holden, M. P., & Lyon, R.Addition of sodium metabisulfite to left atrial catheter infusates as a means of preventing bacterial colonisation of the catheter tip. Thorax, 1982; 37: 142–4.CrossRefGoogle ScholarPubMed
Henrickson, K. J., Axtell, R. A., Hoover, S. M., et al.Prevention of central venous catheter-related infections and thrombotic events in immunocompromised children by the use of vancomycin/ciprofloxacin/heparin flush solution: a randomized, multicenter, double-blind trial. J Clin Oncol, 2000; 18: 1269–78.CrossRefGoogle ScholarPubMed
Barriga, F. J., Varas, M., Potin, M., et al.Efficacy of a vancomycin solution to prevent bacteremia associated with an indwelling central venous catheter in neutropenic and non-neutropenic cancer patients. Med Pediatr Oncol, 1997; 28: 196–200.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Rackoff, W. R., Weiman, M., Jakobowski, D., et al.A randomized, controlled trial of the efficacy of a heparin and vancomycin solution in preventing central venous catheter infections in children. J Pediatr, 1995; 127: 147–51.CrossRefGoogle ScholarPubMed
Schutze, G. E.Antimicrobial-impregnated central venous catheters. Pediatr Infect Dis J, 2002; 21: 63–4.CrossRefGoogle ScholarPubMed
Rosenstein, N. E., Emery, K. W., Werner, S. B., et al.Risk factors for severe pulmonary and disseminated coccidioidomycosis: Kern County, California, 1995–1996. Clin Infect Dis, 2001; 32: 708–15.CrossRefGoogle Scholar
Saitoh, A., Homans, J., & Kovac, A.Fluconazole treatment of coccidioidal meningitis in children: two case reports and a review of the literature. Pediatr Infect Dis J, 2000; 19: 1204–8.CrossRefGoogle Scholar
Leggiadro, R. J., Barrett, F. F., & Hughes, W. T.Extrapulmonary cryptococcosis in immunosuppressed infants and children. Pediatr Infect Dis J, 1992; 11: 43–7.CrossRefGoogle ScholarPubMed
Perfect, J. R., & Casadevall, A.Cryptococcosis. Infect Dis Clin North Am, 2002; 16: 837–74.CrossRefGoogle ScholarPubMed
Cunha, B. A.Central nervous system infections in the compromised host: a diagnostic approach. Infect Dis Clin North Am, 2001; 15: 567–90.CrossRefGoogle ScholarPubMed
Sugane, K., Takamoto, M., Nakayama, K., et al.Diagnosis of Toxoplasma meningoencephalitis in a non-AIDS patient using PCR. J Infect, 2001; 42: 159–60.CrossRefGoogle Scholar
Abrams, E. J.Opportunistic infections and other clinical manifestations of HIV disease in children. Pediatr Clin North Am, 2000; 47: 79–108.CrossRefGoogle ScholarPubMed
Demeter, L M. JC, BK, and other polyomaviruses; progressive leukoencphalopathy. In , G. L. Mandell, , J. E. Bennett, & , R. Dolin, eds., Principles and Practice of Infectious Diseases, 5th edn. (New York: Churchill Livingstone, 2000), pp. 1645–51.Google Scholar
Richardson-Burns, S. M., Kleinschmidt-DeMasters, B. K., DeBiasi, R. L., et al.Progressive multifocal leukoencephalopathy and apoptosis of infected oligodendrocytes in the central nervous system of patients with and without AIDS. Arch Neurol, 2002; 59: 1930–6.CrossRefGoogle ScholarPubMed
Osorio, S., De La Camara, R., Golbano, N., et al.Progressive multifocal leukoencephalopathy after stem cell transplantation, unsuccessfully treated with cidofovir. Bone Marrow Transplant, 2002; 30: 963–6.CrossRefGoogle ScholarPubMed
