Published online by Cambridge University Press: 23 February 2011
Several worst-case performance optimization-based broadband adaptive beamforming techniques with an improved robustness against array manifold errors are developed. The proposed beamformers differ from the existing broadband robust techniques in that their robustness is directly matched to the amount of uncertainty in the array manifold, and the suboptimal subband decomposition step is avoided. Convex formulations of the proposed beamformer designs are derived based on second-order cone programming (SOCP) and semidefinite programming (SDP). Simulation results validate an improved robustness of the proposed robust beamformers relative to several state-of-the-art robust broadband techniques.
Introduction
Adaptive array processing has received considerable attention during the last four decades, particularly in the fields of sonar, radar, speech acquisition and, more recently, wireless communications [1,2]. The main objective of adaptive beamforming algorithms is to suppress the interference and noise while preserving the desired signal components. One of the early adaptive beamforming algorithms for broadband signals is the linearly constrained minimum variance (LCMV) algorithm developed by Frost in [3] and extensively studied in the follow-up literature [1, 4, 5]. Frost's broadband array processor includes a presteering delay front-end whose function is to steer the array towards the desired signal so that each of its frequency components appears in-phase across the array after the presteering delays. Each presteering delay is then followed by a finite impulse response (FIR) adaptive filter and the outputs of all these filters are summed together to obtain the array output.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.