Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-14T05:00:29.787Z Has data issue: false hasContentIssue false

Part I

Published online by Cambridge University Press:  26 October 2023

Piergiuseppe Morone
Affiliation:
Unitelma Sapienza
Dalia D'Amato
Affiliation:
Finnish Environment Institute (Suomen Ympäristökeskus - SYKE)
Nicolas Befort
Affiliation:
NEOMA BS
Gülşah Yilan
Affiliation:
Unitelma Sapienza University of Rome
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Circular Bioeconomy
Theories and Tools for Economists and Sustainability Scientists
, pp. 1 - 56
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Abrams, D., & Adair, G. (2009). George Washington Carver: Scientist and educator, Infobase Publishing.Google Scholar
Achilladelis, B., Schwarzkopf, A., & Cines, M. (1990). The dynamics of technological innovation: The case of the chemical industry. Research Policy, 19(1), 134.CrossRefGoogle Scholar
Beckert, J. (2013). Capitalism as a system of expectations. Politics & Society, 41(3), 323350.Google Scholar
Beckert, J. (2016). Imagined futures: Fictional expectations and capitalist dynamics, Harvard University Press.Google Scholar
Borup, M., Brown, N., Konrad, K., & van Lente, H. (2006). The sociology of expectations in science and technology. Technology Analysis & Strategic Management, 18(3–4), 285298.Google Scholar
Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates – The US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539.CrossRefGoogle Scholar
Cherubini, F., Jungmeier, G., Wellisch, M., … de Jong, E. (2009). Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3(5), 534546.CrossRefGoogle Scholar
Chesnais, F. (1981). Biotechnologie et modifications des structures de l’industrie chimique: quelques points de repère. Revue d’économie Industrielle, 18(1), 218230.Google Scholar
Cohendet, P. (1982). The European Chemical-Industry and the crisis: The necessity of technological changes. FUTURIBLES, (60), 1329.Google Scholar
Cohendet, P., Ledoux, M. J., & Zuscovitch, E. (1987). Les matériaux nouveaux: dynamique économique et stratégie européenne, FAST.Google Scholar
Colombo, U. (1980). A viewpoint on innovation and the chemical industry. Research Policy, 9(3), 203231.Google Scholar
Colonna, P., Tayeb, J., & Valceschini, E. (2015). Nouveaux usages des biomasses. Le Déméter 2015, 275305.Google Scholar
Danielou, G., & Broun, G. (1981). Bioindustrie: de la tradition artisanale à la pratique industrielle. Revue d’économie Industrielle, 18(1), 1429.CrossRefGoogle Scholar
Finlay, M. R. (1997). The failure of chemurgy in the depression-era south: The case of Jesse F. Jackson and the Central of Georgia Railroad. The Georgia Historical Quarterly, 81(1), 78102.Google Scholar
Finlay, M. R. (2003). Old efforts at new uses: A brief history of chemurgy and the American search for biobased materials. Journal of Industrial Ecology, 7(3–4), 3346.Google Scholar
Galambos, L., Hikino, T., & Zamagni, V. (2007). The global chemical industry in the age of the petrochemical revolution, Cambridge University Press.Google Scholar
Giurca, A., Befort, N., & Taylor, A. (2022). Exploring transformative policy imaginaries for a sustainable Post-COVID society. Journal of Cleaner Production, 344, 131053.Google Scholar
Jullien, B., & Smith, A. (2012). Le gouvernement d’une industrie. Gouvernement et Action Publique, 1(1), 103123.Google Scholar
Levidow, L., Birch, K., & Papaioannou, T. (2013). Divergent paradigms of European agro-food innovation. Science, Technology, & Human Values, 38(1), 94125.Google Scholar
Lokko, Y., Heijde, M., Schebesta, K., Scholtès, P., van Montagu, M., & Giacca, M. (2018). Biotechnology and the bioeconomy – Towards inclusive and sustainable industrial development. New Biotechnology, 40, 510.Google Scholar
Morone, P., Falcone, P. M., & Lopolito, A. (2019). How to promote a new and sustainable food consumption model: A fuzzy cognitive map study. Journal of Cleaner Production, 208, 563574.Google Scholar
Penasse, L. (1981). Perspectives et contraintes de la bioindustrie. Revue d’économie Industrielle, 18(1), 3037.CrossRefGoogle Scholar
Permeswaran, P. (2010). Chemurgy: Using science innovatively to save American agriculture from overproduction. The History Teacher, 44(1), 95125.Google Scholar
Potts, J. (2018). Governing the innovation commons. Journal of Institutional Economics, 14(6), 10251047.CrossRefGoogle Scholar
Pursell, C. W. (1969). The Farm Chemurgic Council and the United States Department of Agriculture, 1935-1939. Isis, 60(3), 307317.CrossRefGoogle Scholar