Marra, C. M., Rajicic, N., Barker, D. E., et al.A pilot study of cidofovir for progressive multifocal leukoencephalopathy in AIDS. AIDS, 2002; 16: 1791–7.CrossRefGoogle Scholar
Arola, M., Ruuskanen, O., Ziegler, T., & Salmi, T. T.Respiratory virus infections during anticancer treatment in children. Pediatr Infect Dis J, 1995; 14: 690–4.CrossRefGoogle ScholarPubMed
Wulffraat, N., Geelan, S., Dijken, P., et al.Recovery from adenovirus pneumonia in a severe combined immunodeficiency patient treated with intravenous ribavirin. Transplantation, 1995; 59: 927.CrossRefGoogle Scholar
Liles, W. C., Cushing, H., Holt, S., et al.Severe adenoviral nephritis following bone marrow transplantation. Bone Marrow Transplant, 1993; 12: 409–12.Google ScholarPubMed
Davis, D., Henslee, P. J., & Markesberry, W. R.Fatal adenovirus meningoencephilitis in a bone marrow patient. Ann Neurol, 1988; 23: 385–9.CrossRefGoogle Scholar
Shenep, J. L., Srinivas, R. V., Jenkins, J. J., et al.A young woman with lymphoma and endocarditis. Lancet, 1995; 346: 1532.CrossRefGoogle Scholar
Murphy, G. F., Wood, D. P. Jr, McRoberts, J. W., et al.Adenovirus associated hemorrhagic cystitis treated with intravenous ribavirin. J Urol, 1993; 149: 565–6.CrossRefGoogle ScholarPubMed
Wreghitt, T. G., Gray, J. J., Ward, K. N., et al.Disseminated adenovirus infection after liver transplantation and its possible treatment with ganciclovir [letter]. J Infect, 1989; 19: 88–9.CrossRefGoogle Scholar
McCarthy, A. J., Bergin, M., DeSilva, L. M., et al.Intravenous ribavirin therapy for disseminated adenovirus infection. Pediatr Infect Dis J, 1995; 14: 1003–4.CrossRefGoogle ScholarPubMed
Carter, B. A., Karpen, S. J., Quiros-Tejeira, R. E., et al.Intravenous cidofovir therapy for disseminated adenovirus in a pediatric liver transplant recipient. Transplantation, 2002; 74: 1050–2.CrossRefGoogle Scholar
Leather, H. L. & Wingard, J. R.Infection following hematopoietic stem cell transplantation. Infect Dis Clin North Am, 2001; 15: 483–520.CrossRefGoogle ScholarPubMed
Sidwell, R. W., Khare, G. P., Allen, L. B., et al.In vitro and in vivo effect of 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide (ribavirin) on types 1, 2 and 3 parainfluenza virus infections. Chemotherapy, 1975; 21: 205–20.CrossRefGoogle Scholar
Wright, R. B., Pomerantz, W. J., & Luria, J. W.New approaches to respiratory infections in children. Bronchiolitis and croup. Emerg Med Clin North Am, 2002; 20: 93–114.CrossRefGoogle ScholarPubMed
Junkman, P., Anderson, J., Ashcan, J., et al.Influenza A in immunocompromised patients. Clin Infect Dis, 1993; 17: 244–7.Google Scholar
Feldman, S., Webster, R. G., & Sung, M.Influenza in children and young adults with cancer. Cancer, 1977; 39: 350–3.3.0.CO;2-8>CrossRefGoogle Scholar
Kemp, A., Hall, C. B., MacDonald, N. E., et al.Influenza in children with cancer. Pediatrics, 1989; 115: 33–9.CrossRefGoogle Scholar
Ryan-Poirier, K.Influenza virus infection in children. Adv Pediatr Infect Dis, 1995; 10: 125–56.Google ScholarPubMed
Englund, J. A.Antiviral therapy of influenza. Semin Pediatr Infect Dis, 2002; 13: 120–8.CrossRefGoogle ScholarPubMed
Prober, C. G.Antiviral therapy for influenza virus infections. Semin Pediatr Infect Dis, 2002; 13: 31–9.CrossRefGoogle ScholarPubMed
Ogre, P. L. & Patel, J.Respiratory syncytial virus infection and the immunocompromised host. Pediatr Infect Dis J, 1988; 7: 246–8.CrossRefGoogle Scholar
