from Part One - Theory
Published online by Cambridge University Press: 03 January 2019
In previous chapters, we have mainly discussed copula models for bivariate/multivariate random variables. Now we ask two other questions that usually arise in hydrology and water resources engineering. Can we use the stochastic approach to predict streamflow at a downstream location using streamflow at the upstream location? If streamflow is time dependent, then it cannot be considered as a random variable as is done in frequency analysis. Can we model the temporal dependence of an at-site streamflow sequence (e.g., monthly streamflow) more robustly than with the classical time series and Markov modeling approach (e.g., modeling the nonlinearity of time series freely)? This chapter attempts to address these questions and introduces how to model a time series with the use of copula approach.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.