Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-26T11:26:54.590Z Has data issue: false hasContentIssue false

9 - Arachnida: spiders, scorpions and allies

Published online by Cambridge University Press:  22 August 2009

David M. Martill
Affiliation:
University of Portsmouth
Günter Bechly
Affiliation:
Staatliches Museum für Naturkunde, Stuttgart
Robert F. Loveridge
Affiliation:
University of Portsmouth
Jason A. Dunlop
Affiliation:
Institut für Systematische Zoologie, Museum für Naturkunde der Humboldt-Universität, Germany
Federica Menon
Affiliation:
School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK
Paul A. Selden
Affiliation:
Paleontological Institute, University of Kansas, Lindley Hall, 1475 Jayhawk Blvd, Lawrence, KS 66045, USA
Get access

Summary

The Crato Formation of Brazil is one of the most important localities for fossil arachnids to be found in recent years. Before its discovery there were few reliable records of spiders and their relatives throughout the entire Mesozoic era (265–248 mya) to the point that we actually knew more about the older Palaeozoic arachnid fauna; see e.g. Selden (1993) for a summary and review. Mesozoic spiders have since been found in France, Spain, southern Africa, Mexico, the USA and China (see below) – all as compression fossils in shales – as well as in various Cretaceous ambers. The Crato arachnids are generally better preserved than other records from Mesozoic shales and are in some cases easier to study than inclusions in amber. In addition to spiders, the Mesozoic record of the other arachnid orders remains patchy by comparison, but scorpions, harvestmen and mites have been described from a few localities other than the Crato Formation and our knowledge of Mesozoic arachnids is slowly improving.

The Nova Olinda Member of the Crato Formation gains its significance as an arachnid Konservat Lagerstätte through yielding the most complete fauna – with the widest range of arachnid groups (see below) – of any single Mesozoic locality known to date. The camel spider, whipspider and whipscorpion described from the Crato Formation represent the first, and so far only, record of these groups from the entire Mesozoic.

Type
Chapter
Information
The Crato Fossil Beds of Brazil
Window into an Ancient World
, pp. 103 - 132
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahearn, G. A. 1970. Water balance in the whipscorpion, Mastigoproctus giganteus (Lucas) (Arachnida, Uropygi). Comparative Biochemistry and Physiology 35: 339–353.Google Scholar
Bernini, F. 1991. Fossil Acarida. Contribution of palaeontological data to acarid evolutionary history, pp. 253–262. InSimonetta, A. and Conway, Morris S. (eds), The Early Evolution of Metazoa and the Significance of Problematic Taxa. Cambridge: Cambridge University Press.Google Scholar
Blanchard, E. 1852. Arachnides in L'Organisation du Règne Animal, 2nd edn, vol. 2. Paris: E. Blanchard.Google Scholar
Brownell, P., and Polis, G. A. (eds), 2001. Scorpion Biology and Research. Oxford: Oxford University Press.Google Scholar
Campos, D. R. B. 1986. Primeiro registro fóssil de Scorpionidea na Chapada do Araripe (Cretáceo do Brasil). Anais da Academia Brasileira de Ciências 58: 135–137.Google Scholar
Campos, D. R. B., Costa, A. T. and Martins-Neto, R. G. 1988. Aranida fóssil do Cretáceo Inferior da Bacia do Araripe. Anais da Academia Brasileira de Ciências 60: 494.Google Scholar
Carvalho, M. G. P. and Lourenço, W. R. 2001. A new family of fossil scorpions from the Early Cretaceous of Brazil. Comptes rendu de l'Académie des Sciences Paris, Sciences de la Terre et des planètes 332: 711–716.Google Scholar
Coddington, J. A. 1986. The monophyletic origin of the orb web, pp. 319–363. InShear, W. A. (ed.), Spiders – Webs, Behavior, and Evolution. Stanford, CA: Stanford University Press.Google Scholar
Coddington, J. A. and Levi, H. W. 1991. Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22: 565–592.CrossRefGoogle Scholar
Coyle, F. A. 1986. The role of silk in prey capture by nonaraneomorph spiders, pp. 269–305. InShear, W. A. (ed.), Spiders – Webs, Behavior, and Evolution. Stanford, CA: Stanford University Press.Google Scholar
Crawford, C. S. and Cloudsley-Thompson, J. L. 1971. Water relations and desiccation-avoiding behaviour in the vinegaroon, Mastigoproctus giganteus (Arachnida: Uopygi). Entomologia Experimentalis et Applicata 14: 99–106.Google Scholar
Dunlop, J. A. 1996. Arácnidos fósiles (con exclusión de arãnas y escorpiones). Boletin de la Sociedad Entomologica Aragonesa, PaleoEntomologica 16: 77–92.Google Scholar
Dunlop, J. A. 1998. A fossil whipscorpion from the Lower Cretaceous of Brazil. Journal of Arachnology 26: 291–295.Google Scholar
Dunlop, J. A. 2007. A large parasitengonid mite (Acari, Erythraeoidea) from the Early Cretaceous Crato Formation of Brazil. Fossil Record10: 91–98.