Tsutsumi, H., Sone, S., Yoto, S., et al.Respiratory syncytial virus bronchiolitis in a girl undergoing chemotherapy for active lymphoblastic leukemia: an immunologic study of local secretions. Pediatr Infect Dis J, 1996; 15: 635–6.CrossRefGoogle Scholar
Hall, C., Powell, K. R., MacDonald, N. E., et al.Respiratory syncytial virus infection in children with compromised immune function. N Engl J Med, 1986; 315: 77–81.CrossRefGoogle ScholarPubMed
Hemming, V. G., Prince, G. A., Groothius, J. R., et al.Hyperimmune globulins in prevention and treatment of respiratory syncytial virus infections. Clin Microbiol Rev, 1995; 8: 22–33.Google ScholarPubMed
Rodriguez, W. J.Management strategies for respiratory syncytial virus infections in infants. J Pediatr, 1999; 135: 45–50.Google ScholarPubMed
Pollack, P. & Groothuis, J. R.Development and use of palivizumab (Synagis): a passive immunoprophylactic agent for RSV. J Infect Chemother, 2002; 8: 201–6.CrossRefGoogle ScholarPubMed
Hughes, W. T.Pneumocystis carinii pneumonia. J Pediatr, 1978; 92: 285–92.CrossRefGoogle ScholarPubMed
Hughes, W. T., Feldman, S., Chaudhary, S., et al.Comparison of pentamidine isethionate and trimethoprim-sulfamethoxaazole in the treatment of Pneumocystis carinii pneumonia. J Pediatr, 1978; 92: 285–92.CrossRefGoogle ScholarPubMed
Western, K. A., Perera, D. R., & Schultz, M. G.Pentamidine isethionate in the treatment of Pneumocystis carinii pneumonia. Ann Intern Med, 1970; 73: 695–704.CrossRefGoogle ScholarPubMed
Medina, I., Mills, J., , Leoung G., et al.Oral therapy for Pneumocystis cariniipneumonia in the acquired immunodeficiency syndrome: a controlled trial of trimethoprim-sulfamethoxazole versus trimethoprim-dapsone. N Engl J Med, 1990; 323: 776–82.CrossRefGoogle ScholarPubMed
Hughes, W. T., Leoung, G., Kramer, F., et al.Comparison of atovaquone (566c80) with trimethoprim-sulfamethoxazole for the treatment of Pneumocystis carinii pneumonia in patients with AIDS. N Engl J Med, 1993; 328: 1521–7.CrossRefGoogle ScholarPubMed
Allegra, C. J., Chabner, B. A., Tuazon, C. V., et al.Trimetrexate for the treatment of Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. N Engl J Med, 1987; 317: 978–85.CrossRefGoogle ScholarPubMed
Hughes, W. T. & Johnson, W. W.Recurrent Pneumocystis carinii pneumonia following apparent recovery. J Pediatr, 1971; 79: 755–9.CrossRefGoogle ScholarPubMed
Hughes, W. T., Kuhn, S., Chaudhary, S., et al.Successful chemoprophylaxis for Pneumocystis carinii pneumonitis. N Engl J Med, 1977; 297: 1419–23.CrossRefGoogle ScholarPubMed
Hughes, W. T., Rivera, G. K., Schell, M. J., et al.Successful intermittent chemoprophylaxis for Pneumocystis carinii pneumonia. N Engl J Med, 1987; 316: 1627–32.CrossRefGoogle Scholar
Hughes, W. T.Hematogenous histoplasmosis in the immunocompromised child. J Pediatr, 1984; 105: 569–75.CrossRefGoogle ScholarPubMed
Adderson, E. E.Histoplasmosis in a pediatric oncology center. J Pediatr, 2004; 144: 100–6.CrossRefGoogle Scholar
Wheat, J., Sarosi, G., McKinsey, D., et al.Practice guidelines for the management of patients with histoplasmosis. Clin Infect Dis, 2000; 30: 688–95.CrossRefGoogle ScholarPubMed
Hughes, W. T. Cryptococcosis. In , R. D. Feigen & , J. D. Cherry, eds., Textbook of Pediatric Infectious Diseases, 4th edn. (Philadelphia, PA: W. B. Saunders, 1997), pp. 2332–7.Google Scholar