Sanders, J., Langevald, H., Kuikman, P., Meeusen, M., & Meijer, G. (2010). The biobased economy: Biofuels, materials and chemicals in the post-oil era, Routledge.CrossRefGoogle Scholar
Shurtleff, W., & Aoyagi, A. (2011). Henry Ford and his researchers – History of their work with soybeans, soyfoods and chemurgy (1928–2011): Extensively annotated bibliography and sourcebook, Soyinfo Center.Google Scholar
Staffas, L., Gustavsson, M., & McCormick, K. (2013). Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability, 5(6), 27512769.Google Scholar
van Laer, A. (2010). Towards a common research policy: From the silence of the EEC Treaty to the Single Act. In Bouneau, C., Burigana, D., & Varsori, A., eds., Trends in technological innovation and the European construction: The emerging of enduring dynamics?, P.I.E.-Peter Lang, pp. 79100.Google Scholar
Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: Volume I – Results of screening for potential candidates from sugars and synthesis gas, Golden, CO (United States).Google Scholar
Zitt, M. (1983). Un cas d’innovation: l’isoglucose. Économie Rurale, 158(1), 4250.Google Scholar

References

Aguilar, A., Magnien, E., & Thomas, D. (2013). Thirty years of European biotechnology programmes: From biomolecular engineering to the bioeconomy. New Biotechnology, 30(5), 410425.Google Scholar
Anastas, P. T., & Warner, J. C. (1998). Green chemistry. Frontiers, 640, 1998.Google Scholar
Andersson, T., Gleadle, P., Haslam, C., & Tsitsianis, N. (2010). Bio-pharma: A financialized business model. Critical Perspectives on Accounting, 21(7), 631641.Google Scholar
Arora, A. (2001). Markets for technology and their implications for corporate strategy. Industrial and Corporate Change, 10(2), 419451.Google Scholar
Audretsch, D. B. (2001). The role of small firms in U.S. biotechnology clusters. Small Business Economics, 17(1/2), 315.Google Scholar
Audretsch, D. B., Lehmann, E. E., & Warning, S. (2005). University spillovers and new firm location. Research Policy, 34(7), 11131122.Google Scholar
Becker, J., Lange, A., Fabarius, J., & Wittmann, C. (2015). Top value platform chemicals: Biobased production of organic acids. Current Opinion in Biotechnology, 36, 168175.Google Scholar
Befort, N. (2020). Going beyond definitions to understand tensions within the bioeconomy: The contribution of sociotechnical regimes to contested fields. Technological Forecasting and Social Change, 153, 119923.Google Scholar
Belussi, F. (2016). The implementation of a new game strategy in biotech form. From start-up to acquisition: The case of Fidia Advanced Biopolymers (now Anika Therapeutics) of Abano Terme. In Belussi, F. & Orsi, L., eds., Innovation, alliances, and networks in high-tech environments., Routledge, pp. 337352.Google Scholar
Bozell, J. J., Moens, L., Elliott, D. C., … Jarnefeld, J. L. (2000). Production of levulinic acid and use as a platform chemical for derived products. Resources, Conservation and Recycling, 28(3–4), 227239.CrossRefGoogle Scholar
Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates – The US Department of Energy’s “Top 10” revisited. Green Chemistry, 12(4), 539554.Google Scholar
Bud, R. (1991). Biotechnology in the twentieth century. Social Studies of Science, 21(3), 415457.Google Scholar
Carothers, W. H. (1937). Linear Condensation Process. US2071250 A., Google Patents.Google Scholar
Carrez, D. (2016). European strategies and policies getting towards a bioeconomy. In Creating sustainable bioeconomies, Routledge, pp. 229243.Google Scholar
Cherubini, F., Jungmeier, G., Wellisch, M., … de Jong, E. (2009). Toward a common classification approach for biorefinery systems. Biofuels, Bioproducts and Biorefining, 3(5), 534546.Google Scholar
Coriat, B., & Orsi, F. (2002). Establishing a new intellectual property rights regime in the United States. Research Policy, 31(8–9), 14911507.Google Scholar
Datta, R. (1992, September 1). Process for the production of succinic acid by anaerobic fermentation, Google Patents.Google Scholar
de Jong, E., Higson, A., Walsh, P., & Wellisch, M. (2012). Product developments in the bio-based chemicals arena. Biofuels, Bioproducts and Biorefining, 6(6), 606624.Google Scholar
Dubois, J.-L. (2011). Requirements for the development of a bioeconomy for chemicals. Current Opinion in Environmental Sustainability, 3(1–2), 1114.Google Scholar
Dunlop, A. P., & Wells, J. P. A. (1957, November 19). Process for producing levulinic acid, Google Patents.Google Scholar
