References
Aaronson, D., Grupsmith, E., & Aaronson, M. (1976). The impact of computers on cognitive psychology. Behavioral Research Methods & Instrumentation, 8: 129–38.
Aaronson, S. (2013). Why philosophers should care about computational complexity. In Copeland, B. J., Posy, C. J., & Shagrir, O. (eds.), Computability: Turing, Gödel, Church, and Beyond. Cambridge, MA: MIT Press, pp. 261–328.
Abraham, T. H. (2018). Cybernetics. In Sprevak, M. & Colombo, M. (eds.), The Routledge handbook of the computational mind. New York: Routledge, pp. 52–64.
Adamatzky, A. (2021). Handbook of Unconventional Computing. Singapore: World Scientific.
Adrian, E. D., & Zotterman, Y. (1926). The impulses produced by sensory nerve endings: Part 3. Impulses set up by touch and pressure. The Journal of Physiology, 61(4): 465–93.
Anderson, N. G., & Piccinini, G. (forthcoming). The Physical Signature of Computation: A Robust Mapping Account. Oxford: Oxford University Press.
Ashby, W. R. (1952). Design for a Brain. London: Chapman and Hall.
Baars, B. J. (1993). A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.
Baker, B., Lansdell, B., & Kording, K. P. (2022). Three aspects of representation in neuroscience. Trends in Cognitive Sciences, 26(11): 942–58.
Barlow, H. B. (1961). Possible Principles Underlying the Transformation of Sensory Messages. In Rosenblith, W. A. (ed.), Sensory Communication. Cambridge, MA: MIT Press.
Bechtel, W., & Shagrir, O. (2015). The non-redundant contributions of Marr’s three levels of analysis for explaining information-processing mechanisms. Topics in Cognitive Science, 7(2): 312–22.
Beer, R. D. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences, 4(3): 91–9.
Beer, R. D., & Williams, P. L. (2015). Information processing and dynamics in minimally cognitive agents. Cognitive Science, 39(1): 1–38.
Bell, A. J. (1999). Levels and loops: The future of artificial intelligence and neuroscience. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 354(1392): 2013–20.
Bengio, Y., Lecun, Y., & Hinton, G. (2021). Deep learning for AI. Communications of the ACM, 64(7): 58–65.
Bennett, M. R., & Hacker, P. M. S. (2022). Philosophical Foundations of Neuroscience. 2nd ed. Hoboken: John Wiley & Sons.
Bickhard, M. H., & Terveen, L. (1995). Foundational Issues in Artificial Intelligence and Cognitive Science: Impasse and Solution. Amsterdam: North-Holland.
Birhane, A. (2021). The impossibility of automating ambiguity. Artificial Life, 27(1): 44–61.
Bishop, C. M. (2006). Pattern Recognition and Machine Learning. New York: Springer.
Block, N. (1978). Troubles with functionalism. In Savage, C. W. (ed.), Perception and Cognition: Issues in the Foundations of Psychology, Minnesota Studies in the Philosophy of Science, vol. 9. Minneapolis: University of Minnesota Press, pp. 261–325.
Block, N. (1995). On a confusion about a function of consciousness. The Behavioral and Brain Sciences, 18(2): 227–87.
Block, N., & Fodor, J. A. (1972). What psychological states are not. The Philosophical Review, 81(2): 159–81.
Bourdillon, P., Hermann, B., Guénot, M., et al. (2020). Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: An intracranial and scalp EEG study. Scientific Reports, 10: 14037. https://doi.org/10.1038/s41598-020-70447-7. Brentano, F. (1874/1973). Psychology from an Empirical Standpoint. Trans. Rancurello, A. C., Terrell, D. B., & McAlister, L. L. London: Routledge and Kegan Paul.
Brette, R. (2019). Is coding a relevant metaphor for the brain? Behavioral and Brain Sciences, 42: e215.
Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence, 47(1–3): 139–59.
Buckner, C. (forthcoming). Deeply Rational Machines. Oxford: Oxford University Press.
Calvo, P., & Symons, J. (eds.). (2014). The Architecture of Cognition: Rethinking Fodor and Pylyshyn’s Systematicity Challenge. Cambridge: MIT Press.
Camp, E. (2007). Thinking with maps. Philosophical Perspectives, 21: 145–82.
Campbell, D. I., & Yang, Y. (2021). Does the solar system compute the laws of motion? Synthese, 198: 3203–20.
Cao, R. (2018). Computational explanations and neural coding. In Sprevak, M., & Colombo, M. (eds.), The Routledge Handbook of the Computational Mind. Routledge: New York, pp. 283–96.
Chalmers, D. J. (1994). On implementing a computation. Minds and Machines, 4(4): 391–402.
Chalmers, D. J. (1996). The Conscious Mind: In Search of a Fundamental Theory. Oxford: Oxford University Press.
Chalmers, D. J. (2011). A computational foundation for the study of cognition. The Journal of Cognitive Science, 12: 323–57.
Chater, N., Tenenbaum, J. B., & Yuille, A. (2006). Probabilistic models of cognition. Trends in Cognitive Science, 10(7): 287–93.
Chemero, A. (2011). Radical Embodied Cognitive Science. Cambridge: MIT Press.
Chirimuuta, M. (2018). Explanation in computational neuroscience: Causal and non-causal. The British Journal for the Philosophy of Science, 69: 849–80.
