Published online by Cambridge University Press: 05 October 2014
It is surely a great criticism of our profession that we have not organized a critical summary, by specialty or subspecialty, adapted periodically, of all relevant randomized controlled trials.
Archie CochraneIntroduction
Good decision analyses depend on both the veracity of the decision model and on the validity of the individual data elements. These elements may include probabilities (such as the pre-test probabilities, the sensitivity and specificity of diagnostic tests, the probability of an adverse event, and so on), estimates of effectiveness of interventions (such as the relative risk reduction), and the valuation of outcomes (such as quality of life, utilities, and costs). Often we lack the information needed for a confident assessment of these elements. Decision analysis, by structuring a decision problem, makes these gaps in knowledge apparent. Sensitivity analysis on these ‘soft’ numbers will also give us insight into which of these knowledge gaps is most likely to affect our decisions. These same gaps exist in less systematic decision making as well, but there is no convenient way to determine how our decisions should be affected. In this chapter we shall cover the basic methods for finding the best estimate for each of the different elements that may be included in a formal decision analysis or in less systematic decision making.
Sometimes, but not as often as one would like, the estimates one is looking for can be inferred from a published study or from a series of cases that someone has reported in the literature or recorded in a data bank. This is generally considered the most satisfactory way of assessing a probability, because it involves the use of quantitative evidence. Often we will have a choice of data sources, so it is useful to have some ‘rules’ to guide the choice of possible estimates. One helpful concept is the ‘hierarchy of evidence’ (see www.cebm.net) which explicitly ranks the available evidence; ‘perfect’ data will rarely be available, but we need to know how to choose the best from the available imperfect data. This choice will also need to be tempered by the practicalities and purpose of each decision analysis: what is feasible will differ with a range from the urgent individual patient decision to a national policy decision to fund an expensive new procedure.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.