Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T18:49:36.757Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  25 January 2011

Stellan Ohlsson
Affiliation:
University of Illinois, Chicago
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Deep Learning
How the Mind Overrides Experience
, pp. 455 - 514
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelson, R. P. (1959). Modes of resolution of belief dilemmas. Journal of Conflict Resolution, vol. 3, pp. 343–352.CrossRefGoogle Scholar
Abelson, R. P.. (1983). Whatever became of consistency theory?Personality and Social Psychology Bulletin, vol. 9, pp. 37–54.CrossRefGoogle Scholar
Abelson, R. P., Aronson, E., McGuire, W. J., Newcomb, T. M., Rosenberg, M. J., & Tannenbaum, P. H. (Eds.). (1968). Theories of cognitive consistency: A sourcebook. Chicago, IL: Rand McNally.
Abelson, R. P., & Rosenberg, M. J. (1958). Symbolic psycho-logic: A model of attitudinal cognition. Behavioral Science, vol. 3, pp. 1–13.CrossRefGoogle Scholar
Adamson, R. E. (1952). Functional fixedness as related to problem solving: A repetition of three experiments. Journal of Experimental Psychology, vol. 44, pp. 288–291.CrossRefGoogle ScholarPubMed
Afshar, S. S., Flores, E., McDonald, K. F., & Knoesel, E. (2007). Paradox in wave-particle duality. Foundations of Physics, vol. 37, pp. 295–305.CrossRefGoogle Scholar
Alberdi, E., Sleeman, D. H., & Korpi, M. (2000). Accommodating surprise in taxonomic tasks: The role of expertise. Cognitive Science, vol. 24, pp. 53–91.CrossRefGoogle Scholar
Allport, G. W. (1958/1979). The nature of prejudice (2nd ed.). Reading, MA: Addison-Wesley.Google Scholar
Allwood, C. (1984). Error detection processes in statistical problem solving. Cognitive Science, vol. 8, pp. 413–437.CrossRefGoogle Scholar
Allwood, C. M., & Montgomery, H. (1982). Detection of errors in statistical problem solving. Scandinavian Journal of Psychology, vol. 23, pp. 131–139.CrossRefGoogle Scholar
Altmann, E. M., & Burns, B. D. (2005). Streak biases in decision making: Data and a memory model. Cognitive Systems Research, vol. 6, pp. 5–16.CrossRefGoogle Scholar
Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation–based model. Cognitive Science, vol. 26, pp. 39–83.CrossRefGoogle Scholar
Alty, J. L. (1995). Navigating through compositional space: The creativity corridor. Leonardo, vol. 28, pp. 215–219.CrossRefGoogle Scholar
Alvarez, J. E., & Emory, E. (2006). Executive function and the frontal lobes: A meta-analytic review. Neuropsychology Review, vol. 16, pp. 17–42.CrossRefGoogle ScholarPubMed
Alvarez, W. (1998). T. rex and the crater of doom. New York: Vintage Books.Google Scholar
Amalberti, R. (2001). The paradoxes of almost totally safe transportation systems. Safety Science, vol. 37, pp. 109–126.CrossRefGoogle Scholar
Amir, E., & Maynard-Zhang, P. (2004). Logic-based subsumption architecture. Artificial Intelligence, vol. 153, pp. 167–237.CrossRefGoogle Scholar
Amundsen, R. (1989). The trials and tribulations of selectionist explanations. In Hahlweg, K. & Hooker, C. A. (Eds.), Issues in evolutionary epistemology (pp. 413–432). Albany: State University of New York Press.Google Scholar
Anderson, J. R. (1976). Language, memory, and thought. Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, vol. 89, pp. 369–406.CrossRefGoogle Scholar
Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Anderson, J. R. (1984). Spreading activation. In Anderson, J. R. & Kosslyn, S. M. (Eds.), Tutorials in learning and memory (pp. 61–90). San Francisco, CA: W. H. Freeman.Google Scholar
Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method problem solutions. Psychological Review, vol. 94, pp. 192–210.CrossRefGoogle Scholar
Anderson, J. R. (1989). A rational analysis of human memory. In Roediger, H. L. & Craik, F. I. M. (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 195–210). Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cognitive modeling. Cognitive Science, vol. 26, pp. 85–112.CrossRefGoogle Scholar
Anderson, J. R. (2004). Cognitive psychology and its implications (6th ed.). New York: Worth.Google Scholar
Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive architecture. Cognitive Science, vol. 29, pp. 313–341.CrossRefGoogle ScholarPubMed
Anderson, J. R. (2007). How can the human mind occur in the physical universe?New York: Oxford University Press.CrossRefGoogle Scholar
Anderson, J. R., & Bower, G. H. (1973). Human associative memory. Washington, DC: Winston.Google Scholar
Anderson, J. R., & Jeffries, R. (1985). Novice LISP errors: Undetected losses of information from working memory. Human-Computer Interaction, vol. 1, pp. 107–131.CrossRefGoogle Scholar
Anderson, J. R., Kline, P., & Beasley, C. M. (1978, February). A theory of the acquisition of cognitive skills (Technical Report 77–1). New Haven, CT: Yale University.Google Scholar
Anderson, J. R., Kline, P. J., & Beasley, C. M. (1979). A general learning theory and its application to schema abstraction. In Bower, G. H. (Ed.), The psychology of learning and motivation: Advances in research and theory (vol. 13, pp. 277–318). New York: Academic Press.Google Scholar
Anderson, J. R., Kushmerick, N., & Lebiere, C. (1993). The Tower of Hanoi and goal structures. In Anderson, J. R. (Ed.), Rules of the mind (pp. 121–142). Hillsdale, NJ: Erlbaum.Google Scholar
Anderson, J. R., & Lebiere, C. (Eds.). (1998). The atomic components of thought. Mahwah, NJ: Erlbaum.
Anderson, J. R., & Pirolli, P. L. (1984). Spread of activation. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 10, pp. 791–798.Google Scholar
Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory. Psychological Science, vol. 2, pp. 396–408.CrossRefGoogle Scholar
Anderson, J. R., . (2000). The adaptive nature of memory. In Tulving, E. & Craik, F. I. M. (Eds.), The Oxford handbook of memory (pp. 557–570). New York: Oxford University Press.Google Scholar
Anderson, M. L. (2003). Embodied cognition: A field guide. Artificial Intelligence, vol. 149, pp. 91–130.CrossRefGoogle Scholar
Anderson, R. C. (1967). Educational psychology. Annual Review of Psychology, vol. 18, pp. 129–164.CrossRefGoogle ScholarPubMed
Anderson, S. R. (2004). Doctor Dolittle's delusion: Animals and the uniqueness of human language. New Haven, CT: Yale University Press.Google Scholar
Anzai, Y., & Simon, H. A. (1979). The theory of learning by doing. Psychological Review, vol. 86, pp. 124–140.CrossRefGoogle ScholarPubMed
Arnauld, A., & Nicole, P. (1662/1996). Logic or the art of thinking: Containing, besides common rules, several new observations appropriate for forming judgments (Buroker, J. V., Trans.). Cambridge, UK: Cambridge University Press.Google Scholar
Aronson, E. (1997). Back to the future: Retrospective review of Leon Festinger's “A theory of cognitive dissonance.”American Journal of Psychology, vol. 110, pp. 127–137.CrossRefGoogle Scholar
Ash, M. G. (1995). Gestalt psychology in German culture, 1890–1967: Holism and the quest for objectivity. Cambridge, UK: Cambridge University Press.Google Scholar
Ashby, F. G., & Maddox, W. T. (2005). Human category learning. Annual Review of Psychology, vol. 56, pp. 149–178.CrossRefGoogle ScholarPubMed
