Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T11:12:07.044Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  24 October 2017

Vladimir Belinski
Affiliation:
International Center for Relativistic Astrophysics Network (ICRANet), Italy
Marc Henneaux
Affiliation:
Université Libre de Bruxelles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] D. V., Alekseevskij, E. B., Vinberg and A. S., Solodovnikov, Geometry of Spaces of Constant Curvature, Volume 29 of the series Encyclopaedia of Mathematical Sciences, Springer 1993. See §7.2.
[2] E., Anderson, “Strong coupled relativity without relativity,” Gen. Rel. Grav. 36, 255 (2004) [gr-qc/0205118]. See §6.7.Google Scholar
[3] L., Andersson and A. D., Rendall, “Quiescent cosmological singularities,” Commun. Math. Phys. 218, 479 (2001) [gr-qc/0001047]. See Introduction, §3.2, 4.7, 6.5.4.Google Scholar
[4] D. V., Anosov, Geodesic flows on Closed Riemanian Manifolds of Negative Curvature, Trudy Mat. Inst. Steklova (ed. I. G., Petrovskii), 90 (1967). See §3.2, 5.9, 6.6.
[5] R. L., Arnowitt, S., Deser and C. W., Misner, “Canonical variables for general relativity,” Phys. Rev. 117, 1595 (1960). See §5.1.Google Scholar
[6] A., Ashtekar, A., Henderson and D., Sloan, “Hamiltonian general relativity and the Belinskii, Khalatnikov, Lifshitz conjecture,” Class. Quant. Grav. 26, 052001 (2009) [arXiv:0811.4160 [gr-qc]]. See §2.5.Google Scholar
[7] A., Ashtekar, A., Henderson and D., Sloan, “A Hamiltonian formulation of the BKL conjecture,” Phys. Rev. D 83, 084024 (2011) [arXiv:1102.3474 [gr-qc]]. See §2.5.Google Scholar
[8] J. D., Barrow, “Chaotic behavior in general relativity,” Phys. Rept. 85, 1 (1982). See §3.1, 3.2.Google Scholar
[9] J. D., Barrow and R. A., Matzner, “The homogeneity and isotropy of the universe,” Mon. Not. R. Astr. Soc. 181, 719 (1977). See Preface to §4.8.Google Scholar
[10] X., Bekaert, S., Cnockaert, C., Iazeolla and M. A., Vasiliev, “Nonlinear higher spin theories in various dimensions,” hep-th/0503128, in Proceedings of the first Solvay Workshop on “Higher Spin Gauge Theories,” eds. R., Argurio, G., Barnich, G., Bonelli and M., Grigoriev, Université Libre de Bruxelles – Vrije Universiteit Brussel (2004). See §6.1.
[11] V. A., Belinski, “Turbulence of a gravitational field near a cosmological singularity,” JETP Letters 56, 421 (1992). See §3.3.Google Scholar
[12] V. A., Belinski, “Stabilization of the Friedmann big bang by the shear stresses,” Phys. Rev. D 88, 103521 (2013). See §4.8.1, 4.8.2.Google Scholar
[13] V. A., Belinski, E. S., Nikomarov and I. M., Khalatnikov, “Investigation of the cosmological evolution of viscoelastic matter with causal thermodynamics,” Sov. Phys. JETP 50, 213 (1979). See §4.8.1, 4.8.2.Google Scholar
[14] V. A., Belinski and I. M., Khalatnikov, “On the nature of the singularities in the general solution of the gravitational equations,” Sov. Phys. JETP 29, 911 (1969). See §1.7, 2.1, B.3.Google Scholar
[15] V. A., Belinski and I. M., Khalatnikov, “General solution of the gravitational equations with a physical singularity,” Sov. Phys. JETP 30, 1174 (1970) [Zh. Eksp.Teor. Fiz. 57, 2163 (1969)]. See §4.3.1.Google Scholar
[16] V. A., Belinski and I. M., Khalatnikov, “Effect of scalar and vector fields on the nature of the cosmological singularity,” Sov. Phys. JETP 36, 591 (1973) [Zh. Eksp. Teor. Fiz. 63, 1121 (1972)]. See Introduction, §4.1, 4.3.1, 4.5, C.3.Google Scholar
[17] V. A., Belinski and I. M., Khalatnikov, “On the influence of the spinor and electromagnetic field on the cosmological singularity character,” Rend. Sem. Mat. Univ. Politech. Torino 35, 159 (1977) [preprint of Landau Institute for Theoretical Physics, Chernogolovka 1976]. See §4.1, Preface to App.C.Google Scholar
