Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T12:47:24.836Z Has data issue: false hasContentIssue false

Chapter 4 - Laboratory Investigation of Mitochondrial Diseases

from Section 1 - Introduction to Mitochondrial Medicine

Published online by Cambridge University Press:  28 April 2018

Patrick F. Chinnery
Affiliation:
University of Cambridge
Michael J. Keogh
Affiliation:
University of Newcastle upon Tyne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

McFarland, R., Taylor, R.W. and Turnbull, D. M. A neurological perspective on mitochondrial disease. The Lancet Neurology 2010; 9: 829840.Google Scholar
Parikh, S., Goldstein, A., Koenig, M. K., et al. Diagnosis and management of mitochondrial disease: A consensus statement from the Mitochondrial Medicine Society. Genet Med 2015; 17: 689701.Google Scholar
Johnson, M. A., Turnbull, D. M., Dick, D. J., et al. A partial deficiency of cytochrome c oxidase in chronic progressive external ophthalmoplegia. J Neurol Sci 1983; 60: 3153.CrossRefGoogle ScholarPubMed
Taylor, R.W., Giordano, C., Davidson, M. M., et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. Journal of the American College of Cardiology 2003; 41: 17861796.Google Scholar
Zhu, Z., Yao, J., Johns, T., et al. SURF1, encoding a factor involved in the biogenesis of cytochrome c oxidase, is mutated in Leigh syndrome. Nat Genet 1998; 20: 337343.Google Scholar
Tiranti, V., Hoertnagel, K., Carrozzo, R., et al. Mutations of SURF-1 in Leigh disease associated with cytochrome c oxidase deficiency. American Journal of Human Genetics 1998; 63: 16091621.Google Scholar
Papadopoulou, L. C., Sue, C. M., Davidson, M. M., et al. Fatal infantile cardioencephalomyopathy with COX deficiency and mutations in SCO2, a COX assembly gene. Nat Genet 1999; 23: 333337.CrossRefGoogle ScholarPubMed
Bonilla, E., Sciacco, M., Tanji, K., et al. New morphological approaches to the study of mitochondrial encephalomyopathies. Brain Pathology (Zurich, Switzerland) 1992; 2: 113119.Google Scholar
Sciacco, M., Bonilla, E., Schon, E. A., et al. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with mitochondrial myopathy. Hum Mol Genet 1994; 3: 1319.Google Scholar
Durham, S. E., Samuels, D. C., Cree, L. M., et al. Normal levels of wild-type mitochondrial DNA maintain cytochrome c oxidase activity for two pathogenic mitochondrial DNA mutations but not for m.3243A–>G. American Journal of Human Genetics 2007; 81: 189195.CrossRefGoogle Scholar
Muller-Hocker, J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart – an age related phenomenon. A histochemical ultracytochemical study. The American Journal of Pathology 1989; 134: 11671173.Google ScholarPubMed
Bender, A., Krishnan, K. J., Morris, C. M., et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 2006; 38: 515517.CrossRefGoogle ScholarPubMed
Rygiel, K. A., Tuppen, H. A., Grady, J. P., et al. Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Res 2016; 44: 5313, 5329.Google Scholar
Taylor, R. W., Barron, M. J., Borthwick, G. M., et al. Mitochondrial DNA mutations in human colonic crypt stem cells. The Journal of Clinical Investigation 2003; 112: 13511360.Google Scholar
Tanji, K. and Bonilla, E. Optical imaging techniques (histochemical, immunohistochemical, and in situ hybridization staining methods) to visualize mitochondria. Methods in Cell Biology 2007; 80: 135, 154.Google ScholarPubMed
Rahman, S., Lake, B. D., Taanman, J. W., et al. Cytochrome oxidase immunohistochemistry: Clues for genetic mechanisms. Brain 2000; 123: Pt. 3, 591600.Google Scholar
Rocha, M. C., Grady, J. P., Grunewald, A., et al. A novel immunofluorescent assay to investigate oxidative phosphorylation deficiency in mitochondrial myopathy: Understanding mechanisms and improving diagnosis. Scientific Reports 2015; 5: 15037.Google Scholar
Luft, R., Ikkos, D., Palmieri, G., et al. A case of severe hypermetabolism of non-thyroid origin with a defect in the maintenance of mitochondrial respiratory control. A correlated clinical, biochemical and morphological study. J Clin Invest 1962; 41: 17761804.CrossRefGoogle Scholar
