Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T10:20:39.252Z Has data issue: false hasContentIssue false

16 - Assessing the effectiveness of a protected area network in the face of climatic change

from Section 4 - Conservation

Published online by Cambridge University Press:  16 May 2011

B. Huntley
Affiliation:
Durham University, UK
D. G. Hole
Affiliation:
Durham University, UK
S. G. Willis
Affiliation:
Durham University, UK
Trevor R. Hodkinson
Affiliation:
Trinity College, Dublin
Michael B. Jones
Affiliation:
Trinity College, Dublin
Stephen Waldren
Affiliation:
Trinity College, Dublin
John A. N. Parnell
Affiliation:
Trinity College, Dublin
Get access

Summary

Abstract

Climatic change is expected to result in changes in species' distributions. However, current networks of protected areas, designed to conserve biodiversity, have been designated and designed on the basis of a paradigm of long-term stability of species' geographical distributions. As a result, these networks may not be effective in conserving biodiversity in a world with rapidly changing climatic conditions. We investigate this using as a model system the 1679 bird species breeding in sub-Saharan Africa and the network of 803 Important Bird Areas (IBAs) designated in the region by Bird Life International. Using climatic envelope models fitted to species' present distributions and the current climate, species' present and potential future occurrences in IBAs were simulated. The results show that the current network has the potential to maintain most species throughout the present century. However, they also indicate that this outcome depends upon substantial potential species turnover in many IBAs. This is only likely if the connectivity of the current network is enhanced substantially in key areas, and will also depend upon sympathetic management of the wider landscape, so as to enhance its permeability, and appropriate management of individual sites, taking into account their role in the overall network.

