Skip to main content Accessibility help
×
Hostname: page-component-cb9f654ff-lqqdg Total loading time: 0 Render date: 2025-08-12T01:40:21.344Z Has data issue: false hasContentIssue false

Chapter 21 - Respiratory Therapy

Published online by Cambridge University Press:  26 May 2025

Martin Groß
Affiliation:
MEDIAN Clinic Bad Tennstedt
Eelco F. M. Wijdicks
Affiliation:
Mayo Clinic
Maxwell S. Damian
Affiliation:
Basildon University Hospitals
Oliver Summ
Affiliation:
Evangelisches Krankenhaus Oldenburg
Get access

Summary

This chapter discusses respiratory therapy, an essential part in the care of patients with respiratory impairment, for example, on the ICU, and the role of respiratory therapists. Respiratory therapy covers diseases of the airway, lungs and the respiratory muscle pump, including respiratory diagnostics, non-invasive and invasive ventilation, management of secretions, nebulization, oxygen therapy and other drug and non-drug therapies. While respiratory therapists originated in pneumology about 70 years ago, their field of activity extended to a variety of medical disciplines as neurology, pediatrics, critical care medicine and sleep medicine. Respiratory therapists coordinate and monitor patient care and equipment, perform advanced respiratory care, evaluate the treatment and educate teams, patients and family caregivers. They consult in all topics of ventilatory support, including technical aspects of mechanical ventilation, ventilation strategies, airway management and pharmacotherapy, especially nebulized therapy, and they are involved in research.

