Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-k7rjm Total loading time: 0 Render date: 2025-08-08T13:59:08.745Z Has data issue: false hasContentIssue false

Chapter 9 - Principles of Mechanical Ventilation and Respiratory Support

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

The key question in mechanical ventilation is whether invasive or non-invasive is the option being applied to the individual patient. In order to answer this question, it is necessary to recognize the pathophysiology and understand which physiological system has failed and needs to be supported. In this chapter we outline the optimal treatment options for respiratory insufficiency type 1 and 2. The reader will be made familiar with the basic principles of non-invasive and invasive ventilation. The aim is to arbitrate an overview as well as basic flowchart for the treatments depending on which of the aforementioned respiratory insufficiencies are to be treated. The chapter also comprises a quick guide to the initial ventilator settings.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Yartsev, A. Diffusion of gases through the alveolar membrane. Deranged Physiology Web site. Updated January 10, 2024. Accessed December 23, 2023. https://derangedphysiology.com/main/cicm-primary-exam/required-reading/respiratory-system/Chapter103/diffusion-gases-through-alveolar-membrane.Google Scholar
Loh, KM, Ghista, DN, Rudolph, H. Determination of pulmonary gases (O2 & CO2) metabolic-rates and lung diffusion coefficients based on the inspired and expired air compositions and venous blood and gas concentration. Conf Proc IEEE Eng Med Biol Soc. 2005,2005:6161–4. doi: 10.1109/IEMBS.2005.1615901.Google Scholar
Roussos, CS, Macklem, PT. Diaphragmatic fatigue in man. J Appl Physiol. 1977;43:189–97. doi: 10.1152/JAPPL.1977.43.2.189.CrossRefGoogle ScholarPubMed
Mizuno, M, Secher, NH. Histochemical characteristics of human expiratory and inspiratory intercostal muscles. J Appl Physiol. 1989;67:592–8. doi: 10.1152/jappl.1989.67.2.592.CrossRefGoogle ScholarPubMed
Cottrell, JJ, Lebovitz, BL, Fennell, RG, et al. Inflight arterial saturation: Continuous monitoring by pulse oximetry. Aviat Sp Environ Med. 1995;66:126–30.Google ScholarPubMed
Dellweg, D, Schmitten, J, Kerl, J, et al. Impact of hypobaric flight simulation on walking distance and oxygenation in COPD patients. Respir Physiol Neurobiol. 2019;260:17. doi: 10.1016/j.resp.2018.11.010.CrossRefGoogle ScholarPubMed
von Hüfner, G. Neue Versuche zur Bestimmung der Sauerstoffcapacität des Blutfarbstoffs. Arch. Anat. Physiol., Physiol. Abt. 1894;130–76.Google Scholar
Köhler, D, Voshaar, T, Stais, P, et al. Hypoxische, anämische und kardial bedingte Hypoxämie: Wann beginnt die Hypoxie im Gewebe? DMW – Dtsch Medizinische Wochenschrift. 2023;148:475–82. doi: 10.1055/A-2007-5450.Google Scholar
Cilley, RE, Scharenberg, AM, Bongiorno, PF, et al. Low oxygen delivery produced by anemia, hypoxia, and low cardiac output. J Surg Res. 1991;51:425–33. doi: 10.1016/0022-4804(91)90145-C.CrossRefGoogle ScholarPubMed
Carson, JL, Stanworth, SJ, Guyatt, G, et al. Red blood cell transfusion: 2023 AABB international guidelines. JAMA. 2023;330(19):1892–902. doi: 10.1001/JAMA.2023.12914.CrossRefGoogle ScholarPubMed
Barrot, L, Asfar, P, Mauny, F, et al. Liberal or conservative oxygen therapy for acute respiratory distress syndrome. N Engl J Med. 2020;382:9991008. doi: 10.1056/NEJMOA1916431/SUPPL_FILE/NEJMOA1916431_DATA-SHARING.PDF.CrossRefGoogle ScholarPubMed