European Commission. (2005). New perspectives on the knowledge‐based bio‐economy: Conference report, European Commission Brussels.Google Scholar
European Commission. (2012). Innovating for Sustainable Growth: A Bioeconomy for Europe (Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions No. SWD(2012) 11 final).Google Scholar
Festel, G., Detzel, C., & Maas, R. (2012). Industrial biotechnology – Markets and industry structure. Journal of Commercial Biotechnology, 18(1). doi:10.5912/jcb478Google Scholar
Fevolden, A., Coenen, L., Hansen, T., & Klitkou, A. (2017). The role of trials and demonstration projects in the development of a sustainable bioeconomy. Sustainability, 9(3), 419.Google Scholar
Fitzpatrick, S. W. (1990). Manufacture of furfural and levulinic acid by acid degradation of lignocellulosic. World Patent, 8910362.Google Scholar
Friedman, D. C., & Ellington, A. D. (2015). Industrialization of biology. ACS Synthetic Biology, 4(10), 10531055.Google Scholar
Garnier, E., & Bliard, C. (2012). The emergence of doubly green chemistry, a narrative approach. European Review of Industrial Economics and Policy, (4).Google Scholar
Gruber, P. R., Hall, E. S., Kolstad, J. J., Iwen, M. L., Benson, R. D., & Borchardt, R. L. (1994, October 18). Continuous process for manufacture of lactide polymers with purification by distillation, Google Patents.Google Scholar
Hellsmark, H., Frishammar, J., Söderholm, P., & Ylinenpää, H. (2016). The role of pilot and demonstration plants in technology development and innovation policy. Research Policy, 45(9), 17431761.CrossRefGoogle Scholar
Hopkins, M. M., Crane, P. A., Nightingale, P., & Baden-Fuller, C. (2013). Buying big into biotech: Scale, financing, and the industrial dynamics of UK biotech, 1980–2009. Industrial and Corporate Change, 22(4), 903952.Google Scholar
Kamm, B., Gruber, P. R., & Kamm, M. (2006). Biorefineries-industrial processes and products, Vol. 2, Wiley-VCH Weinheim.Google Scholar
Leonard, R. H. (1956). Levulinic acid as a basic chemical raw material. Industrial & Engineering Chemistry, 48(8), 13301341.Google Scholar
Levidow, L., Birch, K., & Papaioannou, T. (2012). EU agri-innovation policy: Two contending visions of the bio-economy. Critical Policy Studies, 6(1), 4065.Google Scholar
Lipinsky, E. S., Sinclair, R. G. (1986). Is lactic acid a commodity chemical? Chemical Engineering Progress, 82, 26–32.Google Scholar
McKelvey, M. (2007). Biotechnology industry. In Hanusch, H. & Pyka, A., eds., Elgar companion to neo-schumpeterian economics, Edward Elgar Publishing, pp. 607620.Google Scholar
Meyer, W. G. (1945, August 14). Manufacture of levulinic acid, Google Patents.Google Scholar
Mowery, D. C., & Sampat, B. N. (2004). The Bayh-Dole act of 1980 and university? Industry technology transfer: A model for other OECD governments? The Journal of Technology Transfer, 30(1–2), 115127.Google Scholar
Mustar, P., Wright, M., & Clarysse, B. (2008). University spin-off firms: Lessons from ten years of experience in Europe. Science and Public Policy, 35(2), 6780.Google Scholar
OECD. (2009). The bioeconomy to 2030: Designing a policy agenda, OECD, Paris.Google Scholar
OECD. (2017a). Biomass for a sustainable bioeconomy: Technology and governance.Google Scholar
OECD. (2017b). Towards Bio-Production of Materials: Replacing the oil barrel (No. DSTI/STP/BNCT(2016)17/FINAL).Google Scholar
Patrucco, P. P. (2014). The evolution of knowledge organization and the emergence of a platform for innovation in the car industry. Industry and Innovation, 21(3), 243266.CrossRefGoogle Scholar
Robinson, J. B. (1982). Energy backcasting a proposed method of policy analysis. Energy Policy, 10(4), 337344.Google Scholar
Ronzon, T., Piotrowski, S., M’Barek, R., & Carus, M. (2017). A systematic approach to understanding and quantifying the EU’s bioeconomy. Bio-Based and Applied Economics Journal, 6(1050-2018-3682), 117.Google Scholar
SCAR. (2015). Sustainable agriculture, forestry and fisheries in the bioeconomy – A challenge for Europe. 4th Foresight Exercise.Google Scholar
Schmidt, O., Padel, S., & Levidow, L. (2012). The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-Based and Applied Economics, 1(1), 4763.Google Scholar
Schneider, A. K. (1955, March 1). Polymers of high melting lactide, Google Patents.Google Scholar
SIRA. (2013). Bio-based and Renewable Industries for Development and Growth in Europe.Google Scholar