[18] V. A., Belinski and I. M., Khalatnikov, “On the influence of matter and physical fields upon the nature of cosmological singularities,” Soviet Science (Physics) Reviews, Harwood Acad. Publ. A3, 555 (1981). See Introduction, §4.1, 4.3.1, 4.3.2.Google Scholar
[19] V. A., Belinski, I. M., Khalatnikov and E. M., Lifshitz, “Oscillatory approach to a singular point in the relativistic cosmology,” Adv. in Phys. 19, 525 (1970). See §1.7, 3.1, 4.1.Google Scholar
[20] V. A., Belinski, I. M., Khalatnikov and E. M., Lifshitz, “Construction of a general cosmological solution of the Einstein equations with a time singularity,” Sov. Phys. JETP 35, 838 (1972) [Zh. Eksp.Teor. Fiz. 62, 1606 (1972)]. See §1.9, A.4.Google Scholar
[21] V. A., Belinski, I. M., Khalatnikov and E. M., Lifshitz, “A general solution of the Einstein equations with a time singularity,” Adv. in Phys. 31, 639 (1982). See §1.9, 4.1, A.4.Google Scholar
[22] V. A., Belinski, I. M., Khalatnikov and M. P., Ryan, “The oscillatory regime near the singularity in Bianchi-type IX universes,” preprint (order 469, 1971) of Landau Institute for Theoretical Physics, Moscow 1971 (unpublished); the work due to V. A., Belinski and I. M., Khalatnikov is published as sections 1 and 2 in M. P., Ryan, Ann. Phys. 70, 301 (1971). See §2.4.Google Scholar
[23] B. K., Berger, “Numerical approaches to space-time singularities,” Living Rev. Rel. 5, 1 (2002). See §1.4, 4.7.Google Scholar
[24] B. K., Berger, “Hunting local mixmaster dynamics in spatially inhomogeneous cosmologies,” Class. Quant. Grav. 21, S81 (2004) [gr-qc/0312095]. See §4.7.Google Scholar
[25] B. K., Berger, D., Garfinkle, J., Isenberg, V., Moncrief and M., Weaver, “The singularity in generic gravitational collapse is space-like, local, and oscillatory,” Mod. Phys. Lett. A 13, 1565 (1998) [gr-qc/9805063]. See §4.7.Google Scholar
[26] B. K., Berger and V., Moncrief, “Numerical investigation of cosmological singularities,” Phys. Rev. D 48, 4676 (1993) [gr-qc/9307032]. See §1.4.Google Scholar
[27] E., Bergshoeff, M., de Roo, B., de Wit and P., van Nieuwenhuizen, “Ten-dimensional Maxwell–Einstein supergravity, its currents, and the issue of its auxiliary fields,” Nucl. Phys. B 195, 97 (1982). See §6.1.Google Scholar
[28] O. I., Bogoyavlenskii and S. P., Novikov, “Singularities of the cosmological model of the Bianchi IX type according to the qualitative theory of differential equations,” Sov. Phys. JETP 37, 747 (1973). See §3.2.Google Scholar
[29] N., Bourbaki, Groupes et algèbres de Lie, chapter 4, Eléments de mathématique, Hermann, 1968. See §7.3, 7.4.
[30] P., Breitenlohner and D., Maison, “On the Geroch group,” Ann. Inst. Henri Poincaré 46, 215 (1986). See §7.7.Google Scholar
[31] D., Brill and J. A., Wheeler, “Interaction of neutrinos and gravitational fields,” Rev. Mod. Phys. 29, 465 (1957). See §C.1.Google Scholar
[32] C., Cattaneo, “Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée,Comptes rendus Acad. Sci. Paris Sér. A-B 247, 431 (1958). Based on his earlier seminar talk “Sulla conduzione del calore,” Atti Semin. Mat. Fis. Univ. Modena 3, 83 (1948). See §4.8.1.Google Scholar
[33] G. F., Chapline and N. S., Manton, “Unification of Yang–Mills theory and supergravity in ten dimensions,” Phys. Lett. B 120, 105 (1983). See §6.1.Google Scholar
[34] D. F., Chernoff and J. D., Barrow, “Chaos in the mixmaster universe,” Phys. Rev. Lett. 50, 134 (1983). See §3.1, 3.2.Google Scholar
[35] D. M., Chitre, Ph.D. Thesis, University of Maryland (1972). See Introduction, §2.4, 3.2, 6.7.
[36] D., Christodoulou and S., Klainerman, The Global Nonlinear Stability of the Minkowski Space, Princeton Mathematical Series, 41 (1993). See §1.10.