Semler, MW, Casey, JD, Lloyd, BD, et al. Oxygen-saturation targets for critically ill adults receiving mechanical ventilation. N Engl J Med. 2022;387:1759–69. doi:10.1056/NEJMOA2208415/SUPPL_FILE/NEJMOA2208415_DATA-SHARING.PDF.CrossRefGoogle ScholarPubMed
Kelly, W. Oxygen delivery devices and flow rates. Health & Willness Web site. Updated September 10, 2023. Accessed December 25, 2023. https://healthandwillness.org/oxygen-delivery-devices-and-flow-rates/.Google Scholar
Roussos, C. The oxygen consumption of the respiratory muscles. In: Benito, S, Net, A, eds. Pulmonary Function in Mechanically Ventilated Patients. Springer-Verlag; 1991:328–36. doi: 10.1007/978-3-642-84209-2_28.Google Scholar
Dempsey, JA, Harms, CA, Ainsworth, DM. Respiratory muscle perfusion and energetics during exercise. Med Sci Sports Exerc. 1996;28:1123–8. doi: 10.1097/00005768-199609000-00007.CrossRefGoogle ScholarPubMed
Field, S, Kelly, SM, Macklem, PT. The oxygen cost of breathing in patients with cardiorespiratory disease. Am Rev Respir Dis. 1982;126:913. doi: 10.1164/ARRD.1982.126.1.9.Google ScholarPubMed
Biselli, PJC, Kirkness, JP, Grote, L, et al. Nasal high-flow therapy reduces work of breathing compared with oxygen during sleep in COPD and smoking controls: a prospective observational study. J Appl Physiol. 2017;122:82. doi: 10.1152/JAPPLPHYSIOL.00279.2016.CrossRefGoogle ScholarPubMed
Bräunlich, J, Goldner, F, Wirtz, H. Nasal highflow eliminates CO2 from lower airways. Respir Physiol Neurobiol. 2017;242:86–8. doi: 10.1016/j.resp.2017.03.012.CrossRefGoogle ScholarPubMed
Delorme, M, Bouchard, PA, Simon, M, et al. Effects of high-flow nasal cannula on the work of breathing in patients recovering from acute respiratory failure. Crit Care Med. 2017;45(12):1981–8. doi: 10.1097/CCM.0000000000002693CrossRefGoogle ScholarPubMed
Lukácsovits, J, Carlucci, A, Hill, N, et al. Physiological changes during low- and high-intensity noninvasive ventilation. Eur Respir J. 2012;39:869–75. doi: 10.1183/09031936.00056111.CrossRefGoogle ScholarPubMed
Dreher, M, Storre, JH, Schmoor, C, et al. High-intensity versus low-intensity non-invasive ventilation in patients with stable hypercapnic COPD: a randomised crossover trial. Thorax. 2010;65:303–8. doi: 10.1136/THX.2009.124263.CrossRefGoogle ScholarPubMed
Vitacca, M, Barbano, L, D’Anna, S, et al. Comparison of five bilevel pressure ventilators in patients with chronic ventilatory failure: a physiologic study. Chest. 2002;122:2105–14. doi: 10.1378/CHEST.122.6.2105.CrossRefGoogle ScholarPubMed
Dellweg, D, Schonhofer, B, Haidl, PM, et al. Short-term effect of controlled instead of assisted noninvasive ventilation in chronic respiratory failure due to chronic obstructive pulmonary disease. Respir Care. 2007;52(12):1734–40.Google ScholarPubMed
Storre, JH, Dellweg, D. [Monitoring of patients receiving mechanical ventilation]. Pneumologie. 2014;68:532–41. doi: 10.1055/S-0034-1365742.Google ScholarPubMed
Morgan, AP. The pulmonary toxicity of oxygen. Anesthesiology. 1968;29:570–9. doi: 10.1097/00000542-196805000-00040.CrossRefGoogle ScholarPubMed
Barber, RE, Lee, J, Hamilton, WK. Oxygen toxicity in man. N Engl J Med. 1970;283:1478–84. doi: 10.1056/NEJM197012312832702.CrossRefGoogle ScholarPubMed
Grasselli, G, Calfee, CS, Camporota, L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies. Intensive Care Med. 2023;49:727–59. doi: 10.1007/S00134-023-07050-7.CrossRefGoogle ScholarPubMed
Perkins, GD, Ji, C, Connolly, BA, et al. Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: The RECOVERY-RS randomized clinical trial. JAMA. 2022;327:546–58. doi: 10.1001/JAMA.2022.0028.CrossRefGoogle ScholarPubMed