Chirimuuta, M. (2021). Your brain is like a computer: Function, analogy, simplification. In Calzavarini, F., & Viola, M. (eds.), Neural Mechanisms: Studies in Brain and Mind, vol. 17. Cham: Springer, pp. 235–61.
Churchland, P. M. (1992). A Neurocomputational Perspective: The Nature of Mind and the Structure of Science. Cambridge: MIT Press.
Churchland, P. S., & Sejnowski, T. J. (1992). The Computational Brain. Cambridge: MIT Press.
Cisek, P. (2019). Resynthesizing behavior through phylogenetic refinement. Attention, Perception, & Psychophysics, 81(7): 2265–87.
Clark, A. (1993). Associative Engines: Connectionism, Concepts, and Representational Change. Cambridge: MIT Press.
Clark, A. (1997). The dynamical challenge. Cognitive Science, 21(4): 461–81.
Clark, A. (1998). Being There: Putting Brain, Body, and World Together Again. Cambridge: MIT Press.
Clark, A. (2008). Supersizing the Mind: Embodiment, Action, and Cognitive Extension. New York: Oxford University Press.
Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behavioral and Brain Sciences, 36(3): 181–204.
Coelho Mollo, D. (2018). Functional individuation, mechanistic implementation: The proper way of seeing the mechanistic view of concrete computation. Synthese, 195(8): 3477–97.
Collins, A. G. E., & Cockburn, J. (2020). Beyond dichotomies in reinforcement learning. Nature Reviews Neuroscience, 21, 576–86.
Colombo, M. (2009). Does embeddedness tell against computationalism? A tale of bees and sea hares. AISB09 Proceedings of the 2nd Symposium on Computing and Philosophy. Edinburgh: Society for the Study of Artificial Intelligence and the Simulation of Behaviour, pp. 16–21.
Colombo, M. (2010). How ‘authentic intentionality’ can be enabled: A neurocomputational hypothesis. Minds & Machines, 20: 183–202.
Colombo, M. (2014a). Deep and beautiful: The reward prediction error hypothesis of dopamine. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 45: 57–67.
Colombo, M. (2014b). Explaining social norm compliance: A plea for neural representations. Phenomenology and the Cognitive Sciences, 13(2): 217–38.
Colombo, M. (2017). Why build a virtual brain? Large-scale neural simulations as jump start for cognitive computing. Journal of Experimental & Theoretical Artificial Intelligence, 29(2): 361–70.
Colombo, M. (2021). (Mis) computation in computational psychiatry. In Calzavarini, F., & Viola, M. (eds.), Neural Mechanisms: Studies in Brain and Mind, vol. 17. Cham: Springer, pp. 427–48.
Colombo, M., & Heinz, A. (2019). Explanatory integration, computational phenotypes, and dimensional psychiatry: The case of alcohol use disorder. Theory & Psychology, 29(5): 697–718.
Copeland, B. J. (1996). What is computation? Synthese, 108: 335–59.
Copeland, B. J. (2000). Narrow versus wide mechanism: Including a re-examination of Turing’s views on the mind–machine issue. The Journal of Philosophy, 97: 5–32.
Copeland, B. J., & Proudfoot, D. (1996). On Alan Turing’s anticipation of connectionism. Synthese, 108(3): 361–77.
Corabi, J., & Schneider, S. (2012). The metaphysics of uploading. Journal of Consciousness Studies, 19(7): 26–44.
Crick, F. (1989). The recent excitement about neural networks. Nature, 337: 129–32.
D’Angelo, E., & Jirsa, V. (2022). The quest for multiscale brain modeling. Trends in Neurosciences, 45(10): 777–90.
Cummins, R. (1983) The Nature of Psychological Explanation. Cambridge: MIT Press.
Daston, L. (1994). Enlightenment calculations. Critical Inquiry, 21(1): 182–202.
Davis, E., & Marcus, G. (2015). Commonsense reasoning and commonsense knowledge in artificial intelligence. Communications of the ACM, 58(9): 92–103.
Dabney, W., Kurth-Nelson, Z., Uchida, N., et al. (2020). A distributional code for value in dopamine-based reinforcement learning. Nature, 577(7792): 671–75.
Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12): 1704–11.
Daw, N. D. & Frank, M. J. (2009). Reinforcement learning and higher level cognition: introduction to the special issue. Cognition, 113: 259–61.
Dayan, P. (1994). Computational modelling. Current Opinion in Neurobiology, 4(2): 212–17.
Dayan, P. (2001). Levels of Analysis in Neural Modeling. Encyclopedia of Cognitive Science. London: MacMillan Press.
Dayan, P., & Abbott, L. F. (2005). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge: MIT Press.
Dehaene, S., Lau, H., & Kouider, S. (2017). What is consciousness, and could machines have it? Science, 358(6362): 486–92.
Dennett, D. C. (1969). Content and Consciousness. London: Routledge & Kegan Paul.
Dennett, D. C. (1978). Brainstorms: Philosophical Essays on Mind and Psychology. Montgomery: Bradford.
Dennett, D. C. (1991a). Real patterns. Journal of Philosophy, 88(1): 27–51.
Dennett, D. C. (1991b). Consciousness Explained. Boston: Little, Brown.
Dewhurst, J. (2018). Individuation without representation. The British Journal for the Philosophy of Science, 69(1): 103–16.
Dickinson, A. (1985). Actions and habits: the development of behavioural autonomy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 308, 67–78.