Dunlop, J. A. and Martill, D. M. 2002. The first whipspider (Arachnida: Amblypygi) and three new whipscorpions (Arachnida: Thelyphonida) from the Lower Cretaceous Crato Formation of Brazil. Transactions of the Royal Society of Edinburgh, Earth Sciences, 92: 325–334.CrossRefGoogle Scholar
Dunlop, J. A. and Martill, D. M. 2004. Four additional specimens of the fossil camel spider Cratosolpuga wunderlichi Selden 1996 from the Lower Cretaceous Crato Formation of Brazil. Revista Ibérica de Arachnología 9: 143–156.Google Scholar
Dunlop, J. A. and Barov, V. 2005. A new fossil whip spider (Arachnida: Amblypygi) from the Crato Formation of Brazil. Revista Ibérica de Aracnología 12: 53–62.Google Scholar
Dunlop, J. A. and Tetlie, O. E. 2007. The Miocene whipscorpion Thelyphonus hadleyi is an unidentifiable organic remain. Journal of Arachnology (in press).
Eskov, K. 1984. A new fossil spider family from the Jurassic of Transbaikalia (Araneae: Chelicerata). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 11: 645–653.Google Scholar
Eskov, K. 1987. A new archaeid spider (Chelicerata: Araneae) from the Jurassic of Kazakhstan, with notes on the so-called “Gondwanan” ranges of recent taxa. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 175: 81–106.Google Scholar
Eskov, K. and Zonshtein, S. 1990. First Mesozoic mygalomorph spiders from the Lower Cretaceous of Siberia and Mongolia, with notes on the system and evolution of the infraorder Mygalomorphae (Chelicerata: Araneae). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 178: 325–368.Google Scholar
Evans, G. O. 1992. Principles of Acarology. Wallingford: CAB International.Google Scholar
Feldmann, R. M., Vega, F. J., Applegate, S. P. and Bishop, G. A. 1998. Early Cretaceous arthropods from the Tlayúa Formation at Tepexi de Rodríguez, Puebla, México. Journal of Paleontology 72: 79–90.CrossRefGoogle Scholar
Fet, V. and Soleglad, M. E. 2005. Contributions to scorpion systematics. I. On recent changes in high-level taxonomy. Euscorpius 31: 1–13.Google Scholar
Fet, V., Sissom, W. D., Lowe, G. and Braunwalder, M. E. (eds), 2000. Catalog of the Scorpions of the World (1758–1998). New York: The New York Entomological Society.Google Scholar
Foelix, R. F. 1996. Biology of Spiders, 2nd edn. Oxford: Oxford University Press.Google Scholar
Giupponi, A. P. L. and Baptista, R. C. L. 2003. Primeiro registro fóssil de Phrynichidae (Amblypygi), p. 104. InMachado, G. and Brescovit, A. D. (eds), IV Encontro de Aracnólogos do Cone Sul, São Pedro, 7–12 Dezembro 2003, Programa and Resumos.Google Scholar
Goloboff, P. A. 1993. A reanalysis of mygalomorph spider families (Araneae). American Museum Novitates 3056: 1–32.Google Scholar
Grandjean, F. 1947. Études sur les Smarisidae et quelques autres Érythroïdes (Acariens). Archives de Zoologie Expérimentale et Générale 85: 1–126.Google Scholar
Harvey, M. S. 2002. The neglected cousins: what do we know about the smaller arachnid orders. Journal of Arachnology 30: 357–372.CrossRefGoogle Scholar
Harvey, M. S. 2003. Catalogue of the smaller arachnid orders of the world. Collingwood: CSIRO Publishing.Google Scholar
Haupt, J. 2000. Biologie der Geißelskorpione (Uropygi Thelyphonida). Memorie della Società Entomologica Italiana 78: 305–319.Google Scholar
Hunter, D. M., Walker, P. W. and Elder, R. J. 2001. Adaptations of locusts and grasshoppers to the low and variable rainfall of Australia. Journal of Orthoptera Research 10: 347–351.CrossRefGoogle Scholar
Jell, P. A. and Duncan, P. M. 1986. Invertebrates, mainly insects, from the freshwater, Lower Cretaceous, Koonwarra Fossil Bed (Korumburra Group), South Gippsland, Victoria. Memoirs of the Association of Australasian Palaeontologists 3: 111–205.Google Scholar
