Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2018
  • Online publication date: June 2018

12 - Records of Magnetic Fields in the Chondrule Formation Environment

from Part I - Observations of Chondrules


Chondrules contain ferromagnetic minerals that may retain a record of the magnetic field environments in which they cooled. Paleomagnetic experiments on separated chondrules can potentially reveal the presence of remanent magnetization from the time of chondrule formation. The existence of such a magnetization places quantitative bounds on the frequency of interchondrule collisions, while the intensity of magnetization may be used to infer the strength of nebular magnetic fields and thereby constrain the mechanism of chondrule formation. Recent advances in laboratory instrumentation and techniques have permitted the isolation of nebular remanent magnetization in chondrules, providing the potential basis to probe the formation environments of chondrules from a range of chondrite classes.

Alexander, C. M. O’D., Barber, D. J., and Hutchison, R. (1989). The microstructure of Semarkona and Bishunpur. Geochim. Cosmochim. Acta 53, 30453057.
Alexander, C. M. O’D., and Ebel, D. S. (2012). Questions, questions: Can the contradictions between the petrologic, isotopic, thermodynamic, and astrophysical constraints on chondrule formation be resolved? Meteorit. Planet. Sci. 47, 11571175.
Asphaug, E., Jutzi, M., and Movshovitz, N. (2011). Chondrule formation during planetesimal accretion. Earth Planet. Sci. Lett. 308, 369379.
Bai, X. -N. (2016). Towards a global evolutionary model of protoplanetary disks. Astrophys. J. 821, 80.
Bai, X. -N. (2015). Hall effect controlled gas dynamics in protoplanetary disks. II. Full 3D simulations toward the outer disk. Astrophys. J. 798, 84.
Bai, X. -N. (2014). Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk. Astrophys. J. 791, 137.
Bai, X. -N. (2011). Magnetorotational-instability-driven accretion in protoplanetary disks. Astrophys. J. 739, 119.
Bai, X. -N., and Goodman, J. (2009). Heat and dust in active layers of protostellar disks. Astrophys. J. 701, 737755.
Balbus, S. A. (2003). Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555597.
Bitsch, B., Johansen, A., Lambrechts, M., and Morbidelli, A. (2015). The structure of protoplanetary discs around evolving young stars. Astron. Astrophys. 575, A28.
Brearley, A. J., and Krot, A. N. (2012). Metasomatism in the early solar system: The record from chondritic meteorites, in: Harlov, D.E. and Austrheim, H. (Eds.), Metasomatism and the Chemical Transformation of Rock., 659789. Berlin: Springer-Verlag.
Carporzen, L., Weiss, B. P., Elkins-Tanton, L. T., et al. (2011). Magnetic evidence for a partially differentiated carbonaceous chondrite parent body. Proc. Natl. Acad. Sci. USA 108, 63866389.
Carrera, D., Johansen, A., and Davies, M. B. (2015). How to form planetesimals from mm-sized chondrules and chondrule aggregates. Astron. Astrophys. 579, A43.
Ciesla, F. J., Lauretta, D. S., and Hood, L. L. (2004). The frequency of compound chondrules and implications of chondrule formation. Meteorit. Planet. Sci. 39, 531544.
Cuzzi, J. N., and Hogan, R. C. (2003). Blowing in the wind I. Velocities of chondrule-sized particles in a turbulent protoplanetary nebula. Icarus 164, 127138.
Desch, S. J., and Connolly, H. C. (2002). A model of the thermal processing of particles in solar nebula shocks: Application to the cooling rates of chondrules. Meteorit. Planet. Sci. 37, 183207.
Desch, S. J., and Mouschovias, T. C. (2001). The magnetic decoupling of star formation. Astrophys. J. 550, 314333.
Flock, M., Ruge, J. P., Dzyurkevich, N., et al. (2015). Gaps, rings, and non-axisymmetric structures in protoplanetary disks – From simulations to ALMA observations. Astron. Astrophys. 574, A68.
Fu, R. R., Lima, E. A., and Weiss, B. P. (2014a). No nebular magnetization in the Allende CV carbonaceous chondrite. Earth Planet. Sci. Lett. 404, 5466.
Fu, R. R., and Weiss, B. P. (2012). Detrital remanent magnetization in the solar nebula. J. Geophys. Res. 117, E02003.
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2014b). Solar nebula magnetic fields recorded in the Semarkona meteorite. Science. 346, 10891092.
Fu, R. R., Weiss, B. P., Lima, E. A., et al. (2017). Evaluating the paleomagnetic potential of single zircon crystals using Bishop Tuff zircons. Earth Planet. Sci. Lett. 458, 113.
Gammie, C. F. (1996). Layered accretion in T Tauri disks. Astrophys. J. 457, 355362.