[37] N. J., Cornish and J. J., Levin, “The mixmaster universe is chaotic,” Phys. Rev. Lett. 78, 998 (1997). See §3.1, 3.2.Google Scholar
[38] N. J., Cornish and J. J., Levin, “Mixmaster universe: a chaotic Farey tale,” Phys. Rev. D 55, 7489 (1997). See §3.1, 3.2.Google Scholar
[39] E., Cremmer and B., Julia, “The SO(8) supergravity,” Nucl. Phys. B 159, 141 (1979). See §7.7.Google Scholar
[40] E., Cremmer, B., Julia, H., Lu and C. N., Pope, “Higher-dimensional origin of D = 3 coset symmetries,” arXiv:hep-th/9909099. See §D.9.
[41] E., Cremmer, B., Julia and J., Scherk, “Supergravity theory in 11 dimensions,” Phys. Lett. B 76, 409 (1978). See §6.1, 7.6.2, 7.7.Google Scholar
[42] E., Czuchry, D., Garfinkle, J. R., Klauder and W., Piechocki, “Do spikes persist in a quantum treatment of space-time singularities?Phys. Rev. D 95, 024014 (2017) [arXiv:1605.04648 [gr-qc]]. See §1.4.Google Scholar
[43] E., Czuchry and W., Piechocki, “Bianchi IX model: reducing phase space,” Phys. Rev. D 87, 084021 (2013) [arXiv:1202.5448 [gr-qc]]. See §2.4.Google Scholar
[44] T., Damour, S., de Buyl, M., Henneaux and C., Schomblond, “Einstein billiards and overextensions of finite dimensional simple Lie algebras,” JHEP 0208 (2002) 030 [hep-th/0206125]. See §7.6.2, 7.6.3, D.9.Google Scholar
[45] T., Damour and M., Henneaux, “Chaos in superstring cosmology,” Phys. Rev. Lett. 85, 920 (2000) [arXiv:hep-th/0003139]. [See also short version in Gen. Rel. Grav. 32, 2339 (2000).] See Introduction, §4.6.2, 6.7.Google Scholar
[46] T., Damour and M., Henneaux, “Oscillatory behaviour in homogeneous string cosmology models,” Phys. Lett. B 488, 108 (2000) [arXiv:hep-th/0006171]. See Introduction, §4.6.2, 6.7, 7.6.2.Google Scholar
[47] T., Damour and M., Henneaux, “E10,BE10 and arithmetical chaos in superstring cosmology,” Phys. Rev. Lett. 86, 4749 (2001) [arXiv:hep-th/0012172]. See Introduction, §5.6, 6.2, 6.7, 7.7.Google Scholar
[48] T., Damour, M., Henneaux, B., Julia and H., Nicolai, “Hyperbolic Kac–Moody algebras and chaos in Kaluza–Klein models,” Phys. Lett. B 509, 323 (2001) [arXiv:hep-th/0103094]. See §5.10.2, 6.7, 7.6.1.Google Scholar
[49] T., Damour, M., Henneaux and H., Nicolai, “E10 and a ‘small tension’ expansion of M theory,” Phys. Rev. Lett. 89, 221601 (2002) [arXiv:hep-th/0207267]. See §7.7.Google Scholar
[50] T., Damour, M., Henneaux and H., Nicolai, “Billiard dynamics of Einstein-matter systems near a spacelike singularity,” in Lectures on Quantum Gravity, Proceedings of the School on Quantum Gravity, Valdivia, Chile, January 4–14, 2002, A., Gomberoff and D., Marolf eds, Series of the Centro de Estudios Científicos, Springer 2005. See §5.4.