Papazian, L, Klompas, M, Luyt, CE. Ventilator-associated pneumonia in adults: a narrative review. Intensive Care Med. 2020;46:888. doi: 10.1007/S00134-020-05980-0.CrossRefGoogle ScholarPubMed
Klompas, M, Kleinman, K, Murphy, M V. Descriptive epidemiology and attributable morbidity of ventilator-associated events. Infect Control Hosp Epidemiol. 2014;35:502–10. doi: 10.1086/675834.CrossRefGoogle ScholarPubMed
Assimo, M, Ntonelli, A, Iorgio, G, et al. A comparison of noninvasive positive-pressure ventilation and conventional mechanical ventilation in patients with acute respiratory failure. N Engl J Med. 1998;339:429–35. doi: 10.1056/NEJM199808133390703.Google Scholar
Kluge, S, Janssens, U, Welte, T, et al. S3-Leitlinie-Empfehlungen zur stationären Therapie von Patienten mit COVID-19. AWMF Web site. 2021. Accessed June 7, 2024. https://register.awmf.org/assets/guidelines/113-001l_S3_Empfehlungen-zur-Therapie-von-Patienten-mit-COVID-19_2024-01.pdf.Google Scholar
Tobin, MJ, Jubran, A, Laghi, F. PaO2/FiO2 ratio: the mismeasure of oxygenation in COVID-19. Eur Respir J. 2021;57(3):2100274. doi: 10.1183/13993003.00274-2021.CrossRefGoogle Scholar
Van den Berg, B, Stam, H, Bogaard, JM. Effects of PEEP on respiratory mechanics in patients with COPD on mechanical ventilation. Eur Respir J. 1991;4:561–7. doi: 10.1183/09031936.93.04050561.CrossRefGoogle ScholarPubMed
Tsuno, K, Miura, K, Takeya, M, et al. Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis. 1991;143:1115–20. doi: 10.1164/AJRCCM/143.5_PT_1.1115.CrossRefGoogle ScholarPubMed
Kolobow, T, Moretti, MP, Fumagalli, R, et al. Severe impairment in lung function induced by high peak airway pressure during mechanical ventilation. An experimental study. Am Rev Respir Dis. 1987;135:312–15. doi: 10.1164/ARRD.1987.135.2.312.Google ScholarPubMed
Sugiura, M, McCulloch, PR, Wren, S, et al. Ventilator pattern influences neutrophil influx and activation in atelectasis-prone rabbit lung. J Appl Physiol. 1994;77:1355–65. doi: 10.1152/JAPPL.1994.77.3.1355.CrossRefGoogle ScholarPubMed
Hernandez, LA, Peevy, KJ, Moise, AA, et al. Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol. 1989;66:2364–8. doi: 10.1152/JAPPL.1989.66.5.2364.CrossRefGoogle ScholarPubMed
Acute Respiratory Distress Syndrome Network; Brower, RG, Matthay, MA, Morris, A, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8. doi: 10.1056/NEJM200005043421801.Google ScholarPubMed
Luecke, T, Pelosi, P. Clinical review: positive end-expiratory pressure and cardiac output. Crit Care. 2005;9:607–21. doi: 10.1186/CC3877.CrossRefGoogle ScholarPubMed
Tavazzi, G. Mechanical ventilation in cardiogenic shock. Curr Opin Crit Care. 2021 Aug 1;27(4):447–453.CrossRefGoogle ScholarPubMed
Wiesen, J, Ornstein, M, Tonelli, AR, et al. State of the evidence: mechanical ventilation with PEEP in patients with cardiogenic shock. Heart. 2013;99:1812. doi: 10.1136/HEARTJNL-2013-303642.CrossRefGoogle ScholarPubMed
Mascheroni, D, Kolobow, T, Fumagalli, R, et al. Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med. 1988;15:814. doi: 10.1007/BF00255628.CrossRefGoogle ScholarPubMed
Bellani, G, Grassi, A, Sosio, S, et al. Driving pressure is associated with outcome during assisted ventilation in acute respiratory distress syndrome. Anesthesiology. 2019;131:594604. doi: 10.1097/ALN.0000000000002846.CrossRefGoogle ScholarPubMed
Chiumello, D, Carlesso, E, Brioni, M, et al. Airway driving pressure and lung stress in ARDS patients. Crit Care. 2016;20:110. doi: 10.1186/S13054-016-1446-7/FIGURES/6.CrossRefGoogle ScholarPubMed
