from Part Three - Finite Element Methods
Published online by Cambridge University Press: 05 June 2012
General
We saw in Section 1.3 that finite element equations are obtained by the classical approximation theories such as variational or weighted residual methods. However, there are some basic differences in philosophy between the classical approximation theories and finite element methods. In the finite element methods, the global functional representations of a variable consist of an assembly of local functional representations so that the global boundary conditions can be implemented in local elements by modification of the assembled algebraic equations. The local interpolation (shape, basis, or trial) functions are chosen in such a manner that continuity between adjacent elements is maintained.
The finite element interpolations are characterized by the shape of the finite element and the order of the approximations. In general, the choice of a finite element depends on the geometry of the global domain, the degree of accuracy desired in the solution, the ease of integration over the domain, etc.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.