Published online by Cambridge University Press: 05 February 2015
This chapter introduces the basic properties of congruences modulo n, along with the related notion of residue classes modulo n. Other items discussed include the Chinese remainder theorem, Euler's phi function, Euler's theorem, Fermat's little theorem, quadratic residues, and finally, summations over divisors.
Equivalence relations
Before discussing congruences, we review the definition and basic properties of equivalence relations.
Let S be a set. A binary relation ∼ on S is called an equivalence relation if it is
reflexive:a ∼ a for all a ∈ S,
symmetric:a ∼ b implies b ∼ a for all a, b ∈ S, and
transitive:a ∼ b and b ∼ c implies a ∼ c for all a, b, c ∈ S.
If ∼ is an equivalence relation on S, then for a ∈ S one defines its equivalence class as the set {x ∈ S : x ∼ a}.
Theorem 2.1. Let ∼ be an equivalence relation on a set S, and for a ∈ S, let [a] denote its equivalence class. Then for all a, b ∈ S, we have:
(i) a ∈ [a];
(ii) a ∈ [b] implies [a] = [b].
Proof. (i) follows immediately from reflexivity. For (ii), suppose a ∈ [b], so that a ∼ b by definition. We want to show that [a] = [b]. To this end, consider any x ∈ S.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.