Ashton, D. (1972). Picasso on art: A selection of views. New York: Viking Press.Google Scholar
Ashton, T. S. (1948/1969). The industrial revolution 1760–1830. London: Oxford University Press.Google Scholar
Atkins, P. (2004). Ponderable matter: Explanation in chemistry. In Cornwell, J. (Ed.), Explanations: Styles of explanations in science (pp. 111–124). Oxford, UK: Oxford University Press.Google Scholar
Atwood, M. E., & Polson, P. G. (1976). A process model for water jug problems. Cognitive Psychology, vol. 8, pp. 191–216.CrossRefGoogle Scholar
Atwood, M. E., Masson, M. E. J., & Polson, P. G. (1980). Further explorations with a process model for water jug problems. Memory & Cognition, vol. 8, pp. 182–192.CrossRefGoogle ScholarPubMed
Auerswald, P., Kauffman, S., Lobo, J., & Shell, K. (2000). The production recipes approach to modeling technological innovation: An application to learning by doing. Journal of Economic Dynamics and Control, vol. 24, pp. 389–450.CrossRefGoogle Scholar
Aunger, R. (2002). The electric meme: A new theory of how we think. New York: Free Press.Google Scholar
Ausubel, D. P. (1963). The psychology of meaningful verbal learning: An introduction to school learning. New York: Grune & Stratton.Google Scholar
Ausubel, D. P. (1968). Educational psychology: A cognitive view. New York: Holt, Rinehart and Winston.Google Scholar
Baars, B. J. (1986). The cognitive revolution in psychology. New York: Guilford Press.Google Scholar
Bacon, F. (1620/1994). Novum organum (transl. Urbach, P. & Gibson, J.). Chicago: Open Court.Google Scholar
Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology, vol. 49A, pp. 5–28.CrossRefGoogle Scholar
Baddeley, A. (2007). Working memory, thought, and action. Oxford, UK: Oxford University Press.CrossRefGoogle Scholar
Baggott, J. (2004). Beyond measure: Modern physics, philosophy, and the meaning of quantum theory. New York: Oxford University Press.Google Scholar
Bain, A. (1879). The senses and the intellect (3rd ed.). New York: D. Appleton.Google Scholar
Bain, A., & Vorst, Wm. D. (1999). The Hindenburg tragedy revisited: The fatal flaw found. International Journal of Hydrogen Energy, vol. 24, pp. 399–403.CrossRefGoogle Scholar
Bak, P. (1996). How nature works: The science of self-organized criticality. New York: Springer-Verlag.CrossRefGoogle Scholar
Balcetis, E., & Dunning, D. (2007). Cognitive dissonance and the perception of natural environments. Psychological Science, vol. 18, pp. 917–921.CrossRefGoogle ScholarPubMed
Baldwin, J. M. (1896a). A new factor in evolution. American Naturalist, vol. 30, pp. 441–451.CrossRefGoogle Scholar
Baldwin, J. M. (1896b). A new factor in evolution (continued). American Naturalist, vol. 30, pp. 536–553.CrossRefGoogle Scholar
Baldwin, N. (2001). Edison: Inventing the century. Chicago: University of Chicago Press.Google Scholar
Baldwin, T. T., & Ford, J. K. (1988). Transfer of training: A review and directions for future research. Personnel Psychology, vol. 41, pp. 63–105.CrossRefGoogle Scholar
Barber, B. (1961). Resistance by scientists to scientific discovery. Science, vol. 134, pp. 596–602.CrossRefGoogle ScholarPubMed
Barber, M. J., & Lichtman, J. W. (1999). Activity-driven synapse elimination leads paradoxically to domination by inactive neurons. Journal of Neuroscience, vol. 19, pp. 9975–9985.CrossRefGoogle ScholarPubMed
Barkow, J. H., Cosmides, L., & Tooby, J. (Eds.). (1992). The adapted mind: Evolutionary psychology and the generation of culture. New York: Oxford University Press.