Walsh, T. J., Gonzalez, C., Lyman, C. A., et al.Invasive fungal infections in children: recent advances in diagnosis and treatment. Adv Pediatr Infect Dis, 1996; 11: 187–290.Google ScholarPubMed
Nissen, D., ed. Mosby's Drug Consult (St. Louis, MO: Mosby, 2002). Accessed from MD Consult web page (http://www.mdconsult.com), accessed March 5, 2002.Google Scholar
Bell, B. P.Hepatitis A vaccine. Semin Pediatr Infect Dis, 2002; 13: 165–73.CrossRefGoogle ScholarPubMed
Coates, T., Wilson, R., Patrick, G., et al.Hepatitis B vaccines: assessment of the seroprotective efficacy of two recombinant DNA vaccines. Clin Ther, 2001; 23: 392–403.CrossRefGoogle ScholarPubMed
Kimberlin, D. W.Antiviral therapy for cytomegalovirus infections in pediatric patients. Semin Pediatr Infect Dis, 2002; 13: 22–30.CrossRefGoogle ScholarPubMed
Amadi, B., Mwiya, M., Watuka, A., et al.Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomised controlled trial. Lancet, 2002; 360: 1375–80.CrossRefGoogle ScholarPubMed
Mylonakis, E., Ryan, E. T., & Calderwood, S. B.Clostridium difficile – associated diarrhea: a review. Arch Intern Med, 2001; 161: 525–33.CrossRefGoogle ScholarPubMed
Otaibi, A. A., Barker, C., Anderson, R., et al.Neutropenic enterocolitis (typhlitis) after pediatric bone marrow transplant. J Pediatr Surg, 2002; 37: 770–2.CrossRefGoogle ScholarPubMed
Horton, K. M., Corl, F. M., & Fishman, E. K.CT evaluation of the colon: inflammatory disease. Radiographics, 2000; 20: 399–418.CrossRefGoogle ScholarPubMed
Cartoni, C., Dragoni, F., Micozzi, A., et al.Neutropenic enterocolitis in patients with acute leukemia: prognostic significance of bowel wall thickening detected by ultrasonography. J Clin Oncol, 2001; 19: 756–61.CrossRefGoogle ScholarPubMed
Pastore, D., Specchia, G., Mele, G., et al.Typhlitis complicating induction therapy in adult acute myeloid leukemia. Leuk Lymphoma, 2002; 43: 911–14.CrossRefGoogle ScholarPubMed
Sclatter, M., Snyder, K., & Freyer, D.Successful nonoperative management of typhlitis in pediatric oncology patients. J Pediatr Surg, 2002; 37: 1151–5.CrossRefGoogle Scholar
Hughes, W. T., Armstrong, D., & Bodey, G. P.Guidelines for the use of antimicrobial agents in neutropenic patients with cancer. Clin Infect Dis, 2002; 34: 730–51.CrossRefGoogle ScholarPubMed
Mullen, C. A., Petropoulos, D., Roberts, V. W., et al.Outpatient treatment of fever and neutropenia for low risk pediatric cancer patients. Cancer, 1999; 86: 126–34.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Petrilli, A. S., Dantas, L. S., Campos, M. C., et al.Oral ciprofloxacin versus intravenous ceftriaxone administered in an outpatient setting for fever and neutropenia in low-risk pediatric oncology patients: randomized prospective trial. Med Pediatr Oncol, 2000; 34: 87–91.3.0.CO;2-F>CrossRefGoogle Scholar
Paganini, H., Rodriguez-Brieshcke, T., Zubizarreta, P., et al.Oral ciprofloxacin in the management of children with cancer with lower risk febrile neutropenia. Cancer, 2001; 91: 1563–7.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Aquino, V. M., Tkaczewski, I., & Buchanan, G. R.Early discharge of low-risk febrile neutropenic children and adolescents with cancer. Clin Infect Dis, 1997; 25: 74–8.CrossRefGoogle ScholarPubMed