Staffas, L., Gustavsson, M., & McCormick, K. (2013). Strategies and policies for the bioeconomy and bio-based economy: An analysis of official national approaches. Sustainability, 5(6), 27512769.Google Scholar
Staley Manufacturing Company. (1943). Levulinic acid; a literature reference, compiled by Division of research development, A. E. Staley Manufacturing Co.Google Scholar
Veal, F. J., & Whalley, L. (1981). Renewable resources as chemical feedstocks. Conservation & Recycling, 4(1), 4757.Google Scholar
Vergragt, P. J., & Quist, J. (2011). Backcasting for sustainability: Introduction to the special issue. Technological Forecasting and Social Change, 78(5), 747755.Google Scholar
Werpy, T. A., Frye, J. G., & Holladay, J. E. (2006). Succinic Acid-A Model Building Block for Chemical Production from Renewable Resources, United States: B Kamm, PR Gruber, and M Kamm; Wiley – VCH, Weinham, Germany. Retrieved from www.osti.gov/biblio/895169.Google Scholar
Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: Volume I – Results of screening for potential candidates from sugars and synthesis gas, Golden, CO (United States).Google Scholar
Zeikus, J. G. (1980). Chemical and fuel production by anaerobic bacteria. Annual Review of Microbiology, 34(1), 423464.CrossRefGoogle ScholarPubMed
Zeikus, J. G., Jain, M. K., & Elankovan, P. (1999). Biotechnology of succinic acid production and markets for derived industrial products. Applied Microbiology and Biotechnology, 51(5), 545552.Google Scholar

References

Alejandre, E. M., van Bodegom, P. M., & Guinée, J. B. (2019). Towards an Optimal Coverage of Ecosystem Services in LCA. Journal of Cleaner Production, 231, 714722.Google Scholar
Atanasova, N., Castellar, J. A. C., Pineda-Martos, R., … Langergraber, G. (2021). Nature-Based Solutions and Circularity in Cities. Circular Economy and Sustainability, 1(1), 319332.CrossRefGoogle Scholar
Barbier, E. B. (2012). The Green Economy Post Rio+20. Science, 338(6109), 887888.Google Scholar
Barreiro-Gen, M., & Lozano, R. (2020). How Circular is the Circular Economy? Analysing the Implementation of Circular Economy in Organisations. Business Strategy and the Environment, 29(8), 34843494.Google Scholar
Bastianoni, S., Coscieme, L., Caro, D., Marchettini, N., & Pulselli, F. M. (2019). The Needs of Sustainability: The Overarching Contribution of Systems Approach. Ecological Indicators, 100, 6973.Google Scholar
Borel-Saladin, J. M., & Turok, I. N. (2013). The Green Economy: Incremental Change or Transformation? Environmental Policy and Governance, 23(4), 209220.Google Scholar
Braat, L. C., & de Groot, R. (2012). The Ecosystem Services Agenda: Bridging the Worlds of Natural Science and Economics, Conservation and Development, and Public and Private Policy. Ecosystem Services, 1(1), 415.Google Scholar
Brand, U. (2012). Green Economy – The Next Oxymoron? No Lessons Learned from Failures of Implementing Sustainable Development. GAIA – Ecological Perspectives for Science and Society, 21(1), 2832.Google Scholar
Buchmann-Duck, J., & Beazley, K. F. (2020). An Urgent Call for Circular Economy Advocates to Acknowledge Its Limitations in Conserving Biodiversity. Science of The Total Environment, 727, 138602.Google Scholar
Bugge, M., Hansen, T., & Klitkou, A. (2016). What Is the Bioeconomy? A Review of the Literature. Sustainability, 8(7), 691.Google Scholar
Bull, J. W., & Strange, N. (2018). The Global Extent of Biodiversity Offset Implementation Under No Net Loss Policies. Nature Sustainability, 1(12), 790798.CrossRefGoogle Scholar
Calisto Friant, M., Vermeulen, W. J. V., & Salomone, R. (2020). A Typology of Circular Economy Discourses: Navigating the Diverse Visions of a Contested Paradigm. Resources, Conservation and Recycling, 161, 104917.Google Scholar
Calisto Friant, M., Vermeulen, W. J. V., & Salomone, R. (2021). Analysing European Union Circular Economy Policies: Words versus Actions. Sustainable Production and Consumption, 27, 337353.Google Scholar
Camia, A., Robert, N., Jonsson, K., … Giuntoli, J. (2018). Biomass Production, Supply, Uses and Flows in the European Union: First Results from an Integrated Assessment, European Commission. Retrieved from https://policycommons.net/artifacts/2163241/biomass-production-supply-uses-and-flows-in-the-european-union/Google Scholar
Chizaryfard, A., Trucco, P., & Nuur, C. (2021). The Transformation to a Circular Economy: Framing an Evolutionary View. Journal of Evolutionary Economics, 31(2), 475504.Google Scholar
