Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-11T16:38:30.292Z Has data issue: false hasContentIssue false

5 - Voronoi Diagrams

Published online by Cambridge University Press:  05 June 2012

Joseph O'Rourke
Affiliation:
Smith College, Massachusetts
Get access

Summary

In this chapter we study the Voronoi diagram, a geometric structure second in importance only to the convex hull. In a sense a Voronoi diagram records everything one would ever want to know about proximity to a set of points (or more general objects). And often one does want to know detail about proximity: Who is closest to whom? who is furthest? and so on. The concept is more than a century old, discussed in 1850 by Dirichlet and in a 1908 paper of Voronoi.

We will start with a series of examples to motivate the discussion and then plunge into the details of the rich structure of the Voronoi diagram (in Sections 5.2 and 5.3). It is necessary to become intimately familiar with these details before algorithms can be appreciated (in Section 5.4). Finally we will reveal the beautiful connection between Voronoi diagrams and convex hulls in Section 5.7. This chapter includes only two short pieces of code, to construct the dual of the Voronoi diagram (the Delaunay triangulation), in Section 5.7.4.

APPLICATIONS: PREVIEW

  1. 1. Fire Observation Towers

  2. Imagine a vast forest containing a number of fire observation towers. Each ranger is responsible for extinguishing any fire closer to her tower than to any other tower. The set of all trees for which a particular ranger is responsible constitutes the “Voronoi polygon” associated with her tower. The Voronoi diagram maps out the lines between these areas of responsibility: the spots in the forest that are equidistant from two or more towers. (A look ahead to Figure 5.5 may aid intuition.)

  3. 2. […]

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Voronoi Diagrams
  • Joseph O'Rourke, Smith College, Massachusetts
  • Book: Computational Geometry in C
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804120.006
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Voronoi Diagrams
  • Joseph O'Rourke, Smith College, Massachusetts
  • Book: Computational Geometry in C
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804120.006
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Voronoi Diagrams
  • Joseph O'Rourke, Smith College, Massachusetts
  • Book: Computational Geometry in C
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804120.006
Available formats
×