Yoshida, T, Uchiyama, A, Matsuura, N, et al. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med. 2012;40:1578–85. doi: 10.1097/CCM.0B013E3182451C40.CrossRefGoogle Scholar
D’Avignon, P, Hedenström, G, Hedman, C. Pulmonary complications in respirator patients. Acta Med Scand Suppl. 1956;316:8690. doi: 10.1111/J.0954-6820.1956.TB06263.X.CrossRefGoogle Scholar
Levine, S, Nguyen, T, Taylor, N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008;358:1327–35. doi: 10.1056/NEJMOA070447/SUPPL_FILE/NEJM_LEVINE_1327SA1.PDF.CrossRefGoogle ScholarPubMed
Goligher, EC, Dres, M, Patel, BK, et al. Lung- and diaphragm-protective ventilation. Am J Respir Crit Care Med. 2020;202:950–61. doi: 10.1164/RCCM.202003-0655CP.CrossRefGoogle ScholarPubMed
Neetz, B, Flohr, T, Herth, FJF, et al. [Patient self-inflicted lung injury (P-SILI): from pathophysiology to clinical evaluation with differentiated management]. Med Klin Intensivmed Notfmed. 2021;116:614–23. doi: 10.1007/S00063-021-00823-2.CrossRefGoogle ScholarPubMed
Albert, RK, Smith, B, Perlman, CE, et al. Is progression of pulmonary fibrosis due to ventilation-induced lung injury? Am J Respir Crit Care Med. 2019;200:140–51. doi: 10.1164/RCCM.201903-0497PP/SUPPL_FILE/DISCLOSURES.PDF.CrossRefGoogle ScholarPubMed
Tobin, MJ, Laghi, F, Jubran, A. Caution about early intubation and mechanical ventilation in COVID-19. Ann Intensive Care. 2020;10:13. doi: 10.1186/S13613-020-00692-6/METRICS.CrossRefGoogle ScholarPubMed
Goldstein, B, Shannon, DC, Todres, ID. Supercarbia in children: clinical course and outcome. Crit Care Med. 1990;18:166–8. doi: 10.1097/00003246-199002000-00008.CrossRefGoogle ScholarPubMed
Di Rollo, N, Caesar, D, Ferenbach, DA, et al. Survival from profound metabolic acidosis due to hypovolaemic shock. A world record? BMJ Case Rep. 2013;2013:bcr2012008315. doi: 10.1136/BCR-2012-008315.CrossRefGoogle ScholarPubMed
Litt, L, Gonzalez-Mendez, R, Severinghaus, JW, et al. Cerebral intracellular changes during supercarbia: an in vivo 31P nuclear magnetic resonance study in rats. J Cereb Blood Flow Metab. 1985;5:537–44. doi: 10.1038/JCBFM.1985.81.CrossRefGoogle Scholar
Xu, C, Yang, F, Wang, Q, et al. Comparison of high flow nasal therapy with non-invasive ventilation and conventional oxygen therapy for acute hypercapnic respiratory failure: a meta-analysis of randomized controlled trials. Int J Chron Obstruct Pulmon Dis. 2023;18:955. doi: 10.2147/COPD.S410958.CrossRefGoogle ScholarPubMed
Bräunlich, J, Dellweg, D, Bastian, A, et al. Nasal high-flow versus noninvasive ventilation in patients with chronic hypercapnic COPD. Int J Chron Obstruct Pulmon Dis. 2019;14:1411. doi: 10.2147/COPD.S206111.CrossRefGoogle ScholarPubMed
Meyer, AC, Spiesshoefer, J, Siebers, NC, et al. Effects of nasal high flow on nocturnal hypercapnia, sleep, and sympathovagal balance in patients with neuromuscular disorders. Sleep Breath. 2021;25:1441. doi: 10.1007/S11325-020-02263-2.CrossRefGoogle ScholarPubMed
Oczkowski, S, Ergan, B, Bos, L, et al. ERS clinical practice guidelines: high-flow nasal cannula in acute respiratory failure. Eur Respir J. 2022;59:12. doi: 10.1183/13993003.01574-2021.CrossRefGoogle ScholarPubMed
Landfeldt, E, Thompson, R, Sejersen, T, et al. Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. Eur J Epidemiol. 2020;35:643. doi: 10.1007/S10654-020-00613-8.CrossRefGoogle ScholarPubMed