Clube, R. K. M., & Tennant, M. (2020). The Circular Economy and Human Needs Satisfaction: Promising the Radical, Delivering the Familiar. Ecological Economics, 177, 106772.Google Scholar
Costanza, R., & Daly, H. E. (1992). Natural Capital and Sustainable Development. Conservation Biology, 6(1), 3746.Google Scholar
Costanza, R., de Groot, R., Braat, L., … Grasso, M. (2017). Twenty Years of Ecosystem Services: How Far Have We Come and How Far Do We Still Need to Go? Ecosystem Services, 28, 116.Google Scholar
Dade, M. C., Mitchell, M. G. E., McAlpine, C. A., & Rhodes, J. R. (2019). Assessing Ecosystem Service Trade-Offs and Synergies: The Need for a More Mechanistic Approach. Ambio, 48(10), 11161128.Google Scholar
D’Amato, D. (2021). Sustainability Narratives as Transformative Solution Pathways: Zooming in on the Circular Economy. Circular Economy and Sustainability, 1(1), 231242.Google Scholar
D’Amato, D., Bartkowski, B., & Droste, N. (2020a). Reviewing the Interface of Bioeconomy and Ecosystem Service Research. Ambio, 49(12), 18781896. https://doi.org/10.1007/s13280-020-01374-0Google Scholar
D’Amato, D., Gaio, M., & Semenzin, E. (2020b). A Review of LCA Assessments of Forest-Based Bioeconomy Products and Processes Under an Ecosystem Services Perspective. Science of The Total Environment, 706, 135859.CrossRefGoogle ScholarPubMed
D’Amato, D., & Korhonen, J. (2021). Integrating the Green Economy, Circular Economy and Bioeconomy in a Strategic Sustainability Framework. Ecological Economics, 188, 107143.Google Scholar
D’Amato, D., Korhonen, J., & Toppinen, A. (2019). Circular, Green, and Bio Economy: How Do Companies in Land-Use Intensive Sectors Align with Sustainability Concepts? Ecological Economics, 158, 116133.Google Scholar
D’Amato, D., Veijonaho, S., & Toppinen, A. (2020c). Towards Sustainability? Forest-Based Circular Bioeconomy Business Models in Finnish SMEs. Forest Policy and Economics, 110, 101848.Google Scholar
de Jesus, A., Antunes, P., Santos, R., & Mendonça, S. (2018). Eco-Innovation in the Transition to a Circular Economy: An Analytical Literature Review. Journal of Cleaner Production, 172, 29993018.Google Scholar
Dietz, T., Börner, J., Förster, J., & von Braun, J. (2018). Governance of the Bioeconomy: A Global Comparative Study of National Bioeconomy Strategies. Sustainability, 10(9), 3190.Google Scholar
Droste, N., D’Amato, D., & Goddard, J. J. (2018). Where Communities Intermingle, Diversity Grows – The Evolution of Topics in Ecosystem Service Research. PLOS ONE, 13(9), e0204749.Google Scholar
El-Chichakli, B., von Braun, J., Lang, C., Barben, D., & Philp, J. (2016). Policy: Five Cornerstones of a Global Bioeconomy. Nature, 535(7611), 221223.Google Scholar
European Commission. (2013). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Green Infrastructure (GI) – Enhancing Europe’s Natural Capital – COM(2013). Retrieved from https://eur-lex.europa.eu/legal-content/ES/TXT/PDF/?uri=CELEX:52013DC0249&from=ENGoogle Scholar
Eurostat. (2021b). Private Investments, Jobs and Gross Value Added Related to Circular Economy Sectors. Retrieved from https://ec.europa.eu/eurostat/databrowser/view/cei_cie010/default/table?lang=enGoogle Scholar
Felipe-Lucia, M. R., Martín-López, B., Lavorel, S., Berraquero-Díaz, L., Escalera-Reyes, J., & Comín, F. A. (2015). Ecosystem Services Flows: Why Stakeholders’ Power Relationships Matter. PLOS ONE, 10(7), e0132232.Google Scholar
Ferguson, P. (2015). The Green Economy Agenda: Business as Usual or Transformational Discourse? Environmental Politics, 24(1), 1737.Google Scholar
Frenken, K., & Schor, J. (2017). Putting the Sharing Economy into Perspective. Environmental Innovation and Societal Transitions, 23, 310.Google Scholar
Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The Circular Economy – A New Sustainability Paradigm? Journal of Cleaner Production, 143, 757768.Google Scholar
Ghisellini, P., & Ulgiati, S. (2020). Circular Economy Transition in Italy. Achievements, Perspectives and Constraints. Journal of Cleaner Production, 243, 118360.Google Scholar
Global Bioeconomy Summit (2018). Conference Report Innovation in the Global Bioeconomy for Sustainable and Inclusive Transformation and Wellbeing. Retrieved from https://gbs2020.net/wp-content/uploads/2021/10/GBS_2018_Report_web.pdfGoogle Scholar
Gollner, C. (2020). EUROPE TOWARDS POSITIVE ENERGY DISTRICTS – FIRST UPDATE February 2020, Austria: Joint Programming Initiative (JPI) Urban Europe. Retrieved from https://policycommons.net/artifacts/2033983/europe-towards-positive-energy-districts/Google Scholar