Aquino, V. M., Buchanan, G. R., Tkaczewski, I., et al.Safety of early hospital discharge of selected febrile children and adolescents with cancer with prolonged neutropenia. Med Pediatr Oncol, 1997; 28: 191–5.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Bash, R. O., Katz, J. A., Cash, J. V., et al.Safety and cost effectiveness of early hospital discharge of lower risk children with cancer admitted for fever and neutropenia. Cancer, 1994; 74: 189–96.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Buchanan, G. R.Approach to treatment of the febrile cancer patient with low-risk neutropenia. Hematol Oncol Clin North Am, 1993; 7: 919–35.CrossRefGoogle ScholarPubMed
Griffin, T. C. & Buchanan, G. R.Hematologic predictors of bone marrow recovery in neutropenic patients hospitalized for fever: implications for discontinuation of antibiotics and early discharge from the hospital. J Pediatr, 1992; 121: 28–33.CrossRefGoogle ScholarPubMed
Dale, D. C.Colony-stimulating factors for the management of neutropenia in cancer patients. Drugs, 2002; 62(Suppl. 1): 1–15.CrossRefGoogle ScholarPubMed
Price, T. H.Granulocyte transfusion in the G-CSF era. Int J Hematol, 2002; 76(Suppl. 2): 77–80.CrossRefGoogle ScholarPubMed
Grigull, L., Schrauder, A., Schmitt-Thomssen, , A., Sykora, K., & Welte, K.Efficacy and safety of G-CSF mobilized granulocyte transfusions in four neutropenic children with sepsis and invasive fungal infection. Infection, 2002; 30: 267–71.CrossRefGoogle ScholarPubMed
Hughes, W. T. Treatment of established bacterial and fungal infections in patients with hematologic malignancy. In , P. H. Wiernik, , G. P. Cancellos, & , J. P. Dutcher, eds., Neoplastic Diseases of Blood, 3rd edn. (New York: Churchill Livingstone, 1996) pp. 1027–40.Google Scholar
Wingard, J. R.Lipid formulations of amphotericins: are you a lumper or a splitter ?Clin Infect Dis, 2002; 235: 891–5.CrossRefGoogle Scholar
Tiphine, M., Letscher-Bru, V., & Herbrecht, R.Amphotericin B and its new formulations: pharmacologic characteristics, clinical efficacy, and tolerability. Transplant Infect Dis, 1999; 1: 273–83.CrossRefGoogle ScholarPubMed
White, M. H., Bowden, R. A., Sandler, E. S., et al.Randomized, double-blind clinical trial of amphotericin B colloidal dispersion vs. amphotericin B in the empirical treatment of fever and neutropenia. Clin Infect Dis, 1998; 27: 296–302.CrossRefGoogle ScholarPubMed
Walsh, T. J., Hiemenez, J. W., Seibel, N. L., et al.Amphotericin B lipid complex for invasive fungal infections: analysis of safety and efficacy in 556 cases. Clin Infect Dis, 1998; 26: 1383–96.CrossRefGoogle ScholarPubMed
Prentice, H. G., Hann, I. M., Herbrecht, R., et al.A randomized comparison of liposomal versus conventional amphotericin B for the treatment of pyrexia of unknown origin in neutropenic patients. Br J Haematol, 1997; 98: 711–18.CrossRefGoogle ScholarPubMed
Walsh, T. J., Finberg, R. W., Arndt, C., et al.Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N Engl J Med, 1999; 340: 764–71.CrossRefGoogle ScholarPubMed
Wingard, J. R., White, M. H., Anaissie, E., et al.A randomized, double-blind comparative trial evaluating the safety of liposomal amphotericin B versus amphotericin B lipid complex in the empirical treatment of febrile neutropenia. Clin Infect Dis, 2000; 31: 1155–63.CrossRefGoogle ScholarPubMed
Hughes, W. T.Systemic candidiasis: a study of 109 fatal cases. Pediatr Infect Dis J, 1982; 1: 11–18.CrossRefGoogle ScholarPubMed