Kjellesvig-Waering, E. N. 1986. A restudy of the fossil Scorpionida of the World. Palaeontographica Americana 55: 1–287.Google Scholar
Klompen, J. S. H. and Grimaldi, D. 2001. First Mesozoic record of a parasitiform mite, a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Annals of the Entomological Society of America 94: 10–15.CrossRefGoogle Scholar
Krivolutsky, D. A. 1979. Some Mesozoic Acarina from the USSR. Proceedings of the 4th International Congress of Acarology, Saalfelden, pp. 471–5.Google Scholar
Latreille, P. A. 1802. Histoire naturelle, générale et particulière, des Crustacés et des Insectes. Ouvrage faisant suite à l'histoire naturelle générale et particulière, composée par Leclerc de Buffon, et redigée par C. S. Sonnini. Paris: De l'imprimerie de F. Dufart, 3.
Latreille, P. A. 1806. Genera crustaceorum et insectorum, Aranéides. vol. 1, pp. 82–127. Paris: A. Koenig.Google Scholar
Laurie, M. 1896. Further notes on the anatomy and development of scorpions, and their bearing on the classification of the order. Annals and Magazine of Natural History 18: 121–133.CrossRefGoogle Scholar
Lourenço, W. R. 2003. The first scorpion fossil from the Cretaceous amber of France. New implications for the phylogeny of Chactoidea. Comptes Rendus Palevol 2: 213–219.CrossRefGoogle Scholar
Lucas, H. 1835. Sur une monographie du genre Thélyphone. Magasin de Zoologie 5: classe VIII, plates 8–10.Google Scholar
Main, B. Y. 1982. Adaptations to arid habitats by mygalomorph spiders, pp. 273–283. InBarker, W. R. and Greenslade, P. J. M. (eds), Evolution of the Flora and Fauna of Arid Australia. Frewville: Peacock Publications in association with the Australian Systematic Botany Society and ANZAAS, South Australian Division.Google Scholar
Maisey, J. G. (ed.) 1991. Santana Fossils: an Illustrated Atlas. Neptune City, NJ: T. F. H. Publications.Google Scholar
Martill, D. M. 1993. Fossils of the Santana and Crato Formations, Brazil. Field Guides to Fossils, no 5. London: The Palaeontological Association.Google Scholar
Martill, D. M. and Davis, P. G. 1998. Did dinosaurs come up to scratch?Nature 396: 528–529.CrossRefGoogle Scholar
Menon, F. 2007. Higher systematics of scorpions from the Crato Formation, Lower Cretaceous of Brazil. Palaeontology 50: 185–195.CrossRefGoogle Scholar
Mesquita, M. V. 1996. Cretaraneus martinsnetoi n. sp. (Araneoidea) da Fromação Santana, Cretáceo Inferior da Bacia do Araripe. Revista Univesidade Guarulhos, Série Geociências 1: 24–31.Google Scholar
Mullinex, C. L. 1975. Revision of Paraphrynus Moreno (Amblypygida: Phrynidae) for North America and the Antilles. Occasional Papers of the California Academy of Sciences 116: 1–80.Google Scholar
Pocock, R. I. 1892. Liphistius and its bearing upon the classification of spiders. Annals and Magazine of Natural History 10: 306–314.CrossRefGoogle Scholar
Pocock, R. I. 1893. Notes on the classification of scorpions, followed by some observations on synonymy, with description of new genera and species. Annals and Magazine of Natural History 12: 303–330.CrossRefGoogle Scholar
Polis, G. A. 1990. Ecology, pp. 247–293. InPolis, G. A. (ed.), The Biology of Scorpions. Stanford, CA: Stanford University Press.Google Scholar
Prendini, L. and Wheeler, W. C. 2005. Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer reviewing in online publishing. Cladistics 21: 446–494.CrossRefGoogle Scholar
Proctor, H. C. 2003. Feather mites (Acari: Astigmata): ecology, behavior, and evolution. Annual Review of Entomology 48: 185–209.CrossRefGoogle ScholarPubMed
