Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:52:07.186Z Has data issue: false hasContentIssue false

5 - MRS in brain tumors

Published online by Cambridge University Press:  04 August 2010

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Alberto Bizzi
Affiliation:
Istituto Neurologico Carlo Besta, Milan
Nicola De Stefano
Affiliation:
Università degli Studi, Siena
Rao Gullapalli
Affiliation:
University of Maryland, Baltimore
Doris D. M. Lin
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Key points

  • Imaging of brain tumors has evolved into a multimodal tool providing improved diagnostic and prognostic accuracy, fundamental in disease monitoring and assessing response to therapy.

  • Proton MR spectroscopic imaging (1H-MRSI) combines the spatial localization capabilities of MR imaging with the biochemical information of 1H-MR spectroscopy, and provides a valuable clinical tool for brain tumors by depicting metabolic changes reflective of cellular density, anaplasia, and mitotic index.

  • Choline is elevated in all tumor types due to altered membrane metabolism, and shows correlation with cellular density and indices of cell proliferation. N-acetyl-aspartate (NAA) decreases with tumor infiltration and substitution of normal neural and glial cells. The Cho/NAA ratio is, therefore, a useful parameter particularly in most adult and pediatric primary brain tumors, with a higher ratio correlating with higher cell density and generally associated with a poor prognosis.

  • While 1H-MRS can show different metabolic patterns in different tumor types, it is not used as a primary diagnostic tool.

  • Increasing Cho/NAA and Cho/Cr ratios in serial exams of a primary astrocytoma are suggestive of transformation to a higher grade. By following metabolic changes, 1H-MRS can be useful in monitoring disease progression or response to therapy.

  • 1H-MRSI allows the evaluation of spatial heterogeneity and the macroscopic boundary of a mass, and may provide guidance for targeted biopsy, surgery, or therapy.

  • 1H-MRS studies can also be particularly useful in distinguishing neoplastic from non-neoplastic lesions, and differentiating recurrent tumor from predominantly delayed radiation necrosis.