Garrick-Bethell, I., and Weiss, B. P. (2010). Kamacite blocking temperatures and applications to lunar magnetism. Earth Planet. Sci. Lett. 294, 17.
Glenn, D. R., Fu, R. R., Kehayias, P., et al. (2017). Micrometer-scale magnetic imaging of geological samples using quantum diamond microscopy. Geochem. Geophys. Geosyst. 18, 32543267.
Guilet, J., and Ogilvie, G. I. (2014). Global evolution of the magnetic field in a thin disc and its consequences for protoplanetary systems. Mon. Not. R. Astr. Soc. 441, 852868.
Hayashi, C. (1981). Structure of the solar nebula, growth and decay of magnetic fields and effects of magnetic and turbulent viscosities on the nebula. Sup. Prog. Theor. Phys. 70, 3553.
Hewins, R. H., Connolly, H. C., Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk. ASP Conference Series, 341, 286316. San Francisco, CA: Astronomical Society of the Pacific.
Johansen, A. (2009). The role of magnetic fields for planetary formation. In Strassmeier, K. G., Kosovichev, A. G., and Beckman, J. E. (Eds.), Cosmic Magnetic Fields: From Planets, to Stars and Galaxies. Proc. IAU Symp. 259, 119128. Cambridge, UK: Cambridge University Press.
Johnson, B. C., Minton, D. A., Melosh, H. J., and Zuber, M. T. (2015). Impact jetting as the origin of chondrules. Nature 517, 339341.
Jones, R. H., and Danielson, L. R. (1997). A chondrule origin for dusty relict olivine in unequilibrated chondrites. Meteorit. Planet. Sci. 32, 753760.
Kimura, M., Grossman, J. N., and Weisberg, M. K. (2008). Fe-Ni metal in primitive chondrites: Indicators of classification and metamorphic conditions for ordinary and CO chondrites. Meteorit. Planet. Sci. 43, 11611177.
Kita, N. T., and Ushikubo, T. (2012). Evolution of protoplanetary disk inferred from 26Al chronology of individual chondrules. Meteorit. Planet. Sci. 47, 11081109.
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early solar system. Meteorit. Planet. Sci. 48, 118.
Krot, A. N., Petaev, M. I., Scott, E. R. D., et al. (1998). Progressive alteration in CV3 chondrites: More evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 10651085.
Lanoix, M., Strangway, D. W., and Pearce, G. W. (1978). The primordial magnetic field preserved in chondrules of the Allende meteorite. Geophys. Res. Lett. 5, 7376.
Lappe, S. -C. L. L., Harrison, R. J., Feinberg, J. M., and Muxworthy, A. (2013). Comparison and calibration of nonheating paleointensity methods: A case study using dusty olivine. Geochem. Geophys. Geosyst. 14, 116.
Leroux, H., Libourel, G., Lemelle, L., and Guyot, F. (2003). Experimental study and TEM characterization of dusty olivines in chondrites: Evidence for formation by in situ reduction. Meteorit. Planet. Sci. 38, 8194.
Lesur, G., Kunz, M. W., and Fromang, S. (2014). Thanatology in protoplanetary discs: The combined influence of Ohmic, Hall, and ambipolar diffusion on dead zones. Astron. Astrophys. 566, A56.
Levy, E. H., and Araki, S. (1989). Magnetic reconnection flares in the protoplanetary nebula and the possible origin of meteorite chondrules. Icarus 81, 7491.
Levy, E. H., and Sonett, C. P. (1978). Meteorite magnetism and early solar system magnetic fields. In Gehrels, T. (Ed.), Protostars and Planets: Studies of Star Formation and of the Origin of the Solar System., 516532. Tucson, AZ: University of Arizona Press.
McNally, C. P., Hubbard, A., Mac Low, M. -M., Ebel, D. S., and D’Alessio, P. (2013). Mineral processing by short circuits in protoplanetary disks. Astrophys. J. 767, L2.
Miura, H., Nakamoto, T., and Doi, M. (2008). Origin of three-dimensional shapes of chondrules: I. Hydrodynamics simulations of rotating droplet exposed to high-velocity rarefied gas flow. Icarus 197, 269281.
Nübold, H., and Glassmeier, K. -H. (2000). Accretional remanence of magnetized dust in the solar nebula. Icarus 144, 149159.
Okuzumi, S., Takeuchi, T., and Muto, T. (2014). Radial transport of large-scale magnetic fields in accretion disks. I. Steady solutions and an upper limit on the vertical field strength. Astrophys. J. 785, 127.
Schrader, D. L., Connolly, H. C., Lauretta, D. S., et al. (2015). The formation and alteration of the Renazzo-like carbonaceous chondrites III: Toward understanding the genesis of ferromagnesian chondrules. Meteor. Planet. Sci. 50, 1550.