Mayr, J. A., Haack, T. B., Freisinger, P., et al. Spectrum of combined respiratory chain defects. Journal of Inherited Metabolic Disease 2015; 38: 629640.Google Scholar
Kirby, D. M., Thorburn, D. R., Turnbull, D. M., et al. Biochemical assays of respiratory chain complex activity. Methods in Cell Biology 2007; 80: 93119.Google Scholar
Rodenburg, R. J., Schoonderwoerd, G. C., Tiranti, V., et al. A multi-center comparison of diagnostic methods for the biochemical evaluation of suspected mitochondrial disorders. Mitochondrion 2013; 13: 3643.CrossRefGoogle ScholarPubMed
Medja, F., Allouche, S., Frachon, P., et al. Development and implementation of standardized respiratory chain spectrophotometric assays for clinical diagnosis. Mitochondrion 2009; 9: 331339.Google Scholar
Invernizzi, F., D’Amato, I., Jensen, P. B., et al. Microscale oxygraphy reveals OXPHOS impairment in MRC mutant cells. Mitochondrion 2012; 12: 328335.Google Scholar
Bonnen, P. E., Yarham, J. W., Besse, A., et al. Mutations in FBXL4 cause mitochondrial encephalopathy and a disorder of mitochondrial DNA maintenance. American Journal of Human Genetics 2013; 93: 471481.Google Scholar
McKenzie, M., Lazarou, M., Thorburn, D. R., et al. Analysis of mitochondrial subunit assembly into respiratory chain complexes using Blue Native polyacrylamide gel electrophoresis. Anal Biochem 2007; 364: 128137.CrossRefGoogle ScholarPubMed
Lim, S. C., Smith, K. R., Stroud, D. A., et al. A founder mutation in PET100 causes isolated complex IV deficiency in Lebanese individuals with Leigh syndrome. American Journal of Human Genetics 2014; 94: 209222.CrossRefGoogle ScholarPubMed
Thompson Legault, J., Strittmatter, L., Tardif, J., et al. A metabolic signature of mitochondrial dysfunction revealed through a monogenic form of Leigh syndrome. Cell Rep 2015; 13: 981989.Google Scholar
Floyd, B. J., Wilkerson, E. M., Veling, M. T., et al. Mitochondrial protein interaction mapping identifies regulators of respiratory chain function. Mol Cell 2016; 63: 621632.Google Scholar
Frazier, A. E., Thorburn, D. R. and Compton, A. G. Mitochondrial energy generation disorders: genes, mechanisms and clues to pathology. Journal of Biological Chemistry 2018 doi: 10.1074/jbc.R117.809194. [Epub ahead of print].Google Scholar
Kirby, D. M. and Thorburn, D. R. Approaches to finding the molecular basis of mitochondrial oxidative phosphorylation disorders. Twin Res Hum Genet 2008; 11: 395411.Google Scholar
Carroll, C. J., Brilhante, V. and Suomalainen, A. Next-generation sequencing for mitochondrial disorders. British Journal of Pharmacology 2014; 171: 18371853.CrossRefGoogle ScholarPubMed
Zhang, W., Cui, H. and Wong, L. J. Comprehensive one-step molecular analyses of mitochondrial genome by massively parallel sequencing. Clinical Chemistry 2012; 58: 13221331.CrossRefGoogle ScholarPubMed
Kohda, M., Tokuzawa, Y., Kishita, Y., et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies. PLoS genetics 2016; 12: e1005679.Google Scholar
Rahman, S., Poulton, J., Marchington, D., et al. Decrease of 3243 A->G mtDNA mutation from blood in MELAS syndrome: A longitudinal study. American Journal of Human Genetics 2001; 68: 238240.Google Scholar
Whittaker, R. G., Blackwood, J. K., Alston, C. L., et al. Urine heteroplasmy is the best predictor of clinical outcome in the m.3243A>G mtDNA mutation. Neurology 2009; 72: 568569.CrossRefGoogle ScholarPubMed
Broomfield, A., Sweeney, M. G., Woodward, C. E., et al. Paediatric single mitochondrial DNA deletion disorders: An overlapping spectrum of disease. Journal of Inherited Metabolic Disease 2015; 238: 445457.CrossRefGoogle Scholar
He, L., Chinnery, P. F., Durham, S. E., et al. Detection and quantification of mitochondrial DNA deletions in individual cells by real-time PCR. Nucleic Acids Res 2002; 30: e68.CrossRefGoogle ScholarPubMed
Chinnery, P. F., DiMauro, S., Shanske, S., et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 2004; 364: 592596.Google Scholar
Dimmock, D., Tang, L. Y., Schmitt, E. S., et al. Quantitative evaluation of the mitochondrial DNA depletion syndrome. Clinical Chemistry 2010; 56: 11191127.CrossRefGoogle ScholarPubMed
DiMauro, S. Mitochondrial encephalomyopathies – fifty years on: The Robert Wartenberg Lecture. Neurology 2013; 81: 281291.CrossRefGoogle ScholarPubMed