Dickinson, A., & Balleine, B. (2002). The role of learning in the operation of motivational systems. In: Gallistel, C. R. (ed) Stevens’ handbook of experimental psychology: learning, motivation, and emotion. New York: Wiley, pp. 497–534.
Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2): 312–25.
Dretske, F. (1981). Knowledge and the Flow of Information. Cambridge, MA: MIT Press.
Dreyfus, H. (1992). What Computers Still Can’t Do: A Critique of Artificial Reason. New York: MIT Press.
Dreyfus, H. (2002a). Intelligence without representation: Merleau-Ponty’s critique of mental representation. Phenomenology and the Cognitive Sciences, 1(4): 413–25.
Dreyfus, H. (2002b). Refocusing the question: Can there be skillful coping without propositional representations or brain representations? Phenomenology and the Cognitive Sciences, 1: 413–25.
Edelman, G. (1992). Bright Air, Brilliant Fire. New York: Basic Books.
Egan, F. (2014). How to think about mental content. Philosophical Studies, 170(1): 115–35.
Egan, F. (2018). The nature and function of content in computational models. In Sprevak, M., & Colombo, M. (eds.),The Routledge Handbook of the Computational Mind. New York: Routledge, pp. 247–58.
Eliasmith, C. (1996). The third contender: A critical examination of the dynamicist theory of cognition. Philosophical Psychology, 9(4): 441–63.
Eliasmith, C. (2009). How we ought to understand computation in the brain. Studies in History and Philosophy of Science, 41: 313–20.
Eliasmith, C., Stewart, T. C., Choo, X., et al. (2012). A large-scale model of the functioning brain. Science, 338(6111): 1202–5.
Evans, J. S. B., & Stanovich, K. E. (2013). Dual-process theories of higher cognition advancing the debate. Perspectives on Psychological Science, 8(3): 223–41.
Faisal, A. A., Selen, L. P., & Wolpert, D. M. (2008). Noise in the nervous system. Nature Reviews Neuroscience, 9(4): 292–303.
Figdor, C. (2018). Pieces of Mind: The Proper Domain of Psychological Predicates. New York: Oxford University Press.
Fodor, J. A. (1965). Explanations in psychology. In Black, M. (ed.), Philosophy in America. London: Routledge & Kegan Paul, pp. 161–79.
Fodor, J. A. (1968). Psychological Explanation. New York: Random House.
Fodor, J. A. (1975). The Language of Thought. New York: Thomas Y. Crowell.
Fodor, J. A. (1987). Psychosemantics. Cambridge: MIT Press.
Fodor, J. A. (1996). Deconstructing Dennett’s Darwin, Mind and Language, 11: 246–62.
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1–2): 3–71.
Frankish, K. (ed.). (2017). Illusionism: As a Theory of Consciousness. Exeter: Imprint Academic.
Freeman, W. J. (1991). The physiology of perception. Scientific American, 264: 78–85.
Fresco, N. (2014). Physical Computation and Cognitive Science. Heidelberg: Springer.
Fresco, N. (2022). Information in explaining cognition: How to evaluate it? Philosophies, 7(2): 28.
Fresco, N., Copeland, B. J., & Wolf, M. J. (2021). The indeterminacy of computation. Synthese, 199(5): 12753–75.
Fresco, N., & Primiero, G. (2013). Miscomputation. Philosophy & Technology, 26(3): 253–72.
Friston, K. (2018). Am I self-conscious?(Or does self-organization entail self-consciousness?). Frontiers in Psychology, 9: 579.
Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-part III: Radio and Communication Engineering, 93(26): 429–41.
Gallagher, S. (2006). How the Body Shapes the Mind. New York: Oxford University Press.
Gallistel, C. R. (1990). The Organization of Learning. Cambridge: The MIT Press.
Gallistel, C., & King, A. (2010). Memory and the Computational Brain. Oxford: Wiley-Blackwell.
Garey, M. R., & Johnson, D. S. (1979). Computers and Intractability: A Guide to the Theory of NP-completeness. San Francisco, CA: W. H. Freeman.
Gerard, R. W. (1951). Some of the problems concerning digital notions in the central nervous system: Cybernetics. In Foerster, H. V., Mead, M., & Teuber, H. L. (eds.), Circular Causal and Feedback Mechanisms in Biological and Social Systems. Transactions of the Seventh Conference. New York: Macy Foundation, pp. 11–57.
Gibson, J. J. (1979). The Ecological Approach to Visual Perception. Boston: Houghton Mifflin.
Gigerenzer, G., & Goldstein, D. G. (1996a). Mind as computer: Birth of a metaphor. Creativity Research Journal, 9(2–3): 131–44.
Gilson, M., Tagliazucchi, E., & Cofré, R. (2023). Entropy production of multivariate Ornstein-Uhlenbeck processes correlates with consciousness levels in the human brain. Physical Review, E107: 024121.
Gillett, C. (2007). A mechanist manifesto for the philosophy of mind: A third way for functionalists. Journal of Philosophical Research, 32: 21–42.
Gładziejewski, P., & Miłkowski, M. (2017). Structural representations: Causally relevant and different from detectors. Biology and Philosophy, 32: 337–55.
Globus, G. G. (1992). Toward a noncomputational cognitive neuroscience. Journal of Cognitive Neuroscience, 4(4): 299–300.
Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I, Monatshefte für Mathematik und Physik, 38: 173–98. Reprinted in Feferman, S., Kleene, S., Moore, G., Solovay, R., & van Heijenoort, J. (eds.). (1986). Collected Works. I: Publications 1929–1936. Oxford: Oxford University Press, pp. 144–95.
François-Lavet, V., Henderson, P., Islam, R., Bellemare, M. G., & Pineau, J. (2018). An Introduction to Deep Reinforcement Learning. Foundations and Trends in Machine Learning, 11(3–4): 219–354.
Gödel, K. (1951). Some basic theorems on the foundations of mathematics and their implications, lecture manuscript. Feferman, S., Dawson, J., Kleene, S., et al. (eds.). (1995). Collected Works. III: Unpublished Essays and Lectures. Oxford: Oxford University Press, pp. 304–23.
Godfrey-Smith, P. (2009). Triviality arguments against functionalism. Philosophical Studies, 145: 273–95.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge: MIT Press.
Graves, A., Wayne, G., & Danihelka, I. (2014). Neural Turing Machines. arXiv preprint arXiv: 1410.5401.
Griffiths, T. L., Chater, N., Kemp, C., Perfors, A., & Tenenbaum, J. B. (2010). Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences, 14(8): 357–64.
Guest, O., & Martin, A. E. (2021). How computational modeling can force theory building in psychological science. Perspectives on Psychological Science, 16(4): 789–802.
Harman, G. (1973). Thought. Princeton: Princeton University Press.
Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3): 335–46.
Hassabis, D., Kumaran, D., Summerfield, C., & Botvinick, M. (2017). Neuroscience-inspired artificial intelligence. Neuron, 95(2): 245–58.
Haugeland, J. (1985). Artificial Intelligence: The Very Idea. Cambridge, MA: MIT Press.
Haugeland, J. (1998). Having Thought: Essays in the Metaphysics of Mind. Cambridge: Harvard University Press.
Haugeland, J. (2002). Authentic intentionality. In Scheutz, M. (ed.), Computationalism: New Directions. Cambridge, MA: MIT Press, pp. 159–74.
Hebb, D. (1949). The Organization of Behavior. New York: Wiley & Sons.
Hesse, M. (1966). Models and Analogies in Science. Notre Dame: University of Notre Dame Press.
Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4): 500–44.
Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79: 2554–8.
Horsman, D., Kendon, V., & Stepney, S. (2018). Abstraction/representation theory and the natural science of computation. In Cuffaro, M. E. & Fletcher, S. C. (eds.), Physical Perspectives on Computation, Computational Perspectives on Physics. Cambridge: Cambridge University Press, pp. 127–52.
Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A Model of How the Basal Ganglia Generate and Use Neural Signals that Predict Reinforcement. In Houk, J. C., Davis, J. L., Beiser, D. G. (eds.), Models of Information Processing in the Basal Ganglia. Cambridge: MIT Press, pp. 249–70.
Huys, Q. J., Maia, T.V., & Frank, M.J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404–13.
Isaac, A. M. C. (2017). The semantics latent in shannon information. The British Journal for the Philosophy of Science, 70(1): 103–25.
Isaac, A. M. C. (2018a). Computational thought from Descartes to Lovelace. In Sprevak, M., & Colombo, M. (eds.), The Routledge Handbook of the Computational Mind. New York: Routledge, pp. 9–22.
Isaac, A. M. C. (2018b). Embodied cognition as analog computation. Reti, Saperi, Linguaggi: Italian Journal of Cognitive Sciences, 2: 239–62.
Isaac, A. M. C. 2019. The semantics latent in Shannon information. The British Journal for the Philosophy of Science, 70: 103–25.
Izhikevich, E. (2007). Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting. Cambridge, MA: The MIT Press.
Jeffress, L. A. (ed.). (1951). Cerebral Mechanisms in Behavior. New York: Wiley.
Jonas, E., & Körding, K. P. (2017). Could a neuroscientist understand a microprocessor? PLoS Computational Biology, 13(1): e1005268.
Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of artificial intelligence research, 4, 237–85.
Kahneman, D. (2011). Thinking, fast and slow. Macmillan
Kaplan, D. M. (2011). Explanation and description in computational neuroscience. Synthese, 183(3): 339–73.
Kiela, D., Bartolo, M., Nie, Y., et al. (2021). Dynabench: Rethinking Benchmarking in NLP. arXiv preprint arXiv: 2104.14337.
Kirkpatrick, K. L. (2022). Biological computation: Hearts and flytraps. Journal of Biological Physics, 48(1): 55–78.
Kleene, S. C. (1936). General recursive functions of natural numbers. Mathematische Annelen, 112: 727–42.
Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Shannon, C. E., & McCarthy, J. (eds.), Automata Studies. Princeton, NJ: Princeton University Press, pp. 3–42.
Klein, C. (2008). Dispositional implementation solves the superfluous structure problem. Synthese, 165: 141–53.
Knill, D. C., & Pouget, A. (2004). The Bayesian brain: The role of uncertainty in neural coding and computation. TRENDS in Neurosciences, 27(12): 712–19.
Koch, C., & Segev, I. (eds.). (1998). Methods in Neuronal Modeling: From Synapses to Networks. Cambridge: MIT Press.
Koch, C. (1999). Biophysics of computation: information processing in single neurons. New York: Oxford University Press.
Konishi, M. (2003). Coding of auditory space. Annual Review of Neuroscience, 26: 31–55.
Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. (2016). Building machines that learn and think like people. Behavioral and Brain Sciences, 40: 1–101. https://doi.org/10.1017/S0140525X16001837. Langdon, A. J., Sharpe, M. J., Schoenbaum, G., & Niv, Y. (2018). Model-based predictions for dopamine. Current Opinion in Neurobiology, 49: 1–7.
Landgrebe, J., & Smith, B. (2022). Why machines will never rule the world: artificial intelligence without fear. New York: Taylor & Francis.
Lashley, K. S. (1958). Cerebral organization and behavior. Research Publications, Association for Research in Nervous and Mental Diseases, 36: 1–18.
Lau, H. (2022). In Consciousness We Trust: The Cognitive Neuroscience of Subjective Experience. Oxford: Oxford University Press.
Laughlin, S. B., de van Steveninck, Ruyter, R. R., & Anderson, J. C. (1998). The metabolic cost of neural information. Nature neuroscience, 1(1): 36–41.
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553): 436–44.
Lee, J. (2018). Structural representation and the two problems of content. Mind and Language, 34: 606–26.
Lee, J. (2021). Rise of the swamp creatures: Reflections on a mechanistic approach to content. Philosophical Psychology, 34: 805–28.
Leibniz, G. W. (1714). The Monadology. Monadology and Other Philosophical Essays (1965) translated and edited by Schrecker, P., & Schrecker, A. M. New York: Bobbs-Merrill.
Lem, S. (1964). Summa Technologiae. Electronic Mediations Series. Trans. Zylinska, J. (2013). Minneapolis, MN: University of Minnesota Press.
Lieder, F., & Griffiths, T. L. (2020). Resource-rational analysis: Understanding human cognition as the optimal use of limited computational resources. Behavioral and Brain Sciences, 43: 1–60.
Light, J. S. (1999). When computers were women. Technology and Culture, 40: 455–83.
Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J., & Hinton, G. (2020). Backpropagation and the brain. Nature Reviews Neuroscience, 21(6): 335–46.
Lovelace, A. A. (1843). Translation of, and notes to, Luigi F. Menabrea’s sketch of the analytical engine invented by Charles Babbage. Scientific Memoirs, 3: 691–731.
Lucas, J. R. (1961). Minds, Machines, and Gödel. Philosophy, 36: 112–37.
Luppi, A. I., Vohryzek, J., Kringelbach, M. L., et al. (2023). Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Communications Biology, 6: 117. https://doi.org/10.1038/s42003-023-04474-1. Lyon, P., Keijzer, F., Arendt, D., & Levin, M. (2021). Reframing cognition: Getting down to biological basics. Philosophical Transactions of the Royal Society B, 376(1820): 20190750.
MacKay, D. M. (1969). Information, mechanism and meaning. Cambridge: MIT Press.
Maia, T. V., & Frank, M. J. (2011). From reinforcement learning models to psychiatric and neurological disorders. Nature Neuroscience, 14(2): 154–62.
Maley, C. J. (2023). Analogue computation and representation. The British Journal for the Philosophy of Science, 271–7. https://doi.org/10.1086/715031. Maley, C. J., & Piccinini, G. (2016). Closed loops and computation in neuroscience: What it means and why it matters. In El Hady, A. (ed.), Closed Loop Neuroscience. London: Elsevier, pp. 271–7.
Maley, C. J., & Piccinini, G. (2017). A unified mechanistic account of teleological functions for psychology and neuroscience. In Kaplan, D. M. (ed.), Explanation and Integration in Mind and Brain Science. Oxford: Oxford University Press, 236–56.
Mandelbaum, E. (2022). Everything and more: The prospects of whole brain emulation. The Journal of Philosophy, 119(8): 444–59.
Marcus, G. (2018). Deep Learning: A Critical Appraisal. arXiv preprint arXiv: 1801.00631.
Marcus, G. F. (2001). The Algebraic Mind: Integrating Connectionism and Cognitive Science. Cambridge, MA: MIT Press.
Marcus, G., & Davis, E. (2019). Rebooting AI: Building Artificial Intelligence We Can Trust. New York: Vintage.
Marder, E., & Goaillard, J. M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews Neuroscience, 7(7): 563–74.
Markram, H. (2006). The blue brain project. Nature Reviews Neuroscience, 7(2): 153–60.
Marr, D. (1982) Vision. San Francisco: W.H. Freeman.
Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5): 776–98.
Maudlin, T. (1989). Computation and consciousness. The Journal of Philosophy, 86(8): 407–32.
McCarthy, J. (1959). Programs with common sense. In Proceedings of the Teddington Conference on the Mechanization of Thought Processes. London: Her Majesty’s Stationary Office, pp. 75–91.
McClelland, J. L. (2009). The place of modeling in cognitive science. Topics in Cognitive Science, 1(1): 11–38.
McClelland, J. L., Botvinick, M. M., Noelle, D. C., et al. (2010). Letting structure emerge: Connectionist and dynamical systems approaches to cognition. Trends in cognitive sciences, 14(8): 348–56.
McCulloch, W. S. (1949). The brain computing machine. Electrical Engineering, 68(6): 492–97.
McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 7: 115–33.
Michel, M., Beck, D., Block, N., et al. (2019). Opportunities and challenges for a maturing science of consciousness. Nature Human Behaviour, 3(2): 104–7.
