Published online by Cambridge University Press: 05 July 2014
The helix antenna discussed in the previous chapter used a new type of element to model surfaces. The theory underlying this is described in this chapter. The basic theory is quite complex, and general implementations are especially challenging. However, by choosing a suitable problem, it proves possible to undertake a limited implementation of a three-dimensional scattering problem, using a basis function defined on a triangular patch known as the RWG element. This is named after Rao, Wilton and Glisson, who introduced the element in their classic 1982 paper [1]. It represented a new type of element, the vector or edge-based element, and a closely related class of element was also under development for finite element applications at that time, although it would be some years before the connection was fully appreciated. (This will be pursued in more detail in the later coverage of the FEM.) The RWG element underlies the surface treatment of modern codes such FEKO (although not NEC), and some examples of using existing codes (in particular FEKO) to compute scattering from more general surfaces will further illustrate this.
We will also see that not only can perfectly (or highly) conducting structures be efficiently modelled using surface currents, but also homogeneous dielectric and/or magnetic regions, using fictitious equivalent currents. (We will even briefly describe how inhomogeneous bodies can be modelled using volumetric currents, but note at the outset that this is not one of the strong points of the MoM.)
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.