Type
Chapter
Information
Clinical MR Spectroscopy
Techniques and Applications
, pp. 61 - 90
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, P, Cushing, H. A Classification of the Tumors of the Glioma Group on a Histogenetic Basis with a Correlation Study of Prognosis. Philadelphia: Lippincott, 1926.Google Scholar
Doetsch, F. The glia identity of neural stem cells. Nature Neurosci 2003; 6: 1127–34.CrossRefGoogle ScholarPubMed
Recht, L, Jang, T, Litofsky, NS. Neural stem cells and neurooncology: Quo vadis?J Cell Biochem 2003; 88: 11–9.CrossRefGoogle Scholar
Louis, DN. Molecular pathology of malignant gliomas. AnnuRev Pathol Mech Dis 2006; 1: 97–117.CrossRefGoogle ScholarPubMed
Reya, T, Morrison, RJ, Clarke, MF, Weissman, IL. Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–11.CrossRefGoogle ScholarPubMed
Louis, DN. A molecular genetic model of astrocytoma histopathology. Brain Pathol 1997; 7: 755–64.CrossRefGoogle ScholarPubMed
Schiffer, D. Brain Tumor Pathology: Current Diagnostic Hotspots and Pitfalls. Dordrecht, The Netherlands: Springer, 2006.Google Scholar
Hengartner, MO. Biochemistry of apoptosis. Nature 2002; 2000: 770–6.Google Scholar
Steinmach, JP, Weller, M. Mechanisms of apoptosis in central nervous system tumors: application to theory. Curr Neurol Neurosci Rep 2002; 2: 246–53.CrossRefGoogle Scholar
Swanson, CR, Bridge, C, Murray, JD, Alvord, AC. Virtual and real brain tumors: using mathematical modeling to quantify glioma growth and invasion. J Neurol Sci 2003; 216: 1–10.CrossRefGoogle ScholarPubMed
Burger, PC, Heinz, ER, Shibata, T, Kleihues, PC. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. J Neurosurg 1988; 68: 698–704.CrossRefGoogle ScholarPubMed
Darlymple, JS, Parisi, JE, Roche, PC, Ziesmer, SC, Scheithauer, BW, Kelly, PJ. Changes in proliferating cell nuclear antigen expression in glioblastoma multiforme cells along a stereotactic biopsy trajectory. Neurosurgery 1994; 35: 1036–45.Google Scholar
Schiffer, D, Cavalla, P, Dutto, A, Borsotti, L. Cell proliferation and invasion in malignant gliomas. Anticancer Res 1997; 17: 61–70.Google ScholarPubMed
Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK, Burger, PC, Jouvet, A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl) 2007; 114: 97–109.CrossRefGoogle ScholarPubMed
Duffau, H, Capelle, L. Preferential brain locations of low-grade gliomas. Cancer 2004; 100: 2622–6.CrossRefGoogle ScholarPubMed
Daumas-Duport, C, Varlet, P, Tucker, ML, Beuvon, F, Cervera, P, Chodkiewicz, J-P. Oligodendroglioma. Part I: Pattern of growth, histological diagnosis, clinical and imaging correlations: a study of 153 cases. J Neuro-Oncology 1997; 34: 37–59.CrossRefGoogle ScholarPubMed
Daumas-Duport, C, Tucker, ML, Kolles, H, Cervera, P, Beuvon, F, Varlet, P, et al. Oligodenrogliomas. Part II: A new grading system based on morphological and imaging criteria. J. Neuro-Oncology 1997; 95: 493–504.Google Scholar
Burger, PC. What's an oligodendroglioma?Brain Pathol 2002; 12: 257–9.CrossRefGoogle Scholar
Cairncross, JG, Ueki, K, Zlatescu, MC, Lisle, DK, Finkelstein, DM, Hammond, RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998; 90: 1473–9.CrossRefGoogle ScholarPubMed
Schiffer, D, Dutto, A, Cavalla, P, Bosone, I, Chiò, A, Villani, R, et al. Prognostic factors in oligodendroglioma. Can J Neurol Sci 1997; 24: 313–9.CrossRefGoogle ScholarPubMed
Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK, Burger, PC, Jouvet, A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007; 114: 97–109.CrossRefGoogle ScholarPubMed
Schiffer, D, Dutto, A, Cavalla, P, Chiò, A, Migheli, A, Piva, R. Role of apoptosis in the prognosis of oligodendrogliomas. Neurochem Int 1997; 2: 245–50.CrossRefGoogle Scholar
Cooper, ERA. The relation of oligodendrocytes and astrocytes in cerebral tumors. J Pathol Bacteriol 1935; 41: 259–66.CrossRefGoogle Scholar
Bissola, L, Eoli, M, Pollo, B, Merciai, BM, Silvani, A, Salsano, E, et al. Association of chromosome 10 losses and negative prognosis in oligoastrocytomas. Ann Neurol 2002; 52: 842–5.CrossRefGoogle ScholarPubMed