Guenster, N., Bauer, R., Derwall, J., & Koedijk, K. (2011). The Economic Value of Corporate Eco-Efficiency. European Financial Management, 17(4), 679704.Google Scholar
Guerry, A. D., Polasky, S., Lubchenco, J., … Vira, B. (2015). Natural Capital and Ecosystem Services Informing Decisions: From Promise to Practice. Proceedings of the National Academy of Sciences, 112(24), 73487355.Google Scholar
Haines-Young, R., & Potschin, M. (2010). The Links between Biodiversity, Ecosystem Services and Human Well-Being. In Ecosystem Ecology, Cambridge University Press, pp. 110139.Google Scholar
Hart, J., & Pomponi, F. (2021). A Circular Economy: Where Will It Take Us? Circular Economy and Sustainability, 1(1), 127141.Google Scholar
Hetemäki, L., Hanewinkel, M., Muys, B., Ollikainen, M., Palahí, M., & Trasobares, A. (2017). Leading the Way to a European Circular Bioeconomy Strategy. From Science to Policy.Google Scholar
Hobson, K. (2016). Closing the Loop or Squaring the Circle? Locating Generative Spaces for the Circular Economy. Progress in Human Geography, 40(1), 88104.Google Scholar
Hobson, K., & Lynch, N. (2016). Diversifying and De-Growing the Circular Economy: Radical Social Transformation in a Resource-Scarce World. Futures, 82, 1525.Google Scholar
Holmgren, S., D’Amato, D., & Giurca, A. (2020). Bioeconomy Imaginaries: A Review of Forest-Related Social Science Literature. Ambio, 49(12), 18601877.Google Scholar
Howe, C., Suich, H., Vira, B., & Mace, G. M. (2014). Creating Win-Wins from Trade-Offs? Ecosystem Services for Human Well-Being: A Meta-Analysis of Ecosystem Service Trade-offs and Synergies in the Real World. Global Environmental Change, 28, 263275.Google Scholar
Hrabanski, M. (2017). Private Sector Involvement in the Millennium Ecosystem Assessment: Using a UN Platform to Promote Market-Based Instruments for Ecosystem Services. Environmental Policy and Governance, 27(6), 605618.Google Scholar
IPBES. (2018). Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (2018). Summary for policymakers of the regional assessment report on biodiversity and ecosystem services for Europe and Central Asia of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Retrieved from doi:10.5281/zenodo.3237428Google Scholar
Issa, I., Delbrück, S., & Hamm, U. (2019). Bioeconomy from Experts’ Perspectives – Results of a Global Expert Survey. PLOS ONE, 14(5), e0215917.Google Scholar
Kirchherr, J., Piscicelli, L., Bour, R., … Hekkert, M. (2018). Barriers to the Circular Economy: Evidence from the European Union (EU). Ecological Economics, 150, 264272.Google Scholar
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resources, Conservation and Recycling, 127, 221232. https://doi.org/10.1016/j.resconrec.2017.09.005Google Scholar
Korhonen, J., Nuur, C., Feldmann, A., & Birkie, S. E. (2018). Circular Economy as an Essentially Contested Concept. Journal of Cleaner Production, 175, 544552.Google Scholar
Kovacic, Z., Strand, R., Funtowicz, S., Benini, L., & Jesus, A. (2021). Growth without Economic Growth.Google Scholar
Kröger, M., & Raitio, K. (2017). Finnish Forest Policy in the era of Bioeconomy: A Pathway to Sustainability? Forest Policy and Economics, 77, 615.Google Scholar
Ladu, L., & Blind, K. (2017). Overview of Policies, Standards and Certifications Supporting the European Bio-Based Economy. Current Opinion in Green and Sustainable Chemistry, 8, 3035.Google Scholar
Lewandowski, M. (2016). Designing the Business Models for Circular Economy – Towards the Conceptual Framework. Sustainability, 8(1), 43.Google Scholar
Loiseau, E., Saikku, L., Antikainen, R., … Thomsen, M. (2016). Green Economy and Related Concepts: An Overview. Journal of Cleaner Production, 139, 361371.Google Scholar
Loorbach, D., Schoenmaker, D., & Schramade, W. (2020). Finance in Transition: Principles for a Positive Finance Future, Rotterdam: Rotterdam School of Management, Erasmus University. Retrieved from www.rsm.nl/fileadmin/Images_NEW/Positive_Change/2020_Finance_in_Transition.pdfGoogle Scholar
Lorek, S., & Spangenberg, J. H. (2014). Sustainable Consumption within a Sustainable Economy – Beyond Green Growth and Green Economies. Journal of Cleaner Production, 63, 3344.Google Scholar
Luederitz, C., Abson, D. J., Audet, R., & Lang, D. J. (2017). Many Pathways Toward Sustainability: Not Conflict But Co-Learning Between Transition Narratives. Sustainability Science, 12(3), 393407.Google Scholar