[51] T., Damour, M., Henneaux and H., Nicolai, “Cosmological billiards,” Class. Quant. Grav. 20, R145 (2003) [arXiv:hep-th/0212256]. See Introduction, §3.3, 5.2, 5.5, 5.6, 5.8, 5.10.2, 6.4, 6.7, 7.7.Google Scholar
[52] T., Damour, M., Henneaux, A. D., Rendall and M., Weaver, “Kasner like behavior for subcritical Einstein matter systems,” Ann. Inst. Henri Poincaré 3, 1049 (2002) [gr-qc/0202069]. See Introduction, §3.2, 4.7, 6.5.4.Google Scholar
[53] T., Damour and C., Hillmann, “Fermionic Kac–Moody billiards and supergravity,” JHEP 0908, 100 (2009) [arXiv:0906.3116 [hep-th]]. See §C.3.Google Scholar
[54] T., Damour, A., Kleinschmidt and H., Nicolai, “Hidden symmetries and the fermionic sector of eleven-dimensional supergravity,” Phys. Lett. B 634, 319 (2006) [hep-th/0512163]. See §C.3.Google Scholar
[55] T., Damour, A., Kleinschmidt and H., Nicolai, “K(E(10)), supergravity and fermions,” JHEP 0608, 046 (2006) [hep-th/0606105]. See §C.3.Google Scholar
[56] T., Damour and P., Spindel, “Quantum supersymmetric cosmology and its hidden Kac–Moody structure,” Class. Quant. Grav. 30, 162001 (2013) [arXiv:1304.6381 [gr-qc]]. See §C.3.Google Scholar
[57] G., Dautcourt, “On the ultrarelativistic limit of general relativity,” Acta Phys. Polon. B 29, 1047 (1998) [arXiv:gr-qc/9801093]. See §6.7.Google Scholar
[58] S., de Buyl, M., Henneaux and L., Paulot, “Hidden symmetries and Dirac fermions,” Class. Quant. Grav. 22, 3595 (2005) [hep-th/0506009]. See §C.3.Google Scholar
[59] S., de Buyl, M., Henneaux and L., Paulot, “Extended E(8) invariance of 11-dimensional supergravity,” JHEP 0602, 056 (2006) [hep-th/0512292]. See §C.3.Google Scholar
[60] S., de Buyl and C., Schomblond, “Hyperbolic Kac–Moody algebras and Einstein billiards,” J. Math. Phys. 45, 4464 (2004) [hep-th/0403285]. See §D.8.Google Scholar
[61] J., Demaret, Y., De Rop and M., Henneaux, “Chaos in nondiagonal spatially homogeneous cosmological models in space-time dimensions ≤ 10,” Phys. Lett. B 211, 37 (1988). See §4.6.2.Google Scholar
[62] J., Demaret, J. L., Hanquin, M., Henneaux, P., Spindel and A., Taormina, “The fate of the mixmaster behavior in vacuum inhomogeneous Kaluza–Klein cosmological models,” Phys. Lett. B 175, 129 (1986). See Introduction, §3.2, 4.1, 4.6.2, 7.6.1.Google Scholar
[63] J., Demaret, M., Henneaux and P., Spindel, “Nonoscillatory behavior in vacuum Kaluza–Klein cosmologies,” Phys. Lett. B 164, 27 (1985). See Introduction, §3.2, 4.1, Preface to 4.6, 4.6.1, 4.6.2, 7.6.1.Google Scholar
[64] B. S., DeWitt, “Quantum theory of gravity. 1. The canonical theory,” Phys. Rev. 160, 1113 (1967). See §5.2.Google Scholar
[65] P. A. M., Dirac, “The theory of gravitation in Hamiltonian form,” Proc. Roy. Soc. Lond. A 246, 333 (1958). See §5.1.Google Scholar
[66] D., Eardley, E., Liang and R., Sachs, “Velocity-dominated singularities in irrotational dust cosmologies,” J. Math. Phys. 13, 99 (1972). See Introduction, §4.7.Google Scholar
[67] C., Eckart, “The thermodynamics of irreversible processes III. Relativistic theory of the simple fluid,” Phys. Rev. 58, 919 (1940). See §4.8.1.Google Scholar
[68] L. P., Eisenhart, Riemannian Geometry, Princeton University Press, NJ, 1926. See §A.2.
[69] J., Ehlers, Dissertation Hamburg University (1957). See §7.7.
[70] Y., Elskens and M., Henneaux, “Chaos in Kaluza–Klein models,” Class. Quant. Grav. 4, L161 (1987). See §4.6.2.Google Scholar
[71] Y., Elskens and M., Henneaux, “Ergodic theory of the mixmaster model in higher space-time dimensions,” Nucl. Phys. B 290, 111 (1987). See §4.6.2.Google Scholar
[72] A., Eskin and C., McMullen, “Mixing, counting and equidistribution in Lie groups,” Duke Math. J. 71, 181–209 (1993). See §3.2, 5.9, 6.6.Google Scholar
[73] V. A., Fock and D., Ivanenko, “Géométrie quantique linéaire et déplacement parallèle,” Compt. Rend. Acad. Sci. Paris 188, 1470 (1929). See §C.1.Google Scholar
[74] E. S., Fradkin and M. A., Vasiliev, “On the gravitational interaction of massless higher spin fields,” Phys. Lett. B 189, 89 (1987). See §6.1.Google Scholar
[75] J., Fuchs, Affine Lie Algebras and Quantum Groups: An Introduction, with Applications in Conformal Field Theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, 1995. See §D.9.