Mickevich, A. (1961). The Game. Translation of Dneprov (1961). Moscow: Moscow State University.
Miłkowski, M. (2013). Explaining the Computational Mind. Cambridge, MA: MIT Press.
Miłkowski, M. (2018). From computer metaphor to computational modeling: The evolution of computationalism. Minds and Machines, 28(3): 515–41.
Miller, G. (2003). The cognitive revolution: A historical perspective. Trends in Cognitive Sciences, 7(3): 141–44.
Minsky, M., & Seymour, P. (1969). Perceptrons. Cambridge: MIT Press.
Mnih, V., Kavukcuoglu, K., Silver, D., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540): 529.
Montague, P. R., Dayan, P, Person, C, & Sejnowski, T. J. (1995). Bee foraging in uncertain environments using predictive Hebbian learning. Nature, 377: 725–8.
Montague, P. R., Dolan, R. J., Friston, K. J., & Dayan, P. (2012). Computational psychiatry. Trends in Cognitive Sciences, 16(1): 72–80.
Montague, R. (2007). Your Brain Is (Almost) Perfect: How We Make Decisions. London: Penguin.
Morgan, A. (2022). Against neuroclassicism: On the perils of armchair neuroscience. Mind & Language, 37(3): 329–55.
Morgan, A., & Piccinini, G. (2018). Towards a cognitive neuroscience of intentionality. Minds and Machines, 28: 119–39.
Morillo, C. (1992). Reward event systems: Reconceptualizing the explanatory roles of motivation, desire and pleasure. Philosophical Psychology, 5: 7–32.
Moutoussis, M., Shahar, N., Hauser, T. U., & Dolan, R. J. (2019). Computation in psychotherapy, or how computational psychiatry can aid learning-based psychological therapies. Computational Psychiatry, 2: 50–73.
Murphy, R. R. (2019). Introduction to AI Robotics. Cambridge: MIT Press.
Neander, K. (1991). Functions as selected effects: The conceptual analyst’s defense. Philosophy of Science, 58(2): 168–84.
Neander, K. (2017). A Mark of the Mental: In Defense of Informational Teleosemantics. Cambridge, MA: MIT Press.
Newell, A. (1982). The knowledge level. Artificial intelligence, 18(1): 87–127.
Newell, A. (1990). Unified Theories of Cognition. Cambridge, MA: Harvard University Press.
Newell, A., & Simon, H. A. (1976). Computer science as empirical inquiry: Symbols and search. Communications of the Association for Computing Machinery, 19: 113–26.
Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3): 139–54.
Niv, Y., & Montague, P. R. (2009) Theoretical and empirical studies of learning. In Glimcher, P. W., et al. (eds.), Neuroeconomics: Decision Making and the Brain. New York: Academic Press, pp. 249–329.
O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. London: Broadway Books.
Papayannopoulos, P., Fresco, N., & Shagrir, O. (2022). On two different kinds of computational indeterminacy. The Monist, 105(2): 229–46.
Patzelt, E. H., Hartley, C. A., & Gershman, S. J. (2018). Computational phenotyping: using models to understand individual differences in personality, development, and mental illness. Personality Neuroscience, 1: e18.
Pavlick, E. (2022). Semantic Structure in Deep Learning. Annual Review of Linguistics, 8(1): 447–71.
Pearl, J. (2000). Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.
Penrose, R. (1989). The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics. Oxford: Oxford University Press.
Piccinini, G. (2004). The First computational theory of mind and brain: A close look at McCulloch and Pitts’s ‘logical calculus of ideas immanent in nervous activity’. Synthese, 141: 175–215.
Piccinini, G. (2010). The mind as neural software? Understanding functionalism, computationalism, and computational functionalism. Philosophy and Phenomenological Research, 81(2): 269–311.
Piccinini, G. (2015). Physical Computation: A Mechanistic Account. Oxford: Oxford University Press.
Piccinini, G., & Bahar, S. (2013). Neural Computation and the Computational Theory of Cognition. Cognitive Science, 34: 453–88.
Piccinini, G. (2020). Neurocognitive Mechanisms: Explaining Biological Cognition. Oxford: Oxford University Press.
Piccinini, G. (2021). The myth of mind uploading. In Clowes, R. W., Gärtner, K., & Hipólito, I. (eds.), The Mind-Technology Problem. Studies in Brain and Mind, vol. 18. Cham: Springer.
Piccinini, G. (2022). Situated neural representations: Solving the problems of content. Frontiers in Neurorobotics, 16: 1–13.
Piccinini, G., and Ritchie, B. J. (forthcoming). Cognitive Computational Neuroscience. In Heinzelmann, N. (ed.), Advances in Neurophilosophy. Bloomsbury.
Poldrack, R. A. (2021). The physics of representation. Synthese, 199(1): 1307–25.
Polger, T. W., & Shapiro, L. A. (2016). The Multiple Realization Book. New York: Oxford University Press.
Potochnik, A. (2017). Idealization and the Aims of Science. Chicago: University of Chicago Press.
Pouget, A., Beck, J. M., Ma, W. J., & Latham, P. E. (2013). Probabilistic brains: Knowns and unknowns. Nature Neuroscience, 16(9): 1170–8.
Price, C. J., & Friston, K. J. (2002). Degeneracy and cognitive anatomy. Trends in Cognitive Sciences, 6(10): 416–21.
