Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-25T05:49:05.409Z Has data issue: false hasContentIssue false

Models of fragment penetration and fireball evolution

Published online by Cambridge University Press:  12 September 2009

David A. Crawford
Affiliation:
Experimental Impact Physics Department, Sandia National Laboratories, MS 0821, Albuquerque, NM 87185, USA
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

A new analytical model that is calibrated against numerical simulations performed with the CTH shock physics code provides a useful description of the entry of Periodic Comet Shoemaker-Levy 9 into the Jovian atmosphere. Mass loss due to radiative heating of fragments larger than 100 m in diameter is insignificant because of energy conservation during the ablative process. Nevertheless, radiative ablation is a major contributor to atmospheric energy deposition at high altitude and plays an important role in early-time fireball evolution. The analytical model provides the initial conditions from which fireball and plume evolution can be calculated using CTH. The results from these simulations suggest that if the tops of the plumes originated from a specific level of the Jovian atmosphere then maximum plume heights are independent of fragment size provided the fragments penetrated at least 30 km below this level. If the tops of the plumes originated from the visible cloud tops, then fragment masses greater than 4 × 1012 g, corresponding to 200 m diameter fully dense water ice, are required to explain the observations. If the plumes originated from the NH4SH layer then masses greater than 3 × 1013 g (400 m water ice) are required. The lateral extent and mass of the observable plume are functions of fragment size and contribute to the lateral extent and albedo of the debris patterns after re-impact with the atmosphere.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×