Published online by Cambridge University Press: 23 February 2011
This chapter presents, in a self-contained manner, recent advances in the design and analysis of gradient-based schemes for specially structured, smooth and nonsmooth minimization problems. We focus on the mathematical elements and ideas for building fast gradient-based methods and derive their complexity bounds. Throughout the chapter, the resulting schemes and results are illustrated and applied on a variety of problems arising in several specific key applications such as sparse approximation of signals, total variation-based image-processing problems, and sensor-location problems.
Introduction
The gradient method is probably one of the oldest optimization algorithms going back as early as 1847 with the initial work of Cauchy. Nowadays, gradient-based methods have attracted a revived and intensive interest among researches both in theoretical optimization, and in scientific applications. Indeed, the very large-scale nature of problems arising in many scientific applications, combined with an increase in the power of computer technology have motivated a “return” to the “old and simple” methods that can overcome the curse of dimensionality; a task which is usually out of reach for the current more sophisticated algorithms.
One of the main drawbacks of gradient-based methods is their speed of convergence, which is known to be slow. However, with proper modeling of the problem at hand, combined with some key ideas, it turns out that it is possible to build fast gradient schemes for various classes of problems arising in applications and, in particular, signal-recovery problems.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.