Published online by Cambridge University Press: 29 January 2010
Introduction
A characteristic property of amorphous polymers is the ability to sustain large strains. For cross-linked three-dimensional networks the strain is usually recoverable and the deformation process reversible. The tendency toward crystallization is greatly enhanced by deformation since chains between points of cross-linkages are distorted from their most probable conformations. A decrease in conformational entropy consequently ensues. Hence, if the deformation is maintained, less entropy is sacrificed in the transformation to the crystalline state. The decrease in the total entropy of fusion allows crystallization, and melting, to occur at a higher temperature than would normally be observed for the same polymer in the absence of any deformation. This enhanced tendency toward crystallization is exemplified by natural rubber and polyisobutylene. These two polymers crystallize very slowly in the absence of an external stress. However, they crystallize extremely rapidly upon stretching.
It is a widely observed experimental fact that crystallites produced by stretching usually occur with their chain direction preferentially oriented parallel to the axis of elongation. The extent of the orientation will depend on the type and amount of the deformation. This is particularly true for crystallization at large deformations. These observations contrast with the crystalline texture that results when the transformation is induced in the absence of an external stress merely by cooling. In the latter case the crystallites are, on the average, randomly arranged relative to one another. When a portion of a deformed chain is incorporated into a crystallite, the average stress that it exerts at its end points is reduced.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.