Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-16T07:55:41.602Z Has data issue: false hasContentIssue false

Chapter Twenty-One - Applications to Turbulence

from Part Five - Applications

Published online by Cambridge University Press:  05 June 2012

T. J. Chung
Affiliation:
University of Alabama, Huntsville
Get access

Summary

General

Turbulence is a natural phenomenon in fluids that occurs when velocity gradients are high, resulting in disturbances in the flow domain as a function of space and time. Examples include smoke in the air, condensation of air on a wall, flows in a combustion chamber, ocean waves, stormy weather, atmospheres of planets, and interaction of the solar wind with magnetosphere, among others.

Although turbulence has been the subject of intensive study for the past century, it appears that many difficulties still remain unresolved, particularly in flows with high Mach numbers and high Reynolds numbers. Turbulent flows arise in contact with walls or in between two neighboring layers of different velocities. They result from unstable waves generated from laminar flows as the Reynolds number increases downstream. With velocity gradients increasing, the flow becomes rotational, leading to a vigorous stretching of vortex lines, which cannot be supported in two dimensions. Thus, turbulent flows are always physically three-dimensional, typical of random fluctuations. This makes 2-D simplifications unacceptable in most of the numerical simulation.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, B. S.Lomax, H. 1978
Bardina, J.Ferziger, J. H.Reynolds, W. C. 1980
Cebeci, T.Smith, A. M. O. 1974 Analysis of turbulent boundary layerAppl. Math. Mech., 15Academic PressGoogle Scholar
Choi, H.Moin, P.Kim, J. 1993 Direct numerical simulation of turbulent flow over rivetsJ. Fluid Mech. 255 503CrossRefGoogle Scholar
Comte, P. 1994 Structure-function based models for compressible transitional shear flowsERCOFTAC Bull. 22 9Google Scholar
Comte, P.Lesieur, M. 1989 Coherent structure of mixing layers in large eddy-simulation in topological fluid dynamicsMoffatt, H. K.Topological Fluid DynamicsNew YorkCambridge University Press360Google Scholar
Ducros, F.Ferrand, V.Nicoud, F.Weber, C.Darracq, D.Gacherieu, C.Poinsot, T. 1999 Large-eddy simulation of the shock/turbulence interactionJ. Comp. Phys. 152 517CrossRefGoogle Scholar
Dumuren, A. O. 1991 Calculation of turbulent-driven secondary motion in ducts with arbitrary cross sectionAIAA J 29 531CrossRefGoogle Scholar
Erlebacher, G.Hussaini, M. Y.Speziale, C. G.Zang, T. A. 1992 Towards the large eddy simulation of compressible turbulent flowsJ. Fl. Mech. 238 155CrossRefGoogle Scholar
Fasel, H. F.Rist, U.Konzelmann, U. 1990 Numerical investigation of the three-dimensional development in boundary layer transitionAIAA J. 28 29CrossRefGoogle Scholar
Fureby, C. 1999 Large eddy simulation of rearward-facing step flowAIAA J. 37 1401CrossRefGoogle Scholar
Gao, F.O’Bien, E. E. 1991 Direct numerical simulation of reacting flows in homogeneous turbulenceAIChE J. 37 1459CrossRefGoogle Scholar
Gatski, T. B.Speziale, C. G. 1992
Germano, M. 1992 Turbulence: the filtering approachJ. Fl. Mech. 238 325CrossRefGoogle Scholar
Germano, M.Piomelli, U.Moin, P.Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity modelPhys. Fl. 3 1760CrossRefGoogle Scholar
Girimaji, S. S. 1995
Guo, Y.Kleiser, L.Adams, N. A. 1996 Comparison of temporal and spatial direct numerical simulation of compressible boundary layer transitionAIAA J 34 683CrossRefGoogle Scholar
Hanine, F.Kourta, A. 1991 Performance of turbulence models to predict supersonic boundary layer flowsComp. Meth. Appl. Mech. Eng. 89 221CrossRefGoogle Scholar