Psillos, S. (2011). Living with the abstract: Realism and models. Synthese, 180(1): 3–17.
Putnam, H. (1960). Minds and machines. In Hook, S. (ed.), Dimensions of Mind. New York: New York University Press, pp. 57–80.
Putnam, H. (1967). Psychological predicates. In Capitan, W. H., & Merrill, D. D. (eds.), Art, Philosophy, and Religion. Pittsburgh: University of Pittsburgh Press. Reprinted as The nature of mental states. In Lycan, W. (ed.). (1999). Mind and Cognition: An Anthology. 2nd ed. Malden: Blackwell, pp. 27–34.
Putnam, H. (1975). The mental life of some machines. In Mind, Language and Reality: Philosophical Papers, vol. 2. Cambridge: Cambridge University Press, pp. 408–28.
Putnam, H. (1988). Representation and Reality. Cambridge, MA: MIT Press.
Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations of cognitive science. Behavioral and Brain Sciences, 3(1): 111–32.
Pylyshyn, Z. W. (1984). Computation and Cognition. Cambridge: MIT Press.
Quilty-Dunn, J., Porot, N., & Mandelbaum, E. (2022). The best game in town: The re-emergence of the language of thought hypothesis across the cognitive sciences. Behavioral and Brain Sciences, 1–55. https://doi.org/10.1017/S0140525X22002849. Quiroga, R. Q., & Panzeri, S. (eds.). (2013). Principles of Neural Coding. Boca Raton: CRC Press.
Rahwan, I., Cebrian, M., Obradovich, N., et al. (2019). Machine behaviour. Nature, 568(7753): 477–86.
Ramsey, W. M. (2016). Untangling two questions about mental representation. New Ideas in Psychology, 40: 3–12.
Rangel, A., Camerer, C., & Montague, P. R. (2008). A framework for studying the neurobiology of value-based decision making. Nature Reviews Neuroscience, 9(7): 545–56.
Rashevsky, N. (1938). Mathematical Biophysics: Physicomathematical Foundations of Biology. Chicago: University of Chicago Press.
Rescorla, M. (2014). A theory of computational implementation. Synthese, 191(6): 1277–307.
Richards, B. A., Lillicrap, T. P., Beaudoin, P., et al. (2019). A deep learning framework for neuroscience. Nature Neuroscience, 22(11): 1761–70.
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6): 386–408.
Rumelhart, D., McClelland, J., & the PDP Research Group. (1986). Parallel Distributed Processing, vol. 1. Cambridge: MIT Press.
Russell, S. J. (1997). Rationality and intelligence. Artificial intelligence, 94(1–2): 57–77.
Russell, S. J., & Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Upper Saddle River: Prentice Hall.
Santoro, A., Lampinen, A., Mathewson, K., Lillicrap, T., & Raposo, D. (2021). Symbolic Behaviour in Artificial Intelligence. arXiv preprint arXiv: 2102.03406.
Schneider, S. (2011). The Language of Thought: A New Philosophical Direction. Cambridge: MIT Press.
Schroeder, T. (2004). Three Faces of Desire, New York: Oxford University Press.
Schultz, W., Dayan, P., & Montague, P.R. (1997). A neural substrate of prediction and reward. Science, 275: 1593–9.
Schwartz, E. L. (ed.). (1990). Computational Neuroscience. Cambridge: MIT Press.
Schweizer, P. (2019). Computation in physical systems: A normative mapping account. In Berkich, D., d’Alfonso, M. (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Cham: Springer, pp. 27–47. https://doi.org/10.1007/978-3-030-01800-9_2. Searle, J. R. (1980). Minds, brains and programs. Behavioral and Brain Sciences, 3(3): 417–57.
Segundo Ortín, M., & Calvo, P. (2022). Consciousness and cognition in plants. Wiley Interdisciplinary Reviews: Cognitive Science, 13(2): e1578.
Sejnowski, T. J., Koch, C., & Churchland, P. S. (1988). Computational neuroscience. Science, 241(4871): 1299–306.
Sellars, W. (1963). Science, Perception, and Reality. Atascadero, CA: Ridgeview.
Seth, A. K., & Bayne, T. (2022). Theories of consciousness. Nature Reviews Neuroscience, 23: 439–52.
Shagrir, O. (2022). The Nature of Physical Computation. New York: Oxford University Press.
Shah, A. (2012). Psychological and neuroscientific connections with reinforcement learning. In Wiering, M., & Otterlo, M., (eds). Reinforcement Learning. Berlin: Springer, pp. 507–37.
Shannon, C. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27: 279–423, 623–56.
Shapiro, L. (2010). Embodied Cognition. New York: Routledge.
Shea, N. (2018). Representation in Cognitive Science. Oxford: Oxford University Press.
Silberstein, M., & Chemero, A. (2012). Complexity and extended phenomenological-cognitive systems. Topics in Cognitive Science, 4(1): 35–50.
Simon, H. A. (1969). Sciences of the Artificial. Cambridge: MIT Press.
Simon, H. A. (1979). Information processing models of cognition. Annual Review Psychology, 30: 363–96.
Skyrms, B. (2010). Signals: Evolution, Learning, & Information. New York: Oxford University Press.
Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8): 343–48.
Spirtes, P., Glymour, C. N., Scheines, R., & Heckerman, D. (2000). Causation, Prediction, and Search. Cambridge: MIT Press.
Spivey, M. (2007). The Continuity of Mind. Oxford: Oxford University Press.