Barnes, B. R., & Clawson, E. V. (1975). Do advance organizers facilitate learning? Recommendations for further research based on an analysis of 32 studies. Review of Educational Research, vol. 45, pp. 637–659.CrossRefGoogle Scholar
Barron, F., & Harrington, D. M. (1981). Creativity, intelligence, and personality. Annual Review of Psychology, vol. 32, pp. 439–476.CrossRefGoogle Scholar
Barrow, D., Mitrovic, A., Ohlsson, S., & Grimley, M. (2008). Assessing the impact of positive feedback in constraint-based tutors. In Woolf, B. P., Aïmeur, E., Nkambou, R., & Lajoie, S. (Eds.), Intelligent tutoring systems (pp. 250–259). Berlin, Germany: Springer-Verlag.Google Scholar
Bartlett, F. C. (1932). Remembering: A study in experimental and social psychology. Cambridge, MA: Cambridge University Press.Google Scholar
Bar-Yosef, O. (1992). The role of Western Asia in modern human origins. Philosophical Transactions: Biological Sciences, vol. 337, pp. 193–200.CrossRefGoogle ScholarPubMed
Bassok, M. (1990). Transfer of domain-specific problem-solving procedures. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 16, pp. 522–533.Google Scholar
Bassok, M., & Holyoak, K. J. (1989). Interdomain transfer between isomorphic topics in algebra and physics. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 15, pp. 153–166.Google Scholar
Behrens, R. R. (1987). The life and unusual ideas of Adelbert Ames, Jr. Leonardo, vol. 20, pp. 273–279.CrossRefGoogle Scholar
Belich, J. (2001). Making peoples: A history of the New Zealanders from Polynesian settlement to the end of the nineteenth century. Honolulu, HI: University of Hawai‘i Press.Google Scholar
Bell, M. S. (2005). Lavoisier in Year One. New York: Norton.Google Scholar
Berenbaum, M. R. (1996). Introduction to the symposium: On the evolution of specialization. American Naturalist, vol. 148, pp. 78–83.CrossRefGoogle Scholar
Bereiter, C., & Scardamalia, M. (1985). Cognitive coping strategies and the problem of “inert knowledge.” In Chipman, S. F., Segal, J. W., & Glaser, R. (Eds.), Thinking and learning skills (vol. 2): Research and open questions (pp. 65–80). Hillsdale, NJ: Erlbaum.Google Scholar
Berkson, W., & Wettersten, J. (1984). Learning from error: Karl Popper's psychology of learning. La Salle, IL: Open Court.Google Scholar
Bernstein, S., Lebow, R. N., Stein, J. G., & Weber, S. (2000). God gave physics the easy problems: Adapting social science to an unpredictable world. European Journal of International Relations, vol. 6, pp. 43–76.CrossRefGoogle Scholar
Bernstein, W. J. (2004). The birth of plenty: How the prosperity of the modern world was created. New York: McGraw-Hill.Google Scholar
Bertman, S. (1998). Hyperculture: The human cost of speed. Westport, CT: Praeger.Google Scholar
Besemer, S. P. (1998). Creative product analysis matrix: Testing the model structure and a comparison among products – three novel chairs. Creativity Research Journal, vol. 11, pp. 333–346.CrossRefGoogle Scholar
Besemer, S. P., & Treffinger, D. J. (1981). Analysis of creative products: Review and synthesis. Journal of Creative Behavior, vol. 15, pp. 158–178.CrossRefGoogle Scholar
Biederman, I. (1987). Recognition-by-components: A theory of human image understanding. Psychological Review, vol. 94, pp. 115–147.CrossRefGoogle ScholarPubMed
Bishop, B., & Anderson, C. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, vol. 27, pp. 415–427.CrossRefGoogle Scholar
Birch, H. G., & Rabinowitz, H. S. (1951). The negative effect of previous experience on productive thinking. Journal of Experimental Psychology, vol. 41, pp. 121–125.CrossRefGoogle ScholarPubMed
Blackburn, P., Benthem, J. F. A. K., & Wolter, F. (Eds.). (2007). Handbook of modal logic. Amsterdam, the Netherlands: Elsevier.
Blackmore, S. (1999). The meme machine. Oxford, UK: Oxford University Press.Google Scholar
Blanshard, F. B. (1949). The retreat from likeness in the theory of painting (2nd ed.). New York: Columbia University Press.Google Scholar
Bloom, B. S. (1984). The 2 sigma problem: The search for methods of group instruction as effective as one-to-one tutoring. Educational Researcher, vol. 13, pp. 4–16.CrossRefGoogle Scholar
Blyth, M. (2006). Great punctuations: Predictions, randomness, and the evolution of comparative political science. American Political Science Review, vol. 100, pp. 1–6.CrossRefGoogle Scholar
Boden, M. A. (1972). Purposive explanation in psychology. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
Bohner, G., & Wänke, M. (2002). Attitudes and attitude change. New York: Psychology Press.Google Scholar
Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S., & Camazine, S. (1997). Self-organization in social insects. Trends in Ecology & Evolution, vol. 12, pp. 188–193.CrossRefGoogle ScholarPubMed
Boole, G. (1854/1958). An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. New York: Dover.CrossRefGoogle Scholar
Bosse, T., Jonker, C. M., & Treur, J. (2006). Componential explanation in philosophy, cognitive science and computer science. In Sun, R. & Miyake, N. (Eds.), Proceedings of the 28th Annual Conference of the Cognitive Science Society (pp. 95–100), Vancouver, British Columbia, Canada, June 26–29. Electronic archive at http://www.cognitivesciencesociety.org/conference_past.html.
