from Part I - Near-equilibrium critical dynamics
Published online by Cambridge University Press: 05 June 2014
In this chapter, we introduce and explain one of the fundamental tools in the study of dynamic critical phenomena, namely dynamic perturbation theory. Inevitably, large parts of Chapter 4 need to be rather technical. Complementary to the straightforward iterative method for the solution of non-linear Langevin equations presented in Section 3.2.3, we now describe the more elegant and efficient field-theoretic techniques. Yet both for the derivation of general properties of the perturbation series and for the sake of practical calculations, the response functional and the following elaborations on Feynman diagrams, cumulants, and vertex functions prove indispensable. As is the case with every efficient formalism, once one has become acquainted with the Janssen–De Dominicis response functional for the construction of dynamic field theory, and therefrom the perturbation expansion in terms of vertex functions, it serves to save a considerable amount of rather tedious work. For the purely relaxational O(n)-symmetric models A and B, we derive the fluctuation-dissipation theorem within this formalism, and then systematically construct the perturbation series and its diagrammatic representation in terms of Feynman graphs. In order to reduce the required efforts to a minimum, the generating functionals first for the cumulants, and then, motivated by Dyson's equation for the propagator, for the one-particle irreducible vertex functions are examined. As an example, the relevant vertex functions for models A and B are explicitly evaluated to two-loop order. Furthermore, alternative formulations of the perturbation expansion are discussed, and the Feynman rules are given in both the frequency and the time domain. The results of this chapter provide the foundation for the renormalization group treatment in the subsequent Chapter 5.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.