Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T14:49:11.853Z Has data issue: false hasContentIssue false

19 - The holographic renormalisation group

Published online by Cambridge University Press:  24 November 2009

Clifford V. Johnson
Affiliation:
University of Durham
Get access

Summary

We saw in the previous chapter that the ‘holographic’, duality between AdS5 physics and the physics of the conformally invariant four dimensional Yang–Mills theory can be extended to the properties of solutions which are only asymptotically AdS5, in keeping with the basic dictionary of the correspondence. We studied the properties of Schwarzschild and Reissner–Nordstrom black holes in AdS, arising naturally as limits of non-extremal and spinning D3-branes, and found that their properties make considerable physical sense in the holographically dual field theory.

It is very clear that this duality between gravitational physics and that of gauge theory is potentially a powerful tool for studying gauge theory. The prototype example is, of course, a highly specialised sort of gauge theory, since it has sixteen supercharges, and is conformally invariant. Of great interest is the study of gauge theories which might be closer to the theories we use to model interactions in particle physics, such as QCD. Perhaps there are gravitational duals of such theories. More generally, of course, we would like to also find and study full string theory duals, if we want to study more than just very large N. At the time of writing, this is subject of considerable research effort.

In this chapter we shall have a brief look at extending the intuition we have developed about the AdS/CFT correspondence a bit further, and address the issue of studying less symmetric gauge theories by deforming the AdS/CFT example.

Type
Chapter
Information
D-Branes , pp. 467 - 503
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×