[76] D., Garfinkle, “Numerical simulations of generic singuarities,” Phys. Rev. Lett. 93, 161101 (2004) [gr-qc/0312117]. See §4.7.Google Scholar
[77] D., Garfinkle, “Numerical relativity beyond astrophysics,” Rept. Prog. Phys. 80, no. 1, 016901 (2017) [arXiv:1606.02999 [gr-qc]]. See §4.7.Google Scholar
[78] R. P., Geroch, “A method for generating solutions of Einstein's equations,” J. Math. Phys. 12, 918 (1971). See §7.7.Google Scholar
[79] R. P., Geroch, “A method for generating new solutions of Einstein's equation. 2,” J. Math. Phys. 13, 394 (1972). See §7.7.Google Scholar
[80] G., Gibbons, K., Hashimoto and P., Yi, “Tachyon condensates, Carrollian contraction of Lorentz group, and fundamental strings,” JHEP 0209, 061 (2002) [arXiv:hep-th/0209034]. See §6.7.Google Scholar
[81] S. W., Goode, A. A., Coley and J., WainwrightThe isotropic singularity in cosmology,” Class. Quant. Grav. 9, 445 (1992). See Preface to 4.8, §4.8.2.Google Scholar
[82] A. J. S., Hamilton, “Inflation followed by BKL collapse inside accreting, rotating black holes,” arXiv:1703.01921 [gr-qc]. See §4.7.
[83] J. M., Heinzle and C., Uggla, “Mixmaster: fact and belief,” Class. Quant. Grav. 26, 075016 (2009) [arXiv:0901.0776 [gr-qc]]. See §2.5.Google Scholar
[84] S., Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics vol. 34, American Mathematical Society, Providence 2001. See §5.2.
[85] M., Henneaux, “Geometry of zero signature space-times,” Print-79-0606 (Princeton), published in Bull. Soc. Math. Belg. 31, 47 (1979) (note the misprints in the published version, absent in the preprint version). See §6.7.Google Scholar
[86] M., Henneaux, “Bianchi type I cosmologies and spinor fields,” Phys. Rev. D 21, 857 (1980). See §C.3.Google Scholar
[87] M., Henneaux, “Bianchi universes and spinor fields” (in French), Ann. Inst. H. Poincare Phys. Theor. 34, 329 (1981). See §C.3.Google Scholar
[88] M., Henneaux and B., Julia, “Hyperbolic billiards of pure D = 4 supergravities,” JHEP 0305, 047 (2003) [hep-th/0304233]. See §7.6.3, D.7, D.9.Google Scholar
[89] M., Henneaux, A., Kleinschmidt and H., Nicolai, “Real forms of extended Kac– Moody symmetries and higher spin gauge theories,” Gen. Rel. Grav. 44, 1787 (2012) [arXiv:1110.4460 [hep-th]]. See §D.9.Google Scholar
[90] M., Henneaux, D., Persson and P., Spindel, “Spacelike singularities and hidden symmetries of gravity,” Living Rev. Rel. 11, 1 (2008) [arXiv:0710.1818 [hep-th]]. See §7.3, 7.4, 7.5.3.Google Scholar
[91] M., Henneaux, M., Pilati and C., Teitelboim, “Explicit solution for the zero signature (strong coupling) limit of the propagation amplitude in quantum gravity,” Phys. Lett. B 110, 123 (1982). See §5.2.Google Scholar
[92] D., Hobill, A., Burd and A., Coley, (eds) Deterministic Chaos in General Relativity, NATO ASI Series B, Physics Vol. 332, Plenum Press, New York 1994. See §3.2.
[93] E., Hopf, “Statistik der geodätishen Linien in Mannigfaltigkeiten negativer Krümmung,” Berlin Verh. Sächs. Akad. Wiss. Leipzig 91, 261 (1939). See §3.2, 5.9, 6.6.Google Scholar
[94] R. E., Howe and C. C., Moore, “Asymptotic properties of unitary representations,” J. Functional Analysis 32, 72–96 (1979). See §3.2, 5.9, 6.6.Google Scholar
[95] J. E., Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, 1990. See §7.3, 7.4, 7.5.3, 7.5.4, D.8.