Kraus, JA, Jkoopman, J, Kaske, P, Maintz, D, Brandner, S, Schramm, J, et al. Shared allelic losses on chromosomes 1p and 19q suggest a common origin of oligodendroglioma and oligoastrocytoma. J Neuropathol Exp Neurol 1995; 54: 91–4.CrossRefGoogle ScholarPubMed
Kleihues, P, Ohgaki, H. Primary and secondary glioblastoma: from concept to clinical diagnosis. Neuro-Oncology 1999; 1: 44–51.CrossRefGoogle ScholarPubMed
Lim, DA, Mayo, MC, Chen, M-H, Keles, E, Berger, MS. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro-Oncology 2007; 9: 424–9.CrossRefGoogle ScholarPubMed
Daumas-Duport, C, Scheithauer, B, O'Fallon, J, Kelly, P. Grading of astrocytomas: a simple and reproducible method. Cancer 1988; 62: 2152–65.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Bauman, G, Lote, K, Larson, D, Stalpers, L, Leighton, C, Fisher, B, et al. Pretreatment factors predict overall survival for patients with low-grade glioma: a recursive partitioning analysis. Int J Radiat Oncol Biol Phys 1999; 45: 923–9.CrossRefGoogle ScholarPubMed
Filippini, G, Falcone, C, Boiardi, A, Broggi, G, Bruzzone, MG, Caldiroli, D, et al. Prognostic factors for survival in 676 consecutive patients with newly diagnosed primary glioblastoma. Neuro-Oncology, 2007 Nov 9 [Epub ahead of print].
Olson, JD, Riedel, E, Deangelis, LM. Long-term outcome of low-grade oligodendroglioma and mixed glioma. Neurology 2000; 54: 1442–8.CrossRefGoogle ScholarPubMed
Dean, BL, Drayer, BP, Bird, CR, Flom, RA, Hodak, JA, Coons, SW, et al. Gliomas: classification with MR imaging. Radiology 1990; 174: 411–5.CrossRefGoogle ScholarPubMed
Christy, PS, Tervonen, O, Scheithauer, BW, Forbes, GS. Use of a neural network and a multiple regression model to predict histologic grade of astrocytoma from MRI appearances. Neuroradiology 1995; 37: 89–93.CrossRefGoogle Scholar
Mihara, F, Numaguchi, Y, Rothman, M, Sato, S, Fiandaca, MS. MR imaging of adult supratentorial astrocytomas: an attempt of semiautomatic grading. Radiat Med 1995; 13: 5–9.Google Scholar
Bruhn, H, Frahm, J, Gyngell, ML, Merboldt, KD, Hanicke, W, Sauter, R, et al. Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 1989; 172: 541–8.CrossRefGoogle ScholarPubMed
Alger, JR, Frank, JA, Bizzi, A, Fulham, MJ, Desouza, BX, Duhaney, MO, et al. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 1990; 177: 633–41.CrossRefGoogle ScholarPubMed
Demaerel, P, Johannik, K, Hecke, P, Ongeval, C, Verellen, S, Marchal, G, et al. Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 1991; 15: 67–76.CrossRefGoogle ScholarPubMed
Fulham, MJ, Bizzi, A, Dietz, MJ, Shih, HH, Raman, R, Sobering, GS, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 1992; 185: 675–86.CrossRefGoogle ScholarPubMed
Negendank, W. Studies of human tumors by MRS: a review. NMR Biomed 1992; 5: 303–24.CrossRefGoogle ScholarPubMed
Preul, MC, Caramanos, Z, Collins, DL, Villemure, JG, Leblanc, R, Olivier, A, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996; 2: 323–5.CrossRefGoogle ScholarPubMed
Tamiya, T, Kinoshita, K, Ono, Y, Matsumoto, K, Furuta, T, Ohmoto, T. Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 2000; 42: 333–8.CrossRefGoogle ScholarPubMed
Edelenyi, FS, Rubin, C, Esteve, F, Grand, S, Decorps, M, Lefournier, V, et al. A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat Med 2000; 6: 1287–9.CrossRefGoogle ScholarPubMed
Ackerstaff, E, Glunde, K, Bhujwalla, ZM. Choline phospholipid metabolism: a target in cancer cells?J Cell Biochem 2003; 90: 525–33.CrossRefGoogle ScholarPubMed
Podo, F. Tumour phospholipid metabolism. NMR Biomed 1999; 12: 413–39.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Shimizu, H, Kumabe, T, Shirane, R, Yoshimoto, T. Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. Am J Neuroradiol 2000; 21: 659–65.Google ScholarPubMed
Guillevin, R, Menuel, C, Duffau, H, Kujas, M, Capelle, L, Aubert, A, et al. Proton magnetic resonance spectroscopy predicts proliferative activity in diffuse low-grade gliomas. J Neuro-oncol 2007 Dec 28 [Epub ahead of print].Google ScholarPubMed
Bizzi, A, Movsas, B, Tedeschi, G, Phillips, CL, Okunieff, P, Alger, JR, et al. Response of non-Hodgkin lymphoma to radiation therapy: early and long-term assessment with H-1 MR spectroscopic imaging. Radiology 1995; 194: 271–6.CrossRefGoogle ScholarPubMed