Sporns, O. (2016). Networks of the Brain. Cambridge: MIT Press.
Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies in History and Philosophy of Science Part A, 41(3): 260–70.
Sprevak, M. (2018). Triviality arguments about computational implementation. In Sprevak, M., & Colombo, M. (eds.), The Routledge Handbook of the Computational Mind. Routledge: New York, pp. 175-91.
Sprevak, M., & Colombo, M. (eds.). (2018). The Routledge Handbook of the Computational Mind. Routledge: New York.
Sterling, P., & Laughlin, S. (2015). Principles of Neural Design. Cambridge: MIT Press.
Stich, S. (1983). From Folk Psychology to Cognitive Science: The Case Against Belief. Cambridge, MA: MIT Press.
Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning. An Introduction. 2nd ed. Cambridge: MIT Press.
Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011). How to grow a mind: Statistics, structure, and abstraction. Science, 331(6022): 1279–85.
Thorndike, E. L. (1932). The fundamentals of learning. New York: Teachers College Press.
Tononi, G., Boly, M., Massimini, M., & Koch, C. (2016). Integrated information theory: From consciousness to its physical substrate. Nature Reviews Neuroscience, 17(7): 450–61.
Tucker, C. (2018). How to explain miscomputation. Philosophers’ Imprint, 18(24): 1–17.
Turing, A. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, 42: 230–65.
Turing, A. (1948). Intelligent Machinery: A Report. London: National Physical Laboratory.
Turing, A. (1950). Computing Machinery and Intelligence. Mind, 49: 433–60.
Uckelman, S. (2018). Computation in mediaeval Western Europe. In Hansson, S. O. (ed.), Technology and Mathematics: Philosophical and Historical Investigations. Berlin: Springer, pp. 33–46.
van Gelder, T. (1995). What might cognition be, if not computation? The Journal of Philosophy, 92(7): 345–81.
van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6): 939–84.
van Rooij, I., Wright, C. D., & Wareham, T. (2012). Intractability and the use of heuristics in psychological explanations. Synthese, 187(2): 471–87.
Varela, F. J., Thompson, E., & Rosch, E. (2016). The Embodied Mind, Revised Edition: Cognitive Science and Human Experience. Cambridge: MIT Press.
Vendler, Z. (1972). Res cogitans. Ithaca: Cornell University Press.
Vilas, M. G., Auksztulewicz, R., & Melloni, L. (2022). Active inference as a computational framework for consciousness. Review of Philosophy and Psychology, 13(4): 859–78. https://doi.org/10.1007/s13164-021-00579-w. Villalobos, M., & Dewhurst, J. (2017). Why post-cognitivism does not (necessarily) entail anti-computationalism. Adaptive Behavior, 25(3): 117–28.
Villalobos, M., & Dewhurst, J. (2018). Enactive autonomy in computational systems. Synthese, 195(5): 1891–908.
von Neumann, J. (1951). The general and logical theory of automata. In Jeffress, L. A. (ed.), Cerebral Mechanisms in Behavior: The Hixon Symposium. New York: John Wiley & Sons, pp. 1–31.
von Neumann, J. (1958). The Computer and the Brain. New Haven: Yale University Press.
von Neumann, J. (1966). Theory of Self-Reproducing Automata, Burks, A. W. (ed.), Urbana: University of Illinois Press.
von Neumann, J. (1981). First draft report on the EDVAC. Report prepared for the U.S. Army Ordnance Department under contract W-670-ORD-4926, 1945. In Stern, N. (ed.), From ENIAC to UNIVAC. Bedford: Digital Press, pp. 177–246.
Weinberger, N., & Allen, C. (2022). Static-dynamic hybridity in dynamical models of cognition. Philosophy of Science, 89: 283–301.
Weisberg, M. (2013). Simulation and Similarity: Using Models to Understand the World. Oxford: Oxford University Press.
Weiskopf, D. A. (2018). The explanatory autonomy of cognitive models. In Kaplan, D. M. (ed.), Explanation and Integration in Mind and Brain Science. Oxford: Oxford University Press, pp. 44–69.
Werbos., P. (1974). Beyond regression: New tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Committee on Applied Mathematics. Cambridge: Harvard University.
Wiener, N. (1948). Cybernetics. New York: John Wiley.
Wiese, W. (forthcoming). Could large language models be conscious? A perspective from the free energy principle. In Hipolito, I., Hesp, C., & Friston, K. (eds.), The Free Energy Principle: Science, Technology, and Philosophy. London: Routledge.
Wilson, M. (2006). Wandering Significance: An Essay on Conceptual Behaviour. Oxford: Oxford University Press.
Wilson, M. (2022). Imitation of Rigor. Oxford: Oxford University Press.
Wilson, R. A. (1994). Wide computationalism. Mind, 103(411): 351–72.
Woodward, J. (2003). Making things happen: A theory of causal explanation. New York: Oxford University Press.
Wright, C., Colombo, M., & Beard, A. (2017). HIT and brain reward function: A case of mistaken identity (theory). Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 64: 28–40.
Wright, L. G., Onodera, T., Stein, M. M., et al. (2022). Deep physical neural networks trained with backpropagation. Nature, 601(7894): 549–55.
Zuboff, A. (1981). The story of a brain. In Dennett, D., & Hofstadter, D. (eds.), The Mind’s I. New York: Basic Books, pp. 202–11.