Punzo, F. 1998. The Biology of Camel Spiders (Arachnida, Solifugae). Boston, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Punzo, F. 2000. Diel activity and diet of the giant whipscorpion Mastigoproctus giganteus (Lucas) (Arachnida, Uropygi) in Big Bend National Park (Chihuahuan Desert). Bulletin of the British Arachnological Society 11: 385–387.Google Scholar
Rayner, R. J. and Dippenaar-Schoeman, A. S. 1995. A fossil spider (superfamily Lycosoidea) from the Cretaceous of Botswana. South African Journal of Science 91: 98–100.Google Scholar
Robineau-Desvoidy, J. B. 1828. Recherches sur l'organisation vertébrale des Crustacés, Arachnides et Insectes. Paris: Comprè Jeune.CrossRefGoogle Scholar
Roewer, C.-F. 1932–1934. Solifugae, Palpigradi, pp 9–637. InBronns, H. G. (ed.), Klassen und Ordnung des Tierreichs. 5: Arthropoda IV: Arachnoidea, vol. 5(IV) (4) (1–5). Leipzig: Akademische Verlagsgesellschaft M.B.H.Google Scholar
Santiago-Blay, J. A., Fet, V., Soleglad, M. E. and Craig, P. R. 2004. The second Cretaceous scorpion specimen from Burmese amber (Arachnida: Scorpiones). Journal of Systematic Palaeontology 2: 147–152.CrossRefGoogle Scholar
Schawaller, W. 1982. Spinnen der Familien Tetragnathidae, Uloboridae und Dipluridae in Dominikanischem Bernstein und allgemeine Gesichtspunkte (Arachnida, Araneae). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie) 89: 1–19.Google Scholar
Selden, P. A. 1989. Orb-web weaving spiders in the Early Cretaceous. Nature 340: 711–713.CrossRefGoogle Scholar
Selden, P. A. 1990. Lower Cretaceous spiders from the Sierra de Montsech, north-east Spain. Palaeontology 33: 257–285.Google Scholar
Selden, P. A. 1993. Fossil arachnids–recent advances and future prospects. Memoirs of the Queensland Museum 33: 389–400.Google Scholar
Selden, P. A. 2002. First British Mesozoic spider, from Cretaceous amber of the Isle of Wight, southern England. Palaeontology 45: 973–983.CrossRefGoogle Scholar
Selden, P. A. 2003. A new tool for fossil preparation. The Geological Curator 7: 337–339.Google Scholar
Selden, P. A. and Gall, J.-C. 1992. A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology 35: 211–235.Google Scholar
Selden, P. A. and Shear, W. A. 1996. The first Mesozoic solifuge (Arachnida), from the Cretaceous of Brazil, and a redescription of the Palaeozoic solifuge. Palaeontology 39: 583–604.Google Scholar
Selden, P. A. and Penney, D. 2003. Lower Cretaceous spiders (Arthropoda: Arachnida: Araneae) from Spain. Neues Jahrbuch für Geologie und Palaontologie, Monatshefte 2003: 175–192.Google Scholar
Selden, P. A., Shear, W. A. and Bonamo, P. M. 1991. A spider and other arachnids from the Devonian of New York, and reinterpretations of Devonian Araneae. Palaeontology 34: 241–281.Google Scholar
Selden, P. A., Anderson, H. M., Anderson, J. M. and Fraser, N. C. 1999. The oldest araneomorph spiders, from the Triassic of South Africa and Virginia. Journal of Arachnology 27: 401–414.Google Scholar
Selden, P. A., Casado, da Costa F. and Mesquita, M. V. 2002. Funnel-web spiders (Araneae: Dipluridae) from the Lower Cretaceous of Brazil. Boletim do 6° Simpósio sobre o Cretácio do Brasil / 2do Simposio sobre el Cretácico de América del Sur (2002): 89–91Google Scholar
Selden, P. A., Casado, da Costa F. and Mesquita, M. V. 2006. Mygalomorph spiders (Araneae: Dipluridae) from the Lower Cretaceous Crato Lagerstätte, Araripe Basin, north-east Brazil. Palaeontology 49: 817–826.CrossRefGoogle Scholar
Simon, E. 1879. 3e Ordre – Scorpiones, pp. 79–115. In Les Arachnides de France. VII. Contenant les Ordres des Chernetes, Scorpiones et Opiliones. Paris: Roret.