Bhakoo, KK, Williams, SR, Florian, CL, Land, H, Noble, MD. Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res 1996; 56: 4630–5.Google ScholarPubMed
Usenius, JP, Vainio, P, Hernesniemi, J, Kauppinen, RA. Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem 1994; 63: 1538–43.CrossRefGoogle ScholarPubMed
Gupta, RK, Cloughesy, TF, Sinha, U, Garakian, J, Lazareff, J, Rubino, G, et al. Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 2000; 50: 215–26.CrossRefGoogle ScholarPubMed
Tedeschi, G, Lundbom, N, Raman, R, Bonavita, S, Duyn, JH, Alger, JR, et al. Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 1997; 87: 516–24.CrossRefGoogle ScholarPubMed
Stadlbauer, A, Gruber, S, Nimsky, C, Fahlbusch, R, Hammen, T, Buslei, R, et al. Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 2006; 238: 958–69.CrossRefGoogle ScholarPubMed
Galanaud, D, Chinot, O, Nicoli, F, Confort-Gouny, S, Fur, Y, Barrie-Attarian, M, et al. Use of proton magnetic resonance spectroscopy of the brain to differentiate gliomatosis cerebri from low-grade glioma. J Neurosurg 2003; 98: 269–76.CrossRefGoogle ScholarPubMed
Sijens, PE, Levendag, PC, Vecht, CJ, Dijk, P, Oudkerk, M. 1H MR spectroscopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed 1996; 9: 65–71.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Poptani, H, Gupta, RK, Roy, R, Pandey, R, Jain, VK, Chhabra, DK. Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. Am J Neuroradiol 1995; 16: 1593–603.Google ScholarPubMed
Kuesel, AC, Sutherland, GR, Halliday, W, Smith, IC. 1H MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed 1994; 7: 149–55.CrossRefGoogle ScholarPubMed
Zoula, S, Herigault, G, Ziegler, A, Farion, R, Decorps, M, Remy, C. Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. NMR Biomed 2003; 16: 199–212.CrossRefGoogle ScholarPubMed
Harting, I, Hartmann, M, Jost, G, Sommer, C, Ahmadi, R, Heiland, S, et al. Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy. Neurosci Lett 2003; 342: 163–6.CrossRefGoogle ScholarPubMed
Warburg, O. On the origin of cancer cells. Science 1956; 123: 309–14.CrossRefGoogle ScholarPubMed
Yue, Q, Isobe, T, Shibata, Y, Anno, I, Kawamura, H, Yamamoto, Y, et al. New observations concerning the interpretation of magnetic resonance spectroscopy of meningioma. Eur Radiol 2008; 12: 2901–11.CrossRefGoogle Scholar
Demir, MK, Iplikcioglu, AC, Dincer, A, Arslan, M, Sav, A. Single voxel proton MR spectroscopy findings of typical and atypical intracranial meningiomas. Eur J Radiol 2006; 60: 48–55.CrossRefGoogle ScholarPubMed
Li, X, Lu, Y, Pirzkall, A, Mcknight, T, Nelson, SJ. Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 2002; 16: 229–37.CrossRefGoogle ScholarPubMed
Stefano, N, Matthews, P, Antel, JP, Preul, MC, Francis, G, Arnold, DL. Chemical pathology of acute demyelinating lesions and its correlation with disability. Ann Neurol 1995; 38: 901–09.CrossRefGoogle ScholarPubMed
Stefano, N, Caramanos, Z, Preul, MC, Francis, G, Antel, JP, Arnold, DL. In vivo differentiation of astrocytic brain tumors and isolated demyelinating lesions of the type seen in multiple sclerosis using 1H magnetic resonance spectroscopic imaging. Ann Neurol 1998; 44: 273–8.CrossRefGoogle ScholarPubMed
Salsano, E, Savoiardo, M, Nappini, S, Maderna, E, Pollo, B, Chinaglia, D, et al. Late-onset sporadic ataxia, pontine lesion, and retroperitoneal fibrosis: a case of Erdheim–Chester disease. Neurol Sci 2008; 29: 263–7.CrossRefGoogle ScholarPubMed
Law, M, Cha, S, Knopp, EA, Johnson, G, Arnett, J, Litt, AW. High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 2002; 222: 715–21.CrossRefGoogle ScholarPubMed
Grand, S, Passaro, G, Ziegler, A, Estève, F, Boujet, C, Hoffmann, D, et al. Necrotic tumor versus brain abscess: importance of amino acids detected at 1H MR spectroscopy – initial results. Radiology 1999; 213: 785–93.CrossRefGoogle ScholarPubMed
Kapsalaki, EZ, Gotsis, ED, Fountas, KN. The role of proton magnetic resonance spectroscopy in the diagnosis and categorization of cerebral abscesses. Neurosurg Focus 2008; 24: E7.CrossRefGoogle ScholarPubMed