Wingard, J. R.Importance of Candida species other than C. albicans as a pathogen in oncology patients. Clin Infect Dis, 1995; 20: 115–25.CrossRefGoogle Scholar
Flynn, P. M., Marina, N. M., Rivera, G. K., et al.Candida tropicalisinfection in children with leukemia. Leuk Lymphoma, 1993; 10: 369–76.CrossRefGoogle ScholarPubMed
Flynn, P. M., Shenep, J. L., Crawford, R., et al.Use of abdominal computed tomography for identifying disseminated fungal infection in pediatric cancer patients. Clin Infect Dis, 1995; 20: 964–70.CrossRefGoogle ScholarPubMed
Bartley, D. L., Hughes, W. T., Parvey, L. S., et al.Computed tomography of hepatic and splenic fungal abscesses in leukemic children. Pediatr Infect Dis, 1982; 1: 317–21.CrossRefGoogle ScholarPubMed
Villanueva, A., Arathoon, E. G., Gotuzzo, E., et al.A randomized double-blind study of caspofungin versus amphotericin for the treatment of candidal esophagitis. Clin Infect Dis, 2001; 33: 1529–35.CrossRefGoogle ScholarPubMed
Villanueva, A., Gotuzzo, E., Arathoon, E. G., et al.A randomized double-blind study of caspofungin versus fluconazole for the treatment of esophageal candidiasis. Am J Med, 2002; 113: 294–9.CrossRefGoogle ScholarPubMed
Abruzzo, G. K., Gill, C. J., Flattery, A. M., et al.Efficacy of the echinocandin caspofungin against disseminated aspergillosis and candidiasis in cyclophosphamide-induced immunosuppressed mice. Antimicrob Agents Chemother, 2000; 44: 2310–8.CrossRefGoogle ScholarPubMed
Pagano, L., Ricci, P., Montillo, M., et al.Localization of aspergillosis to the central nervous system among patients with acute leukemia: report of 14 cases. Clin Infect Dis, 1996; 23: 628–30.CrossRefGoogle ScholarPubMed
Denning, D. W. & Stevens, D. A.Antifungal and surgical treatment of invasive aspergillosis: review of 2,121 cases. Rev Infect Dis, 1990; 12: 1147–201.CrossRefGoogle Scholar
Hauggaard, A., Ellis, M., & Ekelund, L.Early chest radiography and CT in the diagnosis, management and outcome of invasive pulmonary aspergillosis. Acta Radiol, 2002; 43: 292–8.CrossRefGoogle ScholarPubMed
Dahniya, M. H., Makkar, R., Grexa, E., et al.Appearances of paranasal fungal sinusitis on computed tomography. Br J Radiol, 1998; 71: 340–4.CrossRefGoogle ScholarPubMed
Gerson, S. L., Talbot, G. H., Hurwitz, S., et al.Prolonged granulocytopenia: the major risk factor for invasive pulmonary aspergillosis in patients with acute leukemia. Ann Intern Med, 1984; 10: 345–51.CrossRefGoogle Scholar
Denning, D. W., Ribaud, P., Milipied, N., et al.Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis, 2002; 34: 563–71.CrossRefGoogle ScholarPubMed
Herbrecht, R., Denning, D. W., Patterson, T. F., et al.Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med, 2002; 347: 408–15.CrossRefGoogle ScholarPubMed
Lee, F. Y., Mossad, S. B., & Adal, K. A.Pulmonary mucormycosis: the last 30 years. Arch Intern Med, 1999; 159: 1301–9.CrossRefGoogle ScholarPubMed
Jimenez, C., Lumbreras, C., Aguado, J. M., et al.Successful treatment of mucor infection after liver or pancreas-kidney transplantation. Transplantation, 2002; 73: 476–80.CrossRefGoogle ScholarPubMed
Ryan, M., Yeo, S., Maguire, A., et al.Rhinocerebral zygomycosis in childhood acute lymphoblastic leukaemia. Eur J Pediatr, 2001; 160: 235–8.CrossRefGoogle ScholarPubMed