Ye, F., Samuels, D. C., Clark, T., et al. High-throughput sequencing in mitochondrial DNA research. Mitochondrion 2014; 17: 157163.Google Scholar
Griffin, H. R., Pyle, A., Blakely, E. L., et al. Accurate mitochondrial DNA sequencing using off target reads provides a single test to identify pathogenic point mutations. Genet Med 2014; 16: 962, 971.Google Scholar
Saneto, R. P. and Sedensky, M. M. Mitochondrial disease in childhood: mtDNA encoded. Neurotherapeutics 2013; 10: 199211.CrossRefGoogle ScholarPubMed
Kirby, D. M., Boneh, A., Chow, C. W., et al. Low mutant load of mitochondrial DNA G13513A mutation can cause Leigh disease. Ann Neurol 2003; 54: 473478.CrossRefGoogle Scholar
Gorman, G. S., Schaefer, A. M., Ng, Y., et al. Prevalence of nuclear and mtDNA mutations related to adult mitochondrial disease. Annals of Neurology. 2015; May; 77(5):753759.Google Scholar
Sallevelt, S. C., de Die-Smulders, C. E., Hendrickx, A. T., et al. De novo mtDNA point mutations are common and have a low recurrence risk. Journal of Medical Genetics. 2017 Feb; 54(2):7383.Google Scholar
Neveling, K., Feenstra, I., Gilissen, C., et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases. Hum Mutat 2013; 34: 17211726.Google Scholar
Calvo, S. E., Tucker, E. J., Compton, A. G., et al. High-throughput, pooled sequencing identifies mutations in NUBPL and FOXRED1 in human complex I deficiency. Nat Genet 2010; 42: 851858.Google Scholar
Platt, J., Cox, R. and Enns, G. M. Points to consider in the clinical use of NGS panels for mitochondrial disease: An analysis of gene inclusion and consent forms. Journal of Genetic Counseling 2014; 23: 594603.CrossRefGoogle ScholarPubMed
Haack, T. B., Danhauser, K., Haberberger, , et al. Exome sequencing identifies ACAD9 mutations as a cause of complex I deficiency. Nat Genet 2010; 42: 11311134.CrossRefGoogle ScholarPubMed
Ashley, E. A. Towards precision medicine. Nat Rev Genet 2016; 17: 507522.CrossRefGoogle ScholarPubMed
Ding, J., Sidore, C., Butler, T. J., et al. Assessing mitochondrial DNA variation and copy number in lymphocytes of ~2,000 Sardinians using tailored sequencing analysis tools. PLoS genetics 2015; 11, e1005306.Google Scholar
MacArthur, D. G., Manolio, T. A., Dimmock, D. P., et al. Guidelines for investigating causality of sequence variants in human disease. Nature 2014; 508: 469476.Google Scholar
Richards, S., Aziz, N., Bale, S., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015; 17: 405423.Google Scholar
Falk, M. J., Shen, L., Gonzalez, M. et al. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities. Molecular Genetics and Metabolism 2015; 114: 388396.Google Scholar
Lake, N. J., Compton, A. G., Rahman, S., et al. Leigh syndrome: One disorder, more than 75 monogenic causes. Annals of Neurology 2016; 79: 190203.CrossRefGoogle ScholarPubMed
Hoefs, S. J., Rodenburg, R. J., Smeitink, J. A., et al. Molecular base of biochemical complex I deficiency. Mitochondrion 2012; 12: 520532.CrossRefGoogle ScholarPubMed
Fassone, E. and Rahman, S. Complex I deficiency: Clinical features, biochemistry and molecular genetics. Journal of Medical Genetics 2012; 49: 578590.Google Scholar
Stroud, D. A., Surgenor, E. E., Formosa, L. E., et al. Accessory subunits are integral for assembly and function of human mitochondrial complex I. Nature 2016; Oct 6; 538(7623): 123126.CrossRefGoogle ScholarPubMed
Lieber, D. S., Calvo, S. E., Shanahan, K., et al. Targeted exome sequencing of suspected mitochondrial disorders. Neurology 2013; 80: 17621770.Google Scholar
Alston, C. L., He, L., Morris, A. A., et al. Maternally inherited mitochondrial DNA disease in consanguineous families. Eur J Hum Genet 2011; 19: 12261229.Google Scholar
Thompson, K., Majd, H., Dallabona, C., et al. Recurrent de novo dominant mutations in SLC25A4 cause severe early-onset mitochondrial disease and loss of mitochondrial DNA copy number. American Journal of Human Genetics 2016; Dec 1; 99(6): 1405.Google Scholar
Bernier, F. P., Boneh, A., Dennett, X., et al. Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 2002; 59: 14061411.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×