Law, M, Yang, S, Wang, H, Babb, JS, Johnson, G, Cha, S, et al. Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. Am J Neuroradiol 2003; 24: 1989–98.Google ScholarPubMed
Astrakas, LG, Zurakowski, D, Tzika, AA, Zarifi, MK, Anthony, DC, Girolami, U, et al. Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors. Clin Cancer Res 2004; 10: 8220–8.CrossRefGoogle ScholarPubMed
Lukas, L, Devos, A, Suykens, JA, Vanhamme, L, Howe, FA, Majós, C, et al. Brain tumor classification based on long echo proton MRS signals. Artif Intell Med 2004; 31: 73–89.CrossRefGoogle ScholarPubMed
Hattingen, E, Raab, P, Franz, K, Lanfermann, H, Setzer, M, Gerlach, R, et al. Prognostic value of choline and creatine in WHO grade II gliomas. Neuroradiology 2008; 50: 759–67.CrossRefGoogle ScholarPubMed
Marcus, KJ, Astrakas, LG, Zurakowski, D, Zarifi, MK, Mintzopoulos, D, Poussaint, TY, et al. Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers. Int J Oncol 2007; 30: 651–7.Google ScholarPubMed
Warren, KE, Frank, JA, Black, JL, Hill, RS, Duyn, JH, Aikin, AA, et al. Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors. J Clin Oncol 2000; 18: 1020–6.CrossRefGoogle ScholarPubMed
Tate, AR, Majos, C, Moreno, A, Howe, FA, Griffiths, JR, Arus, C. Automated classification of short echo time in in vivo 1H brain tumor spectra: a multicenter study. Magn Reson Med 2003; 49: 29–36.CrossRefGoogle ScholarPubMed
Herminghaus, S, Dierks, T, Pilatus, U, Moller-Hartmann, W, Wittsack, J, Marquardt, G, et al. Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. J Neurosurg 2003; 98: 74–81.CrossRefGoogle ScholarPubMed
Hourani, R, Brant, LJ, Rizk, T, Weingart, JD, Barker, PB, Horska, A. Can proton MR spectroscopic and perfusion imaging differentiate between neoplastic and nonneoplastic brain leisons in adults?Am J Neuroradiol 2008; 29: 366–72.CrossRefGoogle Scholar
Al-Okaili, RN, Krejza, J, Woo, JH, Wolf, RL, O'Rourke, DM, Judy, KD, et al. Intraaxial brain masses: MR imaging-based diagnostic strategy – initial experience. Radiology 2007; 243: 539–50.CrossRefGoogle ScholarPubMed
Dowling, C, Bollen, AW, Noworolski, SM, McDermott, MW, Barbaro, NM, Day, MR, et al. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. Am J Neuroradiol 2001; 22: 604–12.Google ScholarPubMed
Stadlbauer, A, Moser, E, Gruber, S, Nimsky, C, Fahlbusch, R, Ganslandt, O. Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. J Neurosurg 2004; 101: 287–94.CrossRefGoogle ScholarPubMed
Pirzkall, A, McKnight, TR, Graves, EE, Carol, MP, Sneed, PK, Wara, WW, et al. MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 2001; 50: 915–28.CrossRefGoogle ScholarPubMed
Taylor, JS, Langston, JW, Reddick, WE, Kingsley, PB, Ogg, RJ, Pui, MH, et al. Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 1996; 36: 1251–61.CrossRefGoogle ScholarPubMed
Schlemmer, HP, Bachert, P, Henze, M, Buslei, R, Herfarth, KK, Debus, J, et al. Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 2002; 44: 216–22.CrossRefGoogle ScholarPubMed
Rock, JP, Hearshen, D, Scarpace, L, Croteau, D, Gutierrez, J, Fisher, JL, et al. Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 2002; 51: 912–9; discussion 919–20.Google ScholarPubMed
Preul, MC, Leblanc, R, Caramanos, Z, Kasrai, R, Narayanan, S, Arnold, DL. Magnetic resonance spectroscopy guided brain tumor resection: differentiation between recurrent glioma and radiation change in two diagnostically difficult cases. Can J Neurol Sci 1998; 25: 13–22.CrossRefGoogle ScholarPubMed
Wang, Z, Sutton, LN, Cnaan, A, Haselgrove, JC, Rorke, LB, Zhao, H, et al. Proton MR spectroscopy of pediatric cerebellar tumors. Am J Neuroradiol 1995; 16: 1821–33.Google ScholarPubMed
Kovanlikaya, A, Panigrahy, A, Krieger, MD, Gonzalez-Gomez, I, Ghugre, N, McComb, JG, et al. Untreated pediatric primitive neuroectodermal tumor in vivo: quantitation of taurine with MR spectroscopy. Radiology 2005; 236: 1020–5.CrossRefGoogle ScholarPubMed
Girard, N, Wang, ZJ, Erbetta, A, Sutton, LN, Phillips, PC, Rorke, LB., et al. Prognostic value of proton MR spectroscopy of cerebral hemisphere tumors in children. Neuroradiology 1998; 40: 121–5.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×