Kieny, P, Chollet, S, Delalande, P, et al. Evolution of life expectancy of patients with Duchenne muscular dystrophy at AFM Yolaine de Kepper centre between 1981 and 2011. Ann Phys Rehabil Med. 2013;56:443–54. doi: 10.1016/J.REHAB.2013.06.002.CrossRefGoogle Scholar
Bourke, SC, Tomlinson, M, Williams, TL, et al. Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: A randomised controlled trial. Lancet Neurol. 2006;5:140–7. doi: 10.1016/S1474-4422(05)70326-4.Google ScholarPubMed
Bach, JR. Amyotrophic lateral sclerosis: prolongation of life by noninvasive respiratory AIDS. Chest. 2002;122:92–8. doi: 10.1378/CHEST.122.1.92.CrossRefGoogle ScholarPubMed
Radunovic, A, Annane, D, Rafiq, MK, et al. Mechanical ventilation for amyotrophic lateral sclerosis/motor neuron disease. Cochrane Database Syst Rev. 2017;10(10):CD004427. doi: 10.1002/14651858.CD004427.PUB4.Google ScholarPubMed
Vianello, A, Bevilacqua, M, Arcaro, G, et al. Non-invasive ventilatory approach to treatment of acute respiratory failure in neuromuscular disorders. A comparison with endotracheal intubation. Intensive Care Med. 2000;26:384–90. doi: 10.1007/S001340051171/METRICS.CrossRefGoogle ScholarPubMed
Servera, E, Sancho, J, Zafra, MJ, et al. Alternatives to endotracheal intubation for patients with neuromuscular diseases. Am J Phys Med Rehabil. 2005;84:851–7. doi: 10.1097/01.PHM.0000184097.17189.93.CrossRefGoogle ScholarPubMed
Rabinstein, A, Wijdicks, EFM. BiPAP in acute respiratory failure due to myasthenic crisis may prevent intubation. Neurology. 2002;59:1647–9. doi: 10.1212/01.WNL.0000033797.79530.16.CrossRefGoogle ScholarPubMed
Ekkernkamp, E, Storre, JH, Windisch, W, et al. Impact of intelligent volume-assured pressure support on sleep quality in stable hypercapnic chronic obstructive pulmonary disease patients: a randomized, crossover study. Respiration. 2014;88:270–6. doi: 10.1159/000364946.CrossRefGoogle ScholarPubMed
Storre, JH, Seuthe, B, Fiechter, R, et al. Average volume-assured pressure support in obesity hypoventilation: A randomized crossover trial. Chest. 2006;130:815–21. doi: 10.1378/chest.130.3.815.CrossRefGoogle ScholarPubMed
Briones Claudett, KH, Briones Claudett, M, Chung Sang Wong, M, et al. Noninvasive mechanical ventilation with average volume assured pressure support (AVAPS) in patients with chronic obstructive pulmonary disease and hypercapnic encephalopathy. BMC Pulm Med. 2013;13:17. doi: 10.1186/1471-2466-13-12/TABLES/3.CrossRefGoogle ScholarPubMed
Crisafulli, E, Manni, G, Kidonias, M, et al. Subjective sleep quality during average volume assured pressure support (AVAPS) ventilation in patients with hypercapnic COPD: a physiological pilot study. Lung. 2009;187:299305. doi: 10.1007/S00408-009-9167-1.CrossRefGoogle ScholarPubMed
Toussaint, M, Chatwin, M, Gonçalves, MR, et al. Mouthpiece ventilation in neuromuscular disorders: narrative review of technical issues important for clinical success. Respir Med. 2021;180:106373. doi: 10.1016/J.RMED.2021.106373.CrossRefGoogle ScholarPubMed
Toussaint, M, Steens, M, Wasteels, G, et al. Diurnal ventilation via mouthpiece: survival in end-stage Duchenne patients. Eur Respir J. 2006;28:549–55. doi: 10.1183/09031936.06.00004906.CrossRefGoogle ScholarPubMed
Bach, JR. A comparison of long-term ventilatory support alternatives from the perspective of the patient and care giver. Chest. 1993;104:1702–6. doi: 10.1378/CHEST.104.6.1702.CrossRefGoogle ScholarPubMed
Estenne, M, Heilporn, A, Delhez, L, et al. Chest wall stiffness in patients with chronic respiratory muscle weakness. Am Rev Respir Dis. 1983;128:1002–7. doi: 10.1164/ARRD.1983.128.6.1002.Google ScholarPubMed
