Published online by Cambridge University Press: 05 June 2012
Overview
Cosmochemistry places important constraints on models for the origin of the solar nebula and the formation and evolution of planets. We explore nebula constraints by defining the thermal conditions under which meteorite components formed and examine the isotopic evidence for interaction of the nebula with the ISM and a nearby supernova. We consider how planetary bulk compositions are estimated and how they are used to understand the formation of the terrestrial and giant planets from nebular materials. We review the differentiation of planets, focusing especially on the Earth. We also consider how orbital and collisional evolution has redistributed materials formed in different thermal and compositional regimes within the solar system.
Constraints on the nebula
Understanding the formation of the solar system requires that we delve into processes for which there are no counterparts in terrestrial experience. Grand models for the formation and evolution of the solar nebula are mostly exercises in the physics of gravitational collapse and orbital mechanics. However, cosmochemistry imposes critical constraints on nebular conditions, events, and chronology. In this chapter, we consider how astrophysical models for the formation of the Sun and its accretion disk can be reconciled with cosmochemistry. Theories about how the planets were assembled in the nebula are likewise dominated by physical models of accretion, but cosmochemistry provides information about the nature of precursor materials and the timescales for planet assembly and differentiation.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.