[96] G., Imponente and G., Montani, “On the Covariance of the Mixmaster Chaoticity,” Phys. Rev. D 63, 103501 (2001) [arXiv:astro-ph/0102067]. See §3.2.Google Scholar
[97] C. J., Isham, “Some quantum field theory aspects of the superspace quantization of general relativity,” Proc. Roy. Soc. Lond. A 351, 209 (1976). See §6.7.Google Scholar
[98] W., Israel, “Nonstationary irreversible thermodynamics: a causal relativistic theory,” Ann. Phys. 100, 310 (1976). See §4.8.1, 4.8.2.Google Scholar
[99] W., Israel and J. M., Stewart, “Transient relativistic thermodynamics and kinetic theory,” Ann. Phys. 118, 341 (1979). See §4.8.1.Google Scholar
[100] V. D., Ivashchuk, A. A., Kirillov and V. N., Melnikov, “Stochastic properties of multidimensional cosmological models near a singular point,” JETP Lett. 60, 235 (1994) [Pisma Zh. Eksp. Teor. Fiz. 60, 225 (1994)]. See §6.7.Google Scholar
[101] V. D., Ivashchuk and V. N., Melnikov, “Billiard representation for multidimensional cosmology with multicomponent perfect fluid near the singularity,” Class. Quant. Grav. 12, 809 (1995) [gr-qc/9407028]. See §6.7.Google Scholar
[102] V. D., Ivashchuk and V. N., Melnikov, “Billiard representation for multidimensional cosmology with intersecting p-branes near the singularity,” J. Math. Phys. 41, 6341 (2000) [arXiv:hep-th/9904077]. See §6.7.Google Scholar
[103] V. D., Ivashchuk and V. N., Melnikov, “Exact solutions in multidimensional gravity with antisymmetric forms,” Class. Quant. Grav. 18, R87 (2001) [hepth/ 0110274]. See §6.7.Google Scholar
[104] R. T., Jantzen, “The dynamical degrees of freedom in spatially homogeneous cosmology,” Commun. Math. Phys. 64, 211 (1979). See §B.4.Google Scholar
[105] R. T., Jantzen, “Spatially homogeneous dynamics: a unified picture,” arXiv:grqc/0102035. See §B.4.
[106] B., Julia, “Group disintegrations,” LPTENS 80/16, Invited paper presented at Nuffield Gravity Workshop, Cambridge, England, June 22–July 12, 1980. See §7.7.
[107] B., Julia, “Infinite dimensional groups acting on (super)gravity phase spaces,” in Proceedings of the Johns Hopkins Workshop on Current Problems in Particle Physics “Unified Theories and Beyond” (Johns Hopkins University, Baltimore, 1984). See §7.7.
[108] B., Julia, “On infinite dimensional symmetry groups in physics,” LPTENS-85/18, in Proceedings of the Symposium on the Occasion of the Niels Bohr Centennial: Recent Developments in Quantum Field Theory, edited by J., Ambjorn, B. J., Durhuus, J. L., Petersen, Amsterdam, North-Holland, 1985. See §7.7.
[109] B. L., Julia, “Dualities in the classical supergravity limits: dualizations, dualities and a detour via (4k+2)-dimensions,” in Cargese 1997, Strings, branes and dualities, pp. 121–139 [hep-th/9805083]. See §7.7.
[110] B., Julia and H., Nicolai, “Conformal internal symmetry of 2-d sigma models coupled to gravity and a dilaton,” Nucl. Phys. v 482, 431 (1996) [hep-th/9608082]. See §7.7.Google Scholar
[111] V. G., Kac, Infinite Dimensional Lie Algebra, 3rd edition, Cambridge University Press, 1990. See §5.10.2, 7.5.5, Preface to App.D, D.1, D.3, D.5, D.6.1, D.6.2, D.7, D.8, D.9.
[112] E., Kasner, “Geometrical theorems on Einstein's cosmological equations,” Am. J. Math. 43, 217 (1921). See §1.5.Google Scholar
[113] I. M., Khalatnikov, E. M., Lifshitz, K. M., Khanin, L. N., Shchur and Ya. G., Sinai, “On the stochasticity in relativistic cosmology,” Journ. Stat. Phys. 38, 97 (1985). See §3.1, 3.2.Google Scholar
[114] A., Ya. Khinchin, “Continued fractions,” University of Chicago Press, 1964; [Russian edition: Fizmatlit, Moscow, 1960]. See §3.1.