Mastini, R., Kallis, G., & Hickel, J. (2021). A Green New Deal without Growth? Ecological Economics, 179, 106832.Google Scholar
McAfee, K. (2012). The Contradictory Logic of Global Ecosystem Services Markets. Development and Change, 43(1), 105131.Google Scholar
McDowall, W., Geng, Y., Huang, B., … Doménech, T. (2017). Circular Economy Policies in China and Europe. Journal of Industrial Ecology, 21(3), 651661.Google Scholar
Merino-Saum, A., Clement, J., Wyss, R., & Baldi, M. G. (2020). Unpacking the Green Economy Concept: A Quantitative Analysis of 140 Definitions. Journal of Cleaner Production, 242, 118339.CrossRefGoogle Scholar
Merli, R., Preziosi, M., & Acampora, A. (2018). How Do Scholars Approach the Circular Economy? A Systematic Literature Review. Journal of Cleaner Production, 178, 703722.CrossRefGoogle Scholar
Meyer, R. (2017). Bioeconomy Strategies: Contexts, Visions, Guiding Implementation Principles and Resulting Debates. Sustainability, 9(6), 1031.Google Scholar
Millar, N., McLaughlin, E., & Börger, T. (2019). The Circular Economy: Swings and Roundabouts? Ecological Economics, 158, 1119.Google Scholar
Millennium Ecosystem Assessment. (2005). Ecosystems and Human Well-being: Synthesis, Washington, DC. Retrieved from www.millenniumassessment.org/documents/document.356.aspx.pdfGoogle Scholar
Murray, A., Skene, K., & Haynes, K. (2017). The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. Journal of Business Ethics, 140(3), 369380.Google Scholar
Mustalahti, I. (2018). The Responsive Bioeconomy: The Need for Inclusion of Citizens and Environmental Capability in the Forest Based Bioeconomy. Journal of Cleaner Production, 172, 37813790.Google Scholar
Neill, A. M., O’Donoghue, C., & Stout, J. C. (2020). A Natural Capital Lens for a Sustainable Bioeconomy: Determining the Unrealised and Unrecognised Services from Nature. Sustainability, 12(19), 8033.Google Scholar
Oliveira, M., Miguel, M., van Langen, S. K., … Genovese, A. (2021). Circular Economy and the Transition to a Sustainable Society: Integrated Assessment Methods for a New Paradigm. Circular Economy and Sustainability, 1(1), 99113.Google Scholar
O’Neill, K., & Gibbs, D. (2016). Rethinking Green Entrepreneurship – Fluid Narratives of the Green Economy. Environment and Planning A: Economy and Space, 48(9), 17271749.Google Scholar
Palahi, M., Pantsar, M., Costanza, R., … Fioramonti, L. (2020). Investing in Nature to Transform the Post COVID-19 Economy: A 10-point Action Plan to Create a Circular Bioeconomy Devoted to Sustainable Wellbeing. Solutions, 2(11).Google Scholar
Pearce, D., Markandya, A., & Barbier, E. (2013). Blueprint 1: For a Green Economy, Routledge.Google Scholar
Pedersen, S., Gangås, K. E., Chetri, M., & Andreassen, H. P. (2020). Economic Gain vs. Ecological Pain – Environmental Sustainability in Economies Based on Renewable Biological Resources. Sustainability, 12(9), 3557.Google Scholar
Pfau, S., Hagens, J., Dankbaar, B., & Smits, A. (2014). Visions of Sustainability in Bioeconomy Research. Sustainability, 6(3), 12221249.Google Scholar
Priefer, C., Jörissen, J., & Frör, O. (2017). Pathways to Shape the Bioeconomy. Resources, 6(1), 10.Google Scholar
Ramcilovic-Suominen, S., & Pülzl, H. (2018). Sustainable Development – A ‘Selling Point’ of the Emerging EU Bioeconomy Policy Framework? Journal of Cleaner Production, 172, 41704180.Google Scholar
Reike, D., Vermeulen, W. J. V., & Witjes, S. (2018). The Circular Economy: New or Refurbished as CE 3.0? – Exploring Controversies in the Conceptualization of the Circular Economy through a Focus on History and Resource Value Retention Options. Resources, Conservation and Recycling, 135, 246264.Google Scholar
Robinson, D. J. (2015). Building a Green Economy. In The Energy Economy, New York: Palgrave Macmillan US, pp. 173191.Google Scholar
Ronzon, T., Piotrowski, S., M’barek, R., Carus, M., & Tamošiūnas, S. (2018). Jobs and Wealth in the EU Bioeconomy (JRC-Bioeconomics). European Commission, Joint Research Centre(JRC).Google Scholar
Ronzon, T., Piotrowski, S., Tamosiunas, S., Dammer, L., Carus, M., & M’barek, R. (2020). Developments of Economic Growth and Employment in Bioeconomy Sectors across the EU. Sustainability, 12(11), 4507.Google Scholar
Rugani, B., Maia de Souza, D., Weidema, B. P., … Verones, F. (2019). Towards Integrating the Ecosystem Services Cascade Framework Within the Life Cycle Assessment (LCA) Cause-Effect Methodology. Science of The Total Environment, 690, 12841298.Google Scholar