Telias, I, Junhasavasdikul, D, Rittayamai, N, et al. Airway occlusion pressure as an estimate of respiratory drive and inspiratory effort during assisted ventilation. Am J Respir Crit Care Med. 2020;201:1086–98. doi: 10.1164/RCCM.201907-1425OC.CrossRefGoogle Scholar
Pinto, S, Swash, M, De Carvalho, M. Mouth occlusion pressure at 100ms (P0.1) as a respiratory biomarker in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener. 2021;22:5360. doi: 10.1080/21678421.2020.1821061.CrossRefGoogle ScholarPubMed
Girin, B, Juventin, M, Garcia, S, et al. The deep and slow breathing characterizing rest favors brain respiratory-drive. Sci Reports. 2021;11:115. doi: 10.1038/s41598-021-86525-3.Google ScholarPubMed
Yang, KL, Tobin, MJ, Presberg, KW. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324:53. doi: 10.1056/NEJM199105233242101.CrossRefGoogle ScholarPubMed
Dellweg, D, Haidl, P, Siemon, K, et al. Impact of breathing pattern on work of breathing in healthy subjects and patients with COPD. Respir Physiol Neurobiol. 2008;161(2):197200. doi: 10.1016/j.resp.2008.02.002.CrossRefGoogle ScholarPubMed
Chadda, K, Clair, B, Orlikowski, D, et al. Pressure support versus assisted controlled noninvasive ventilation in neuromuscular disease. Neurocrit Care. 2004;1:429–34. doi: 10.1385/NCC:1:4:429/METRICS.CrossRefGoogle ScholarPubMed
Prigent, H, Samuel, C, Louis, B, et al. Comparative effects of two ventilatory modes on speech in tracheostomized patients with neuromuscular disease. Am J Respir Crit Care Med. 2003;167:114–19. doi: 10.1164/RCCM.200201-026OC.CrossRefGoogle ScholarPubMed
Schönhofer, B, Geiseler, J, Dellweg, D, et al. Prolonged weaning: S2k guideline published by the German Respiratory Society. Respiration. 2020 Dec 1;1–102. doi: 10.1159/000510085.CrossRefGoogle Scholar
Neto, SCGB, Torres-Castro, R, Lima, Í, et al. Weaning from mechanical ventilation in people with neuromuscular disease: a systematic review. BMJ Open. 2021;11:e047449. doi: 10.1136/BMJOPEN-2020-047449.CrossRefGoogle Scholar
Bach, JR, Bianchi, C, Aufiero, E. Oximetry and indications for tracheotomy for amyotrophic lateral sclerosis. Chest. 2004;126:1502–7. doi: 10.1378/CHEST.126.5.1502.CrossRefGoogle ScholarPubMed
Vianello, A, Arcaro, G, Braccioni, F, et al. Prevention of extubation failure in high-risk patients with neuromuscular disease. J Crit Care. 2011;26: 517–24. doi: 10.1016/J.JCRC.2010.12.008.CrossRefGoogle ScholarPubMed
Dellweg, D, Hochrainer, D, Klauke, M, et al. Determinants of skin contact pressure formation during non-invasive ventilation. J Biomech. 2010;43:652–7. doi: 10.1016/J.JBIOMECH.2009.10.029.CrossRefGoogle ScholarPubMed
Bachour, A, Maasilta, P. Mouth breathing compromises adherence to nasal continuous positive airway pressure therapy. Chest. 2004; 126:1248–54. doi: 10.1378/chest.126.4.1248.CrossRefGoogle ScholarPubMed
Simonds, AK. Pneumothorax: an important complication of non-invasive ventilation in neuromuscular disease. Neuromuscul Disord. 2004;14:351–2. doi: 10.1016/j.nmd.2004.04.001.CrossRefGoogle ScholarPubMed
Carron, M, Freo, U, Bahammam, AS, et al. Complications of non-invasive ventilation techniques: a comprehensive qualitative review of randomized trials. Br J Anaesth. 2013;110:896914. doi: 10.1093/bja/aet070.CrossRefGoogle ScholarPubMed
Alqahtani, JS, AlAhmari, MD, Alshamrani, KH, et al. Patient-ventilator asynchrony in critical care settings: national outcomes of ventilator waveform analysis. Heart Lung. 2020;49:630–6. doi: 10.1016/J.HRTLNG.2020.04.002.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×