[115] A. A., Kirillov, “On the nature of the spatial distribution of metric inhomogeneities in the general solution of the Einstein equations near a cosmological singularity,” Sov. Phys. JETP 76, 355 (1993). See §6.7.Google Scholar
[116] A. A., Kirillov and A. A., Kochnev, “Cellular structure of space near a singularity in time in Einstein's equations,” JETP Letters 46, 436 (1987). See §3.3.Google Scholar
[117] A. A., Kirillov and V. N., Melnikov, “Dynamics of inhomogeneities of metric in the vicinity of a singularity in multidimensional cosmology,” Phys. Rev. D 52, 723 (1995) [gr-qc/9408004]. See §6.7.Google Scholar
[118] A. A., Kirillov and G. V., Serebryakov, “Origin of a classical space in quantum cosmologies,” Grav. Cosmol. 7, 211 (2001) [arXiv:hep-th/0012245]. See §6.7.Google Scholar
[119] R. O., Kuzmin, “Sur un problème de Gauss,” Atti del Congresso Internazionale dei Matematici, Bologna, Vol. 6, p. 83 (1928); [Russian publication: Doklady Akademii Nauk, serie A, p.375 (1928)]. See §3.1.
[120] L. D., Landau and E. M., Lifshitz, Classical Theory of Fields, Pergamon Press, Oxford, 1962. See §1.1, 1.4.
[121] L. D., Landau and E. M., Lifshitz, Fluid Mechanics, first English edition, Reading, Mass., 1958. [The first Russian edition appeared in 1944.] See §4.8.1, 4.8.2.
[122] E. M., Lifshitz, “On the gravitational stability of the expanding universe,” ZhETP 16, 587 (1946) (in Russian); reprinted: Journ. Phys. (USSR) 10, 116 (1946). See Preface to 4.8, §4.8.2.Google Scholar
[123] E. M., Lifshitz, I. M., Lifshitz and I. M., Khalatnikov, “Asymptotic analysis of oscillatory mode of approach to a singularity in homogeneous cosmological models,” Sov. Phys. JETP 32, 173, (1971) [Zh. Eksp. Teor. Fiz., 59, 322 (1970)]. See §3.1, 3.2, 4,3,1.Google Scholar
[124] E. M., Lifshitz and I. M., Khalatnikov, “Investigations in relativistic cosmology,” Adv. Phys. 12, 185 (1963). See §1.5, 1.6, 4.1, 4.8.2.Google Scholar
[125] W. C., Lim, L., Andersson, D., Garfinkle and F., Pretorius, “Spikes in the mixmaster regime of G(2) cosmologies,” Phys. Rev. D 79, 123526 (2009) [arXiv:0904.1546 [gr-qc]]. See §1.4.Google Scholar
[126] U., Lindström and H. G., Svendsen, “A pedestrian approach to high energy limits of branes and other gravitational systems,” Int. J. Mod. Phys. A 16, 1347 (2001) [arXiv:hep-th/0007101]. See §6.7.Google Scholar
[127] V. N., Lukash, “Homogeneous cosmological models with gravitational waves and rotation,” Pis'ma Zh. Eksp. Teor. Fiz. 19, 449 (1974). See §4.2.Google Scholar
[128] V. N., Lukash, “Physical interpretation of homogeneous cosmological models,” Nuovo Cimento 35, 268 (1976). See §4.2.Google Scholar
[129] G. A., Margulis, “Applications of ergodic theory to the investigation of manifolds of negative curvature,” Funct. Anal. Appl. 4, 335 (1969). See §3.2, 5.9, 6.6.Google Scholar
[130] C. W., Misner, “Mixmaster universe,” Phys. Rev. Lett. 22, 1071–1074 (1969). See Introduction, §2.4.Google Scholar
[131] C. W., Misner, “Quantum cosmology. 1,” Phys. Rev. 186, 1319 (1969); also in “Minisuperspace,” in Magic Without Magic, pp. 441–473, J R Klauder ed., Freeman, San Francisco 1972. See §6.7.Google Scholar
[132] C. W., Misner, in: D., Hobill et al. (Eds), Deterministic Chaos in General Relativity, Plenum, 1994, pp. 317–328 [gr-qc/9405068]. See §6.7.
[133] C. W., Misner, K. S., Thorne, J. A., Wheeler, Gravitation, Freeman, 1973. See §5.1.
[134] G., Montani, “On the asymptotic regime of approach to a singular point in the general cosmological solution of the Einstein equations,” Tesi di Laurea, Università di Roma, Facolta di Fisica, 1992. See §3.3.
[135] R. V., Moody and A., Pianzola, Lie Algebras with Triangular Decomposition, Wiley, New York, 1995. See Preface to App. D.
[136] H., Nicolai, “A hyperbolic Lie algebra from supergravity,” Phys. Lett. B 276, 333 (1992). See §7.7.Google Scholar
[137] H., Nicolai, in Recent Aspects of Quantum Fields, Proceedings Schladming 1991, Lecture Notes in Physics, Springer Verlag, 1991. See §7.7.