Introduction

It is now generally accepted that anthropogenic activities have resulted in global climatic changes over the past century (Trenberth et al.,2007); they may even have done so over several millennia (Ruddiman, 2003).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J. R. M., Long, A. J., Ottley, C. J., Pearson, D. G. and Huntley, B. (2007). Holocene climate variability in northernmost Europe. Quaternary Science Reviews, 26, 1432–1453.CrossRefGoogle Scholar
Allouche, O., Tsoar, A. and Kadmon, R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology, 43, 1223–1232.CrossRefGoogle Scholar
Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. and Williams, P. H. (2004). Would climate change drive species out of reserves? An assessment of existing reserve-selection methods. Global Change Biology, 10, 1618–1626.CrossRefGoogle Scholar
Barnard, P. and Thuiller, W. (2008). Global change and biodiversity: future challenges. Biology Letters, 4, 553–555.CrossRefGoogle ScholarPubMed
Beale, C. M., Lennon, J. J. and Gimona, A. (2008). Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences of the USA, 105, 14908–14912.CrossRefGoogle ScholarPubMed
Beerling, D. J., Huntley, B. and Bailey, J. P. (1995). Climate and the distribution of Fallopia japonica: use of an introduced species to test the predictive capacity of response surfaces. Journal of Vegetation Science, 6, 269–282.CrossRefGoogle Scholar
International, BirdLife (2000). Threatened Birds of the World. Barcelona and Cambridge: Lynx Edicions and BirdLife International.Google Scholar
Brooks, T., Balmford, A., Burgess, N. et al. (2001). Toward a blueprint for conservation in Africa. BioScience, 51, 613–624.CrossRefGoogle Scholar
Burgess, N. D., Fjeldså, J. and Rahbek, C. (1998). Mapping the distributions of Afrotropical vertebrate groups. Species, 30, 16–17.Google Scholar
Cleveland, W. S. and Devlin, S. J. (1988). Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 83, 596–610.CrossRefGoogle Scholar
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurements, 20, 37–46.CrossRefGoogle Scholar
Cubasch, U., Meehl, G. A., Boer, G. J. et al. (2001). Projections of future climate change. In Climate Change 2001: the Scientific Basis, ed. Houghton, J. T., Ding, Y., Griggs, D. J. et al. Cambridge: Cambridge University Press, pp. 525–582.Google Scholar
Davis, A. J., Jenkinson, L. S., Lawton, J. H., Shorrocks, B. and Wood, S. (1998). Making mistakes when predicting shifts in species range in response to global warming. Nature, 391, 783–786.CrossRefGoogle ScholarPubMed
Doswald, N., Willis, S. G., Collingham, Y. C. et al. (2009). Potential impacts of climatic change on the breeding and non-breeding ranges and migration distance of European Sylvia warblers. Journal of Biogeography, 36, 1194–1208.CrossRefGoogle Scholar
,Environmental Systems Research Institute (ESRI) (1998). ArcInfo, version 7.2.1. Redlands, CA: ESRI.
,European Project for Ice Coring in Antarctica (EPICA) Community Members (2004). Eight glacial cycles from an Antarctic ice core. Nature, 429, 623–628.CrossRefGoogle Scholar
Fielding, A. H. and Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24, 38–49.CrossRefGoogle Scholar
Fishpool, L. D. C. and Evans, M. I. (2001). Important Bird Areas in Africa and Associated Islands: Priority Sites for Conservation. Barcelona: BirdLife International and Lynx Edicions.Google Scholar
Fronval, T. and Jansen, E. (1997). Eemian and early Weichselian (140–60 ka) paleoceanography and paleoclimate in the Nordic seas with comparisons to Holocene conditions. Paleoceanography, 12, 443–462.CrossRefGoogle Scholar
Gaston, K. J. (2003). The Structure and Dynamics of Geographic Ranges. Oxford: Oxford University Press.Google Scholar
Gordon, C., Cooper, C., Senior, C. A. et al. (2000). The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dynamics, 16, 147–168.CrossRefGoogle Scholar
Green, R. E., Collingham, Y. C., Willis, S. G. et al. (2008). Performance of climate envelope models in retrodicting recent changes in bird population size from observed climatic change. Biology Letters, 4, 599–602.CrossRefGoogle ScholarPubMed
,Greenland Ice-core Project (GRIP) Members (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature, 364, 203–207.CrossRefGoogle Scholar
Gregory, R. D., Willis, S. G., Jiguet, F. et al. (2009). An indicator of the impact of climatic change on European bird populations. PLoS ONE, 4, e4678.CrossRefGoogle ScholarPubMed
Hannah, L. (2008). Protected areas and climate change. In Year in Ecology and Conservation Biology 2008, ed. Ostfeld, R. S. and Schlesinger, W. H.. Oxford: Blackwell, pp. 201–212.Google Scholar
Hannah, L., Midgley, G., Andelman, S. et al. (2007). Protected area needs in a changing climate. Frontiers in Ecology and the Environment, 5, 131–138.CrossRefGoogle Scholar
Hijmans, R. J. and Graham, C. H. (2006). The ability of climate envelope models to predict the effect of climate change on species distributions. Global Change Biology, 12, 2272–2281.CrossRefGoogle Scholar
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
Hole, D. G., Willis, S. G., Pain, D. J. et al. (2009). Projected impacts of climate change on a continent-wide protected area network. Ecology Letters, 12, 420–431.CrossRefGoogle ScholarPubMed