Information

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Hess, DR. Evidence-based respiratory care. Respiratory Care. 2021 Apr 6;66(7):1105–19.CrossRefGoogle ScholarPubMed
Almeshari, MA, Alshehri, Z, Alqahtani, JS, et al. The status of respiratory care education in Saudi Arabia: a national survey of program directors. Advances in Medical Education and Practice. 2022 Jun; 13:619–28.Google ScholarPubMed
Karg, O. Der Weg zum Atmungstherapeuten in Deutschland – Status quo und Entwicklungsperspektiven. Pneumologie. 2017 Oct 5;72(02):127–31.Google Scholar
Hornemann, D. Marquardt, C, Sugg, J, et al. Der Atmungstherapeut in der Neurologie – Ein Blick auf das Berufsbild und ein Ausblick in die Zukunft. Fortschritte Der Neurologie Psychiatrie. 2022 Aug 12;91(1–2):4551.Google Scholar
Kacmarek, RM. Mechanical ventilation competencies of the respiratory therapist in 2015 and beyond. Respiratory Care. 2013 May 25;58(6):1087–96.CrossRefGoogle ScholarPubMed
American Association for Respiratory Care. AARC timeline: the history of respiratory therapy. Accessed July 6, 2024. www.aarc.org/about-us/aarc-timeline/.Google Scholar
Deutschsprachige Gesellschaft für Paraplegiologie. Atmung, Atemunterstützung und Beatmung bei akuter und chronischer Querschnittlähmung Langfassung S2k-Leitlinie [Internet]. Deutschsprachige Medizinische Gesellschaft für Paraplegiologie e.V; 2022. Accessed March 3, 2024. https://register.awmf.org/assets/guidelines/179-011l_S2k_Atmung-Atemunterstuetzung-Beatmung-bei-akuter-und-chronischer-Querschnittlaehmung_2022-11.pdf.Google Scholar
Data USA. Respiratory therapists. 2022. Accessed July 6, 2024. https://datausa.io/profile/soc/respiratory-therapists.Google Scholar
Suarez, JI, Martin, R, Bauza, C, et al. Worldwide Organization of Neurocritical Care: results from the PRINCE study part 1. Neurocrit Care. 2019 Jun 7;32(1):172–9.Google Scholar
Ratnavelu, VK. Respiratory therapy in India. Indian J Respir Care. 2012 Dec 1;1(1):810.Google Scholar
Smith, SG, Endee, LM, Benz Scott, LA, Linden, PL. The future of respiratory care: results of a New York State survey of respiratory therapists. Respir Care. 2017 Jan 17;62(3):279–87.CrossRefGoogle ScholarPubMed
National Board for Respiratory Care. About NBRC. 2023. Accessed December 1, 2023. www.nbrc.org/about.Google Scholar
Moheet, AM, Livesay, SL, Abdelhak, T, et al. Standards for neurologic critical care units: a statement for healthcare professionals from the Neurocritical Care Society. Neurocrit Care. 2018 Sep 24;29(2):145–60.CrossRefGoogle ScholarPubMed
Groß, M, Pohl, M, Platz, T, Schmidt-Wilcke, T. Die Zertifizierung von Zentren für Beatmungsentwöhnung in der neurologisch-neurochirurgischen Frührehabilitation durch die Deutsche Gesellschaft für Neurorehabilitation. Der Nervenarzt. 2021 Oct 14;93(8):828–34.Google Scholar
Barnes, TA, Gale, DD, Kacmarek, RM, Kageler, WV. Competencies needed by graduate respiratory therapists in 2015 and beyond. Respir Care. 2010 May 1;55(5):601–16.Google ScholarPubMed
Kollef, MH, Shapiro, SD, Clinkscale, D, et al. The effect of respiratory therapist-initiated treatment protocols on patient outcomes and resource utilization. Chest. 2000 Feb;117(2):467–75.CrossRefGoogle ScholarPubMed
Stoller, JK. The effectiveness of respiratory care protocols. Respir Care. 2004 Jul 1;49(7):761–5.Google ScholarPubMed
Kuramatsu, JB, Huttner, HB, Schwab, S. Spezialisierte neurologische neurochirurgische Intensivmedizin. Der Nervenarzt. 2016 May 20;87(6):583–91.CrossRefGoogle Scholar
Hilker, R, Poetter, C, Findeisen, N, et al. Nosocomial pneumonia after acute stroke. Stroke. 2003 Apr;34(4):975–81.CrossRefGoogle ScholarPubMed
Maeshima, S, Osawa, A, Hayashi, T, Tanahashi, N. Elderly age, bilateral lesions, and severe neurological deficit are correlated with stroke-associated pneumonia. J Stroke Cerebrovasc Dis. 2014 Mar;23(3):484–9.CrossRefGoogle ScholarPubMed
Song, WS, Mullon, J, Regan, NA, Roth, BJ. Instruction of hospitalized patients by respiratory therapists on metered-dose inhaler use leads to decrease in patient errors. Respir Care. 2005 Aug 1;50(8):1040–5.Google ScholarPubMed
Miller, TM, Cudkowicz, ME, Genge, A, et al. Trial of antisense oligonucleotide tofersen for SOD1 ALS. N Engl J Med. 2022 Sep 22;387(12):1099–110.CrossRefGoogle ScholarPubMed
Fitting, J-W. Sniff nasal inspiratory pressure: simple or too simple? Eur Respir J. 2006 May;27(5):881–3.CrossRefGoogle ScholarPubMed
Kabitz, H-J, Walterspacher, S, Mellies, U, Criée, CP, Windisch, W. Messung der Atemmuskelfunktion Empfehlungen der Deutschen Atemwegsliga e.V. in der Deutschen Gesellschaft für Pneumologie und Beatmungsmedizin (DGP). Dustri-Verl. Feistle; 2014.Google Scholar
Haas, CF, Loik, PS, Gay, SE. Airway clearance applications in the elderly and in patients with neurologic or neuromuscular compromise. Respir Care. 2007 Oct 1;52(10):1362–81; discussion 1381.Google ScholarPubMed
Chiara, T, Martin, D, Sapienza, C. Expiratory muscle strength training: speech production outcomes in patients with multiple sclerosis. Neurorehabil Neural Repair. 2007 May 1;21(3):239–49.CrossRefGoogle ScholarPubMed
Gosselink, R, Kovacs, L, Ketelaer, P, Carton, H, Decramer, M. Respiratory muscle weakness and respiratory muscle training in severely disabled multiple sclerosis patients. Arch Phys Med Rehabil. 2000 Jun;81(6):747–51.CrossRefGoogle ScholarPubMed
