High Dimension
from Part One - Theory
Published online by Cambridge University Press: 03 January 2019
Much of the literature on copulas, discussed in the previous chapters, is limited to the bivariate cases. The Gaussian and student copulas have been commonly applied to model the dependence in higher dimensions (Genest and Favre, 2007; Genest et al., 2007a). In Chapter 4, we discussed the extension of symmetric bivariate Archimedean copulas as well as their major restrictions to model high-dimensional dependence (i.e., d ≥ 3)d≥3). Through the extension of the bivariate Archimedean copula, the multivariate Archimedean copula is symmetric and denoted as exchangeable Archimedean copula (EAC). EAC allows for the specification of only one generating function and only one set of parameters θ. In other words, random variates by pair share the same degree of dependence. Using the trivariate random variable {X1, X2, X3} as an example, {X1, X2}, {X2, X3}, and {X1, X3} should have the same degree of dependence. However, this assumption is rarely valid. This chapter discusses the following two approaches of constructing asymmetric multivariate copulas: nested Archimedean copula construction (NAC) and the vine copulas through pair-copula construction (PCC).
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.