Alberti, C., Bouakline, A., Ribaud, P., et al.Relationship between environmental fungal contamination and the incidence of invasive aspergillosis in haematology patients. J Hosp Infect, 2001; 48: 198–206.CrossRefGoogle ScholarPubMed
Oren, I., Haddad, N., Finkelstein, R., et al.Invasive pulmonary aspergillosis in neutropenic patients during hospital construction: before and after chemoprophylaxis and institution of HEPA filters. Am J Hematol, 2001; 66: 257–62.CrossRefGoogle ScholarPubMed
Hahn, T., Cummings, K. M., Michalek, A. M., et al.Efficacy of high-efficiency particulate air filtration in preventing aspergillosis in immunocompromised patients with hematologic malignancies. Infect Control Hosp Epidemiol, 2002; 23: 525–31.CrossRefGoogle ScholarPubMed
Cornet, M., Levy, V., Fleury, L., et al.Efficacy of prevention by high-efficiency particulate air filtration or laminar airflow against Aspergillus airborne contamination during hospital renovation. Infect Control Hosp Epidemiol, 1999; 20: 508–13.CrossRefGoogle ScholarPubMed
Sherertz, R. J., Belani, A., Kramer, B. S., et al.Impact of air filtration on nosocomial Aspergillus infections. Unique risk of bone marrow transplant recipients. Am J Med, 1987; 83: 709–18.CrossRefGoogle ScholarPubMed
Denning, D. W., Lee, J. Y., Hostetler, J. S.et al.NIAID mycoses study group multicenter trial of oral itraconazole therapy for invasive aspergillosis. Am J Med, 1994; 97: 135–44.CrossRefGoogle Scholar
Hughes, W. T., Flynn P. M., & Williams, B. Nosocomial infection in patients with neoplastic disease. In , C. G. Mayhall, ed., Hospital Epidemiology and Infection Control (Baltimore, MD: William & Wilkins, 1996), pp. 618–31.Google Scholar
Moody, K., Charlson, M. E., & Finlay, J.The neutropenic diet: what's the evidence ?J Pediatr Hematol Oncol, 2002; 24: 717–21.CrossRefGoogle ScholarPubMed
Smith, L. H. & Besser, S. G.Dietary restrictions for patients with neutropenia: a survey of institutional practices. Oncol Nurs Forum, 2000; 27: 515–20.Google ScholarPubMed
Wilson, B. J.Dietary recommendations for neutropenic patients. Semin Oncol Nurs, 2002; 18: 44–9.CrossRefGoogle ScholarPubMed
Atkinson, W. L., Pickering, L. K., Schwartz, B., et al.General recommendations on immunization, Recommendations of the Advisory Committee on Immunization Practices (ACIP) and the American Academy of Family Physicians (AAFP). MMWR Recomm Rep, 2002; 51: 1–35.Google Scholar
LaRussa, P. L., Steinberg, S., & Gershon, A. A.Varicella vaccine for immunocompromised children: results of collaborative studies in the United States and Canada. J Infect Dis, 1996; 174(Suppl. 3): S320–3.CrossRefGoogle ScholarPubMed
Nilsson, A., De Milito, A., Engström, P., et al.Current chemotherapy protocols for childhood acute lymphoblastic leukemia induce loss of humoral immunity to viral vaccination antigens. Pediatrics, 2002; 109: e91. Available online at http://www.pediatrics.org/cgi/content/full/109/6/e91.CrossRefGoogle ScholarPubMed
Chan, C., Montaner, J., Lefebvre, E. A., et al.Atovaquone suspension compared with aerosolized pentamidine for prevention of Pneumocystis carinii pneumonia in human immunodeficiency virus-infected subjects intolerant of trimethoprim or sulfonamides. J Infect Dis, 199; 180: 369–76.CrossRefGoogle Scholar