[138] R., Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14, 57 (1965). See §1.10.Google Scholar
[139] R., Penrose, “Singularities and time-asymmetry,” in General Relativity: An Einstein Centenary Survey, p. 581, Cambridge University Press (1979). See Preface to 4.8.
[140] A. A., Peresetskii, “Singularity of homogeneous Einstein metrics,” Mat. Zametki 21, 71 (1977). See §4.2.Google Scholar
[141] W., Piechocki and G., Plewa, “Structures arising in the asymptotic dynamics of the Bianchi IX model,” arXiv:1611.05262 [gr-qc]. See §2.4.
[142] J., Polchinski, String Theory, two volumes, Cambridge University Press, Cambridge, 1998. See §6.1, 7.6.3.
[143] J. G., Ratcliffe, Foundations of Hyperbolic Manifolds, Graduate Texts in Mathematics 149, 2nd edition, Springer, 2006. See §7.3, 7.4.
[144] H., Ringström, “The Bianchi IX attractor,” Ann. Inst. Henri Poincaré 2, 405–500 (2001). See §4.7.Google Scholar
[145] S. E., Rugh, “Chaos in the Einstein equations – characterisation and importance?” in Deterministic Chaos in General Relativity, pp. 359–422, edited by D., Hobill et al., Plenum Press, 1994. See §3.2.
[146] C., Saçlioğlu, “Dynkin diagrams for hyperbolic Kac–Moody algebras,” J. Phys A: Math. Gen. 22, 3753 (1989). See §5.10.2, D.8.Google Scholar
[147] J. M. M., Senovilla, “Singularity theorems and their consequences,” Gen. Rel. Grav. 30, 701 (1998). See §1.10.Google Scholar
[148] J. M. M., Senovilla, “Singularity theorems in general relativity: achievements and open questions,” Einstein Stud. 12, 305 (2012) [physics/0605007]. See §1.10.Google Scholar
[149] Ya. G., Sinai, “The stochasticity of dynamical systems,” Selecta Math. Soviet., 1(1), pp. 100–119 (1981). See §3.2, 5.9, 6.6.Google Scholar
[150] Ya. G., Sinai, “Geodesic flows on manifolds of negative curvature,” in Algoritms, Fractals and Dynamics pp. 201–215 (Okayama/Kyoto, 1992). Plenum, New York, 1995. See §3.2, 5.9, 6.6.
[151] C., Teitelboim, “The Hamiltonian structure of space-time,” PRINT-78-0682 (Princeton), in General Relativity and Gravitation, vol. 1, A. Held ed., Plenum Press, 1980. See §6.7.Google Scholar
[152] C., Uggla, “Recent developments concerning generic spacelike singularities,” Gen. Rel. Grav. 45, 1669 (2013) [arXiv:1304.6905 [gr-qc]]. See §2.5.Google Scholar
[153] C., Uggla, H., van Elst, J., Wainwright and G. F. R., Ellis, “The past attractor in inhomogeneous cosmology,” Phys. Rev. D 68, 103502 (2003) [gr-qc/0304002]. See §2.5.Google Scholar
[154] E. B., Vinberg, O. B., Shvartsman, “Discrete groups of motions of spaces of constant curvature,” Encyclopaedia of Mathematical Sciences, vol. 29, Springer, 1991. See §7.3, 7.4, 7.5.1, 7.5.2.
[155] P. C., West, “E11 and M theory,” Class. Quant. Grav. 18, 4443–4460 (2001), [arXiv:hep-th/0104081]. See §7.7.Google Scholar
[156] A., Zardecki, “Modelling in chaotic relativity,” Phys. Rev. D 28, 1235 (1983). See §3.2.Google Scholar
[157] Ya. B., Zeldovich, “The equation of state at ultrahigh densities and its relativistic limitation,” Sov. Phys. JETP 14, 1143 (1962) [Zh. Eksp. Teor. Fiz. 41, 1609 (1961)]. See §4.1.Google Scholar
[158] R., Zimmer, Ergodic Theory and Semisimple Groups, Birkhauser, Boston, 1984. See §3.2, 5.9, 6.6.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Vladimir Belinski, Marc Henneaux, Université Libre de Bruxelles
  • Book: The Cosmological Singularity
  • Online publication: 24 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781107239333.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Vladimir Belinski, Marc Henneaux, Université Libre de Bruxelles
  • Book: The Cosmological Singularity
  • Online publication: 24 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781107239333.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Vladimir Belinski, Marc Henneaux, Université Libre de Bruxelles
  • Book: The Cosmological Singularity
  • Online publication: 24 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781107239333.014
Available formats
×