Huang, P. G.Bradshaw, P.Coakley, T. J. 1992
Huang, P. G.Coleman, G. N.Bradshaw, P. 1995 Compressible turbulent channel flows: DNS results and modelingJ. Fluid Mech. 305 185CrossRefGoogle Scholar
Huser, A.Biringen, S. 1993 Direct numerical simulation of turbulent flow in a square ductJ. Fluid Mech. 257 65CrossRefGoogle Scholar
Jameson, A.Schmidt, W.Turkel, E. 1981
Kim, J.Kline, S. J.Johnston, J. P. 1980 Investigation of a reattaching turbulent shear layer: Flow over a backward-facing stepASME J. Fl. Eng. 102 302CrossRefGoogle Scholar
Kim, J.Moin, P.Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds numberJ. Fl. Mech. 177 133CrossRefGoogle Scholar
Knight, D.Zhou, G.Okong’o, N.Shukla, V. 1998
Kolmogorov, A. N. 1941 Local structure of turbulence in incompressible viscous fluid for very large Reynolds numberDoklady AN. SSR 30 299Google Scholar
Kolmogorov, A. N. 1942 Equations of turbulent motion of an incompressible fluidIzvestia Academy of Sciences, USSR, Physics 6 56Google Scholar
Launder, B. E. 1992 Fifth Biennial Colloquium on Computational Fluid DynamicsManchester Institute of Science and Technology, England
Launder, B. E.Reece, G. J.Rodi, W. 1975 Progress in the development of Reynolds stress turbulent closureJ. Fl. Mech. 68 537CrossRefGoogle Scholar
Launder, B. E.Spalding, B. 1972 Mathematical Models of TurbulenceNew YorkAcademic PressGoogle Scholar
Lee, S.Lele, S. K.Moin, P. 1993 Direct numerical simulation of isotropic turbulence interacting with a weak shock waveJ. Fl. Mech. 251 533CrossRefGoogle Scholar
Lesieur, M. 1997 Turbulence in FluidsLondonKluwer Academic PublishersCrossRefGoogle Scholar
Lesieur, MMetais, O 1996 New trends in large eddy simulation of turbulenceAnn. Rev. Fl. Mech. 28 45CrossRefGoogle Scholar
Lilly, D. K. 1966
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure methodsPhys. Fl. 4 633CrossRefGoogle Scholar
Lumley, J. L. 1978 Computational modeling of turbulent flows, Appl. Mech. 18 123Google Scholar
Meneveau, C.Lund, T. S. 1997 The dynamic Smagorinsky model and scalar-dependent coefficients in the viscous range of turbulencePhys. Fl. 9 3932CrossRefGoogle Scholar
Metais, O.Lesieur, M. 1992 Spectral large eddy simulations of isotropic and stably stratified turbulenceJ. Fl. Mech. 239 157CrossRefGoogle Scholar
Mittal, R.Balachandar, S. 1996 Direct numerical simulation of flow past elliptic cylindersJ. Comp. Phys. 124 351CrossRefGoogle Scholar
Moin, P.Squires, K.Cabot, W.Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transportPhys. Fl. 3 2746CrossRefGoogle Scholar
Moser, R. D.Moin, P. 1984
Normand, X.Lesieur, M. 1992 Direct and large-eddy simulation of laminar break-down in high-speed axisymmetric boundary layersTheor. Comp. Fl. Dyn. 3 231CrossRefGoogle Scholar
Pierce, C. D.Moin, P. 1999 A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalarPhys. Fl. 10 3041CrossRefGoogle Scholar
Pitz, R. W.Daily, J. W. 1981
Poinsot, T. J.Lele, S. K. 1992 Boundary conditions for direct simulations of compressible viscous flowsJ. Comp. Phys. 101 104CrossRefGoogle Scholar
Prandtl, L. 1925 Uber die ausgebildete turbulenzZ. Angew. Math. Mech.136Google Scholar
Pruett, C. D.Zang, T. A. 1992 Direct numerical simulation of laminar breakdown in high-speed, axisymmetric boundary layersTjeoret. Comp. Fl. Dyn. 3 345CrossRefGoogle Scholar
Pruett, C. D.Zang, T. A.Chang, C. L.Carpenter, M. H. 1995 Spatial direct numerical simulation of high-speed boundary layer flows. Part I: Algorithmic considerations and validationTheor. Comp. Fl. Dyn. 7 49CrossRefGoogle Scholar
Rai, M. M.Moin, P. 1993 Direct numerical simulation of transition and turbulence in a spatially evolving boundary layerJ. Comp. Phys. 109 169CrossRefGoogle Scholar