Castro, M.Treatment and prophylaxis of Pneumocystis carinii pneumonia. Semin Respir Infect, 1998; 13: 296–303.Google ScholarPubMed
Cruciani, M., Bertazzoni, M. E., Mirandola, M., et al.Twice-weekly dapsone for primary prophylaxis against Pneumocystis carinii pneumonia in HIV-1 infection: efficacy, safety and pharmacokinetic data. Clin Microbiol Infect, 1996; 2: 30–5.CrossRefGoogle ScholarPubMed
Shenep, J. L.Viridans-group streptococcal infections in immunocompromised hosts. Int J Antimicrob Agents, 2000; 14: 129–35.CrossRefGoogle ScholarPubMed
Spanik, S., Trupl, J., Kunova, A., et al.Viridans streptococcal bacteremia due to penicillin-resistant and penicillin-sensitive streptococci: analysis of risk factors and outcome in 60 patients from a single cancer centre before and after penicillin is used for prophylaxis. Scand J Infect Dis, 1997; 29: 245–9.CrossRefGoogle ScholarPubMed
Rossetti, F., Cesaro, S., Putti, M. C., et al.High-dose cytosine arabinoside and viridans streptococcus sepsis in children with leukemia. Pediatr Hematol Oncol, 1995; 12: 387–92.CrossRefGoogle ScholarPubMed
Weisman, S. J., Scoopo, F. J., Johnson, G. M., et al.Septicemia in pediatric oncology patients: the significance of viridans streptococcal infections. J Clin Oncol, 1990; 8: 453–9.CrossRefGoogle ScholarPubMed
Tunkel, A. R. & Sepkowitz, K. A.Infections caused by viridans streptococci in patients with neutropenia. Clin Infect Dis, 2002; 34: 1524–9.CrossRefGoogle ScholarPubMed
Cornley, O. A., Ullmann, A. J., & Karthaus, M.Evidence based assessment of primary antifungal prophylaxis in patients with hematologic malignancies. Blood, 2003; 101: 3365–72.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Infectious disease complications in leukemia
    • By Jeremy A. Franklin, Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Assistant Professor Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX, USA, Patricia M. Flynn, Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Member, Department of Infectious Diseases, Arthur Ashe Chair in Pediatric AIDS Research, St. Jude Children's Research Hospital, Professor, Department of Pediatrics and Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.033
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Infectious disease complications in leukemia
    • By Jeremy A. Franklin, Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Assistant Professor Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX, USA, Patricia M. Flynn, Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Member, Department of Infectious Diseases, Arthur Ashe Chair in Pediatric AIDS Research, St. Jude Children's Research Hospital, Professor, Department of Pediatrics and Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.033
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Infectious disease complications in leukemia
    • By Jeremy A. Franklin, Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Assistant Professor Department of Pharmacy Practice, Texas Tech University Health Sciences Center, Amarillo, TX, USA, Patricia M. Flynn, Assistant Professor, Department of Pediatrics Division of Infectious Diseases, Member, Department of Infectious Diseases, Arthur Ashe Chair in Pediatric AIDS Research, St. Jude Children's Research Hospital, Professor, Department of Pediatrics and Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.033
Available formats
×