Hole, D. G., Huntley, B., Arinaitwe, J. et al. (in press). Towards a management framework for key biodiversity networks in the face of climatic change. Conservation Biology.
Hopkins, J. J., Allison, H. M., Walmsley, C. A., Gaywood, M. and Thurgate, G. (2007). Conserving Biodiversity in a Changing Climate: Guidance on Building Capacity to Adapt. London: Department for Environment, Food and Rural Affairs.Google Scholar
Huntley, B. (2007). Climatic Change and the Conservation of European Biodiversity: Towards the Development of Adaptation Strategies. Strasbourg: Council of Europe, Convention of the Conservation of European Wildlife and Natural Habitats.Google Scholar
Huntley, B. and Webb, T. (1989). Migration: species' response to climatic variations caused by changes in the earth's orbit. Journal of Biogeography, 16, 5–19.CrossRefGoogle Scholar
Huntley, B., Bartlein, P. J. and Prentice, I. C. (1989). Climatic control of the distribution and abundance of beech (Fagus L.) in Europe and North America. Journal of Biogeography, 16, 551–560.CrossRefGoogle Scholar
Huntley, B., Berry, P. M., Cramer, W. P. and McDonald, A. P. (1995). Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography, 22, 967–1001.CrossRefGoogle Scholar
Huntley, B., Collingham, Y. C., Green, R. E. et al. (2006). Potential impacts of climatic change upon geographical distributions of birds. Ibis, 148, 8–28.CrossRefGoogle Scholar
Huntley, B., Green, R. E., Collingham, Y. C. and Willis, S. G. (2007). A Climatic Atlas of European Breeding Birds. Barcelona: Lynx Edicions.Google Scholar
Huntley, B., Collingham, Y. C., Willis, S. G. and Green, R. E. (2008). Potential impacts of climatic change on European breeding birds. PLoS ONE, 3, e1439.CrossRefGoogle ScholarPubMed
Huntley, B., Barnard, P., Altwegg, R. et al. (2010). Beyond bioclimatic envelopes: dynamic species' range and abundance modelling in the context of climatic change. Ecography, 33, 621–626.CrossRef
Hutchinson, M. F. (1989). A New Objective Method for Spatial Interpolation of Meteorological Variables from Irregular Networks Applied to the Estimation of Monthly Mean Solar Radiation, Temperature, Precipitation and Windrun. Technical Memo 89/5. Canberra: CSIRO Division of Water Resources.Google Scholar
Jansen, E., Overpeck, J., Keith, R. B. et al. (2007). Paleoclimate. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 433–497.Google Scholar
Juckes, M. N., Allen, M. R., Briffa, K. R. et al. (2007). Millennial temperature reconstruction intercomparison and evaluation. Climate of the Past, 3, 591–609.CrossRefGoogle Scholar
Knutson, T. R., Delworth, T. L., Dixon, K. W. and Stouffer, R. J. (1999). Model assessment of regional surface temperature trends (1949–1997). Journal of Geophysical Research-Atmospheres, 104, 30981–30996.CrossRefGoogle Scholar
Leemans, R. and Cramer, W. (1991). The IIASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness of a Global Terrestrial Grid. Laxenburg: International Institute for Applied Systems Analysis (IIASA).Google Scholar
Luoto, M., Virkkala, R. and Heikkinen, R. K. (2007). The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16, 34–42.CrossRefGoogle Scholar
McDermott, F., Mattey, D. P. and Hawkesworth, C. (2001). Centennial-scale Holocene climate variability revealed by a high-resolution speleothem δ18O record from SW Ireland. Science, 294, 1328–1331.CrossRefGoogle ScholarPubMed
Meehl, G. A., Stocker, T. F., Collins, W. D. et al. (2007). Global climate projections. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 747–845.Google Scholar
Nakicenovic, N. and Swart, R. (2000). Emissions Scenarios. Special Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Pearson, R. G. and Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?Global Ecology and Biogeography, 12, 361–371.CrossRefGoogle Scholar
Pearson, R. G., Thuiller, W., Araújo, M. B. et al. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33, 1704–1711.CrossRefGoogle Scholar
Prentice, I. C., Cramer, W., Harrison, S. P. et al. (1992). A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19, 117–134.CrossRefGoogle Scholar
Roeckner, E., Oberhuber, J. M., Bacher, A., Christoph, M. and Kirchner, I. (1996). ENSO variability and atmospheric response in a global coupled atmosphere-ocean GCM. Climate Dynamics, 12, 737–754.CrossRefGoogle Scholar
Ruddiman, W. F. (2003). The anthropogenic greenhouse era began thousands of years ago. Climatic Change, 61, 261–293.CrossRefGoogle Scholar
Sutherland, W. J. (2006). Predicting the ecological consequences of environmental change: a review of the methods. Journal of Applied Ecology, 43, 599–616.CrossRefGoogle Scholar
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.CrossRefGoogle ScholarPubMed
Thomas, C. D., Cameron, A., Green, R. E. et al. (2004). Extinction risk from climate change. Nature, 427, 145–148.CrossRefGoogle ScholarPubMed
Thuiller, W. (2004). Patterns and uncertainties of species' range shifts under climate change. Global Change Biology, 10, 2020–2027.CrossRefGoogle Scholar
Trenberth, K. E., Jones, P. D., Ambenje, P. et al. (2007). Observations: surface and atmospheric climate change. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Solomon, S., Qin, D., Manning, M. et al. Cambridge: Cambridge University Press, pp. 235–336.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×