Russell, M., Gianoli, A., & Grafakos, S. (2020). Getting the Ball Rolling: An Exploration of the Drivers and Barriers Towards the Implementation of Bottom-Up Circular Economy Initiatives in Amsterdam and Rotterdam. Journal of Environmental Planning and Management, 63(11), 19031926.Google Scholar
Sabato, S., & Fronteddu, B. (2020). A Socially Just Transition Through the European Green Deal? SSRN Electronic Journal. doi:10.2139/ssrn.3699367Google Scholar
Sanz-Hernández, A., Esteban, E., & Garrido, P. (2019). Transition to a Bioeconomy: Perspectives from Social Sciences. Journal of Cleaner Production, 224, 107119.Google Scholar
Sauvé, S., Bernard, S., & Sloan, P. (2016). Environmental Sciences, Sustainable Development and Circular Economy: Alternative Concepts for Trans-Disciplinary Research. Environmental Development, 17, 4856.Google Scholar
Schäpke, N., & Rauschmayer, F. (2014). Going Beyond Efficiency: Including Altruistic Motives in Behavioral Models for Sustainability Transitions to Address Sufficiency. Sustainability: Science, Practice and Policy, 10(1), 2944.Google Scholar
Schoenmakere, M. de, Hoogeveen, Y., Gillabel, J., & Manshoven, S. (2018). The Circular Economy and the Bioeconomy: Partners in Sustainability. EEA Report, (8/2018). Retrieved from www.eea.europa.eu/publications/circular-economy-and-bioeconomyGoogle Scholar
Schröder, P., Anantharaman, M., Anggraeni, K., & Foxon, T. J. (2019). The Circular Economy and the Global South (Schröder, P., Anantharaman, M., Anggraeni, K., & Foxon, T. J., Eds.), Routledge. doi:10.4324/9780429434006Google Scholar
Sikdar, S. (2019). Circular Economy: Is There Anything New in this Concept? Clean Technologies and Environmental Policy, 21(6), 11731175.Google Scholar
Smith, A. C., Harrison, P. A., Pérez Soba, M., … Wyllie de Echeverria, V. (2017). How Natural Capital Delivers Ecosystem Services: A Typology Derived from a Systematic Review. Ecosystem Services, 26, 111126.Google Scholar
Stegmann, P., Londo, M., & Junginger, M. (2020). The Circular Bioeconomy: Its Elements and Role in European Bioeconomy Clusters. Resources, Conservation & Recycling: X, 6, 100029.Google Scholar
ten Brink, P., Mazza, L., Badura, T., Kettunen, M., & Withana, S. (2012). Nature and Its Role in the Transition to a Green Economy. A TEEB Report. Forthcoming www.Teebweb.org and www.Ieep.eu.Google Scholar
The Ellen MacArthur Foundation. (2015). Towards a Circular Economy: Business Rationale for an Accelerated Transition. Retrieved from https://ellenmacarthurfoundation.org/towards-a-circular-economy-business-rationale-for-an-accelerated-transitionGoogle Scholar
Tomaselli, M. F., Hajjar, R., Ramón-Hidalgo, A. E., & Vásquez-Fernández, A. M. (2017). The Problematic Old Roots of the New Green Economy Narrative: How Far Can it Take Us in Re-Imagining Sustainability in Forestry? International Forestry Review, 19(1), 139151.CrossRefGoogle Scholar
Toppinen, A., D’Amato, D., & Stern, T. (2020). Forest-Based Circular Bioeconomy: Matching Sustainability Challenges and Novel Business Opportunities? Forest Policy and Economics, 110, 102041.Google Scholar
UNEP. (2011). Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication. Retrieved September 16, 2022, from https://sustainabledevelopment.un.org/index.php?page=view&type=400&nr=126&menu=35Google Scholar
Urban Nature Atlas. (2021). A Collection of More than 1000 Inspiring Nature-based Solutions from European Cities and beyond. Retrieved September 16, 2022, from https://una.city/Google Scholar
Vivien, F.-D., Nieddu, M., Befort, N., Debref, R., & Giampietro, M. (2019). The Hijacking of the Bioeconomy. Ecological Economics, 159, 189197.Google Scholar
Winans, K., Kendall, A., & Deng, H. (2017). The History and Current Applications of the Circular Economy Concept. Renewable and Sustainable Energy Reviews, 68, 825833.Google Scholar
World Economic Forum, & AlphaBeta. (2020). New Nature Economy Report II: The Future of Nature and Business, Switzerland, Cologny/Geneva. Retrieved from www3.weforum.org/docs/WEF_The_Future_Of_Nature_And_Business_2020.pdfGoogle Scholar
Wunder, S., Brouwer, R., Engel, S., … Pinto, R. (2018). From Principles to Practice in Paying for Nature’s Services. Nature Sustainability, 1(3), 145150.Google Scholar
Zeug, W., Bezama, A., & Thrän, D. (2020). Towards a Holistic and Integrated Life Cycle Sustainability Assessment of the Bioeconomy: Background on Concepts, Visions and Measurements, Leipzig: Helmholtz-Zentrum für Umweltforschung (UFZ).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×