Rodi, W. 1976 A new algebraic relation for calculating Reynolds stressesZAMM 56 219Google Scholar
Rotta, J. C. 1951 Statisische theorie nichthomogener turbulenzZeitschrift fur Physik 129 547CrossRefGoogle Scholar
Sarker, S.Erlebacher, G.Hussaini, M. Y.Kreiss, H. O. 1989 89
Smagorinsky, J. 1963 General circulation experiments with the primitive equations, I. The basic experimentMon. Weather Rev. 91 992.3.CO;2>CrossRefGoogle Scholar
So, R.M.C.Melloe, G. L. 1978 Turbulent boundary layers with large streamline curvature effectsZAMP 29 54CrossRefGoogle Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to Re = 1410J. Fl. Mech. 187 61CrossRefGoogle Scholar
Spalart, P. R.Yang, K. S. 1987 J. Fl. Mech. 178 345CrossRef
Spalding, D. B. 1972 A novel finite difference formulation for differential equations involving both first and second derivativesInt. J. Num. Meth. Eng. 4 551CrossRefGoogle Scholar
Speziale, C. G. 1987 On non-linear –ℓ and –ɛ model of turbulenceJ. Fl. Mech. 178 459CrossRefGoogle Scholar
Speziale, C. G.Erlebacher, G.Zang, T. A.Hussaini, M. Y. 1988 The subgrid-scale modeling of compressible turbulencePhys. Fl. 31 940CrossRefGoogle Scholar
Speziale, C. G.Sarker, S.Gatski, T. B. 1991 Modeling of the pressure-strain correlation of turbulenceJ. Fl. Mech. 227 245CrossRefGoogle Scholar
Speziale, C. G.Zang, T. A.Hussaini, M. Y. 1988 The subgrid scale modeling of compres- sible turbulencePhys. Fl. 31 940CrossRefGoogle Scholar
Spyropoulos, E. T.Blaisdell, G. A. 1995
Squires, K. D. 1991 Dynamic subgrid-scale modeling of compressible turbulenceAnnual Research BriefsCenter for Turbulence Research, Stanford University207Google Scholar
Thangam, S.Hur, N. 1991 A highly resolved numerical study of turbulent separated flow past a backward-facing stepInt. J. Eng. Sci. 29 607CrossRefGoogle Scholar
Thangam, S.Speziale, C. G. 1992 Turbulent flow past a backward-facing step: a critical evaluation of two-equation modelsAIAA J. 30 1314CrossRefGoogle Scholar
Van Driest, E. R. 1956 On turbulent flow near a wallJ. Aero. Sci. 23 1007CrossRefGoogle Scholar
Vreman, B.Geurts, B.Kuerten, H. 1995 Subgrid-modeling in LES of compressible flowsAppl. Sci. Res. 54 191CrossRefGoogle Scholar
Wilcox, D. C. 1988 Multiscale model for turbulent FlowsAIAA J 26 1311CrossRefGoogle Scholar
Wilcox, D. C. 1989 89
Wilcox, D. C. 1992 Dilatation-dissipation corrections for advanced turbulence modelsAIAA J. 30 2639Google Scholar
Wilcox, D. C. 1992 Turbulence Modeling for CFDDCW Industries, IncLa Canada, CAGoogle Scholar
Yoshzawa, A. 1986 Statistical theory for compressible turbulent shear flows with the application to subgrid modelingPhys. Fl. 29 2152CrossRefGoogle Scholar
Zang, Y.Street, R. L.Koseff, J. R. 1993 A dynamic mixed subgrid-scale and its application to turbulenct recirculating flowsPhys. Fl. 5 3186CrossRefGoogle Scholar
Zeman, O. 1990 Dilatation dissipation: The concept and application in modeling compressible mixing layersPhys. Fl. 2 178CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Applications to Turbulence
  • T. J. Chung, University of Alabama, Huntsville
  • Book: Computational Fluid Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511780066.028
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Applications to Turbulence
  • T. J. Chung, University of Alabama, Huntsville
  • Book: Computational Fluid Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511780066.028
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Applications to Turbulence
  • T. J. Chung, University of Alabama, Huntsville
  • Book: Computational Fluid Dynamics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511780066.028
Available formats
×