Smith, F. P. 1902. The spiders of Epping Forest. Essex Naturalist 12: 181–201.Google Scholar
Southcott, R. V. 1961. Studies on the systematics and biology of the Erythraeoidea (Acarina), with a critical revision of the genera and subfamilies. Australian Journal of Zoology 9: 367–610.CrossRefGoogle Scholar
Soleglad, M. E. and Fet, V. 2003. High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius 11: 1–175.Google Scholar
Soleglad, M. E., Fet, V. and Kovarík, F. 2005. The systematic position of the scorpion genera Heteroscorpion Birula, 1903 and Urodacus Peters, 1861 (Scorpiones: Scorpionoidea). Euscorpius 20: 1–37.Google Scholar
Sphar, U. 1993. Ergänzungen und Berichtigungen zu R. Keilbachs Bibliographie und Liste der Bernsteinfossilien – Verschiedene Tiergruppen, ausgenommen Insecta und Araneae. Stuttgarter Beiträge zur Naturkende, Serie B (Geologie und Paläontologie) 194: 1–77.Google Scholar
Speijer, E. A. M. 1933. [No title]. Tijdschrift voor Entomologie 76: ⅳ–ⅴ.
Vachon, M. 1974. Etude des caractères utilisés pour classer les familles et les genres de Scorpions (Arachnides). 1. La trichobothriotaxie en Arachnologie, Sigles trichobothriaux et types de trichobothriotaxie chez les Scorpions. Bulletin du Muséum National d'Histoire Naturelle, Paris, 3è série 104: 857–958.Google Scholar
Vercammen-Grandjean, P. H. 1973. Study of the “Erythraeidae, R.O.M. No. 8” of Ewing, 1937, pp. 329–335. InDaniel, M. and Rosický, B. (eds), Proceedings of the 3rd International Congress of Acarology, Prague, 31 August–6 September, 1971. Prague: Academia.CrossRefGoogle Scholar
Walter, D. E. and Proctor, H. C. 1999. Mites: Ecology, Evolution and Behaviour. Wallingford, Oxen: CAB International.Google Scholar
Welbourn, W. C. 1991. Phylogenetic studies of the terrestrial Parasitengona, pp. 163–170. In Dusbábek, F. and Bukva, V. (eds), Modern Acarology, vol. 2. Prague: Academia and The Hague: SPB Academic Publishing bv.Google Scholar
Welbourn, W. C., Ochoa, R., Kane, E. C. and Erbe, E. F. 2003. Morphological observations of Brevipalpus phoenicus (Acari: Tenuipalpidae) including comparisons with B. californicus and B. obovatus. Experimental and Applied Acarology 30: 107–133.CrossRefGoogle ScholarPubMed
Weygoldt, P. 1996. Evolutionary morphology of whip spiders: towards a phylogenetic system (Chelicerata: Arachnida: Amblypygi). Journal of Zoological, Systematic and Evolutionary Research 34: 185–202.CrossRefGoogle Scholar
Weygoldt, P. 2000. Whip spiders (Chelicerata: Amblypygi). Their Biology, Morphology and Systematics. Stenstrup: Apollo Books.Google Scholar
Wunderlich, J. 1986. Spinnenfauna Gestern und Heute. Wiesbaden: Erich Bauer Verlag bei Quelle and Meyer.Google Scholar
Wunderlich, J. 1988. Die fossilen Spinnen im Dominikanischen Bernstein. Beiträge zur Araneologie 2: 1–378.Google Scholar
Wunderlich, J. 2004. The fossil mygalomorph spiders (Araneae) in Baltic and Dominican amber and about extant members of the family Micromygalidae. Beiträge zur Araneologie 3: 595–631.Google Scholar
Zhou, Z., Barrett, P. M. and Hilton, J. 2003. An exceptionally preserved Lower Cretaceous ecosystem. Nature 421: 807–814.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×