Klefbeck, B, Hamrah Nedjad, J. Effect of inspiratory muscle training in patients with multiple sclerosis. Arch Phys Med Rehabil. 2003 Jul;84(7):994–9.Google ScholarPubMed
Smeltzer, SC, Levietes, MH, Cook, SD. Expiratory training in multiple sclerosis. Arch Phys Med Rehabil. 1996 Sep;77(9):909–12.CrossRefGoogle ScholarPubMed
Gozal, D, Thiriet, P. Respiratory muscle training in neuromuscular disease: long-term effects on strength and load perception. Med Sci Sports Exerc. 1999 Nov;31(11):1522.CrossRefGoogle ScholarPubMed
Koessler, W. Wanke, T, Winkler, G, et al. 2 years’ experience with inspiratory muscle training in patients with neuromuscular disorders. Chest. 2001 Sep 1;120(3):765–9.CrossRefGoogle Scholar
Winkler, G, Zifko, U, Nader, A, et al. Dose-dependent effects of inspiratory muscle training in neuromuscular disorders. Muscle Nerve. 2000;23(8):1257–60.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Kang, SW, Shin, JC, Park, CI, Moon, JH, Rha, DW, Cho, D-h. Relationship between inspiratory muscle strength and cough capacity in cervical spinal cord injured patients. Spinal Cord. 2005 Sep 6;44(4):242–8.Google Scholar
Menezes, KK, Nascimento, LR, Ada, L, Polese, JC, Avelino, PR, Teixeira-Salmela, LF. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review. J Physiother. 2016 Jul;62(3):138–44.CrossRefGoogle ScholarPubMed
Frank, U, Frank, K, Zimmermann, H. Effects of respiratory therapy (bagging) on respiratory function, swallowing frequency and vigilance in tracheotomized patients in early neurorehabilitation. Pneumologie. 2015 Jun 30;69(07):394–9.Google ScholarPubMed
Gardenhire, DS, Ari, A, Hess, D, Myers, TR. A Guide to Aerosol Delivery Devices for Respiratory Therapists. 3rd ed. American Association for Respiratory Care; 2013. Accessed June 17, 2024. https://irccouncil.org/wp-content/icrc-documents/aerosol_delivery_english.pdf.Google Scholar
King, M, Phillips, DM, Gross, D, Vartian, V, Chang, HK, Zidulka, A. Enhanced tracheal mucus clearance with high frequency chest wall compression. Am Rev Respir Dis. 1983 Sep;128(3):511–15.CrossRefGoogle ScholarPubMed
Ge, J, Ye, Y, Tan, Y, Liu, F, Jiang, Y, Lu, J. High-frequency chest wall oscillation multiple times daily can better reduce the loss of pulmonary surfactant and improve lung compliance in mechanically ventilated patients. Heart Lung. 2023 Sep 1;61:114–19. Accessed September 7, 2023. www.sciencedirect.com/science/article/abs/pii/S014795632300122X.CrossRefGoogle ScholarPubMed
Huang, WC, Wu, PC, Chen, CJ, et al. High-frequency chest wall oscillation in prolonged mechanical ventilation patients: a randomized controlled trial. Clin Respir J. 2014 Oct 2;10(3):272–81.Google ScholarPubMed
Rochwerg, B, Granton, D, Wang, DX, et al. High flow nasal cannula compared with conventional oxygen therapy for acute hypoxemic respiratory failure: a systematic review and meta-analysis. Intensive Care Med. 2019 Mar 19;45(5):563–72.CrossRefGoogle ScholarPubMed
Reychler, G, Debier, E, Contal, O, Audag, N. intrapulmonary percussive ventilation as an airway clearance technique in subjects with chronic obstructive airway diseases. Respir Care. 2018 Apr 24;63(5):620–31.CrossRefGoogle Scholar
Clini, EM, Antoni, FD, Vitacca, M, et al. Intrapulmonary percussive ventilation in tracheostomized patients: a randomized controlled trial. Intensive Care Med. 2006 Oct 24;32(12):19942001.CrossRefGoogle ScholarPubMed
Kim, J, Davenport, P, Sapienza, C. Effect of expiratory muscle strength training on elderly cough function. Arch Gerontol Geriatr. 2009 May;48(3):361–6.CrossRefGoogle ScholarPubMed
Bath, PM, Woodhouse, LJ, Suntrup-Krueger, S, et al. Pharyngeal electrical stimulation for neurogenic dysphagia following stroke, traumatic brain injury or other causes: Main results from the PHADER cohort study. EClinicalMedicine. 2020 Nov;28:100608.CrossRefGoogle ScholarPubMed
Dziewas, R, Stellato, R, van der Tweel, I, et al. Pharyngeal electrical stimulation for early decannulation in tracheotomised patients with neurogenic dysphagia after stroke (PHAST-TRAC): a prospective, single-blinded, randomised trial. Lancet Neurol. 2018 Oct;17(10):849–59.CrossRefGoogle ScholarPubMed
Bokolo, A, Jr. Application of telemedicine and eHealth technology for clinical services in response to COVID‑19 pandemic. Health Technol (Berl). 2021 Jan 14;11(2):359–66.Google ScholarPubMed
Anthony, B, Jr. Use of telemedicine and virtual care for remote treatment in response to COVID-19 pandemic. J Med Syst. 2020 Jun 15;44(7):19.Google Scholar
León‐Salas, B, González‐Hernández, Y, Infante‐Ventura, D, et al. Telemedicine for neurological diseases: a systematic review and meta‐analysis. Eur J Neurol. 2022 Nov 14;30:241–54.Google Scholar
Sawadkar, M, Nayak, V. Telehealth: the role of respiratory therapists during the COVID-19 emergency. Can J Respir Ther. 2021 Aug 18;57:119–20.Google Scholar
Geronimo, A, Simmons, Z. Evaluation of remote pulmonary function testing in motor neuron disease. Amyotroph Lateral Scler Frontotemporal Degener. 2019 Apr 7;20(5–6):348–55.CrossRefGoogle ScholarPubMed

Accessibility standard: Unknown

Accessibility compliance for the PDF of this book is currently unknown and may be updated in the future.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×