Schrader, D. L., Davidson, J., and McCoy, T. J. (2016a). Widespread evidence for high-temperature formation of pentlandite in chondrites. Geochim. Cosmochim. Acta 189, 359376.
Schrader, D. L., Fu, R. R., and Desch, S. J. (2016b). Evaluating chondrule formation models and the protoplanetary disk background temperature with low-temperature, sub-silicate solidus chondrule cooling rates. Lunar Planet. Sci. Conf. XLVII, 1180.
Schrader, D. L., Nagashima, K., Krot, A. N., et al. (2017). Distribution of 26Al in the CR chondrite chondrule-forming region of the protoplanetary disk. Geochim. Cosmochim. Acta 201, 375302.
Shah, J., Bates, H. C., Muxworthy, A. R., et al. (2017). Long-lived magnetism on chondrite parent bodies. Earth Planet. Sci. Lett. 475, 106118.
Shu, F. H., Shang, H., Glassgold, A. E., and Lee, T. (1997). X-rays and fluctuating x-winds from protostars. Science. 277, 14751479.
Shu, F. H., Shang, H., and Lee, T. (1996). Toward an astrophysical theory of chondrites. Science. 271, 15451552.
Stepinski, T. F. (1992). Generation of dynamo magnetic fields in the primordial solar nebula. Icarus 97, 130141.
Sugiura, N., Lanoix, M., Strangway, D. W., (1979). Magnetic fields of the solar nebula as recorded in chondrules from the Allende meteorite. Phys. Earth Planet. Inter. 20, 342349.
Sugiura, N., and Strangway, D. W. (1985). NRM directions around a centimeter-sized dark inclusion in Allende. Proc. Lunar Planet. Sci. Conf. XV, C729–C738.
Swartzendruber, L. J., Itkin, V. P., and Alcock, C. B. (1991). The Fe-Ni (iron-nickel) system. J. Phase Equilibria 12, 288312.
Tachibana, S., Nagahara, H., and Mizuno, K. (2006). Constraints on cooling rates of chondrules from metal-troilite assemblages. Lunar Planet. Sci. Conf. XXXVII.
Takac, M., and Kletetschka, G. (2015). Meteorite movement during deceleration studied analogically with magnetic remanence in the bullet. In AGU Fall Meeting. Abstract # GP43B-1244.
Tauxe, L. (2010). Essentials of Paleomagnetism. Berkeley, CA: University of California Press.
Tsuchiyama, A., Shigeyoshi, R., Kawabata, T., et al. (2003). Three-dimensional structures of chondrules and their high-speed rotation. Lunar Planet. Sci. Conf. XXXIV.
Turner, N. J., and Sano, T. (2008). Dead zone accretion flows in protostellar disks. Astrophys. J. Lett. 679, L131L134.
Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., and van der Beek, C. J. (2011). Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications of paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306, 241252.
Uehara, M., and Nakamura, N. (2006). Experimental constraints on magnetic stability of chondrules and the paleomagnetic significance of dusty olivines. Earth Planet. Sci. Lett. 250, 292305.
van der Marel, N., van Dishoeck, E. F., Bruderer, S., et al. (2013). A major asymmetric dust trap in a transition disk. Science. 340, 11991202.
Villeneuve, J., Chaussidon, M., and Libourel, G. (2009). Homogeneous distribution of 26Al in the Solar System from the Mg isotopic composition of chondrules. Science. 325, 985988.
Wang, H., Weiss, B. P., Bai, X. -N., et al. (2017). Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science. 355, 623627.
Wardle, M. (2007). Magnetic fields in protoplanetary disks. Astrophys. Sp. Sci. 311, 3545.
Wasilewski, P. (1981). New magnetic results from Allende C3(V). Phys. Earth Planet. Inter. 26, 134148.
Wasilewski, P. J., and O’Bryan, M. V. (1994). Chondrule magnetic properties. Lunar Planet. Sci. Conf. XXV, 1467.
Weiss, B. P., and Elkins-Tanton, L. T. (2013). Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41, 21.
Weiss, B. P., Gattacceca, J., Stanley, S., Rochette, P., and Christensen, U. R. (2010). Paleomagnetic records of meteorites and early planetesimal differentiation. Sp. Sci. Rev. 152, 341390.
Weiss, B. P., and Tikoo, S. M. (2014). The lunar dynamo. Science. 346, 1246753–1.
Zhu, Z., Stone, J. M., and Rafikov, R. R. (2013). Low-mass planets in protoplanetary disks with net vertical magnetic fields: The planetary wake and gap opening. Astrophys. J. 768, 143.