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, vol. 108, pp. 624–652.CrossRefGoogle ScholarPubMed
Bouchard, T. J., & McGue, M. (1981). Familial studies of intelligence: A review. Science, vol. 22, pp. 1055–1059.CrossRefGoogle Scholar
Boulding, K. E. (1961). The image: Knowledge in life and society. Ann Arbor: University of Michigan Press.Google Scholar
Bowden, E. M., & Jung-Beeman, M. (2003). Aha! Insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin & Review, vol. 10, pp. 730–737.CrossRefGoogle ScholarPubMed
Bowden, E. M., Jung-Beeman, M., Fleck, J., & Kounios, J. (2005). New approaches to demystifying insight. Trends in Cognitive Sciences, vol. 9, pp. 322–328.CrossRefGoogle ScholarPubMed
Bower, G. H. (1972). Mental imagery and associative learning. In Gregg, L. W. (Ed.), Cognition in learning and memory (pp. 51–88). New York: Wiley.Google Scholar
Bower, G. H., & Reitman, J. S. (1972). Mnemonic elaboration in multilist learning. Journal of Verbal Learning and Verbal Behavior, vol. 11, pp. 478–485.CrossRefGoogle Scholar
Boyer, C. B. (1985). A history of mathematics. Princeton, NJ: Princeton University Press.Google Scholar
Bradshaw, G. (1992). The airplane and the logic of invention. In Giere, R. N. (Ed.), Minnesota Studies in the Philosophy of Science (vol. 15): Cognitive models of science (pp. 239–250). Minneapolis: University of Minneapolis Press.Google Scholar
Brady, J. E., & Holum, J. R. (1988). Fundamentals of chemistry (3rd ed.). New York: Wiley.Google Scholar
Bransford, J. D., Barclay, J. R., & Franks, J. J. (1972). Sentence memory: A constructive versus interpretative approach. Cognitive Psychology, vol. 3, pp. 193–209.CrossRefGoogle Scholar
Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple proposal with multiple implications. Review of Research in Education, vol. 24, pp. 61–100.Google Scholar
Brewer, W. F., & Lambert, B. L. (2001). The theory-ladenness of observation and the theory-ladenness of the rest of the scientific process. Philosophy of Science, vol. 68, pp. 176–186.CrossRefGoogle Scholar
Brewer, W. F., & Nakamura, G. V. (1984). The nature and function of schemas. In Wyer, R. & Srull, T. (Eds.), Handbook of social cognition (pp. 119–160). Hillsdale, NJ: Erlbaum.Google Scholar
Broadbent, D. E. (1958). Perception and communication. Oxford, UK: Pergamon Press.CrossRefGoogle Scholar
Brock, W. (1993). The Norton history of chemistry. New York: Norton.Google Scholar
Brodie, R. (1996). Virus of the mind: The science of the meme. Seattle, WA: Integral Press.Google Scholar
Broude, N. (Ed.). (1994). World impressionism: The international movement, 1860–1920. New York: Harry N. Abrams.
Brown, A. S. (1991). A review of the tip-of-the-tongue experience. Psychological Bulletin, vol. 109, pp. 204–223.CrossRefGoogle ScholarPubMed
Brown, K. A. (1988). Inventors at work: Interviews with 16 notable American inventors. Redmond, WA: Microsoft Press.Google Scholar
Brown, J. S., & Burton, R. R. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, vol. 2, pp. 155–192.CrossRefGoogle Scholar
Brown, J. S., & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Cognitive Science, vol. 4, pp. 379–426.CrossRefGoogle Scholar
Brown, R., Vivian, J., & Hewstone, M. (1999). Changing attitudes through group contact: The effects of group membership salience. European Journal of Social Psychology, vol. 29, pp. 741–764.3.0.CO;2-8>CrossRefGoogle Scholar
Brown, S., & Heathcote, A. (2003). Averaging learning curves across and within participants. Behavior Research Methods, Instruments, and Computers, vol. 35, pp. 11–21.CrossRefGoogle ScholarPubMed
Brownell, W. A. (1947). An experiment on “borrowing” in third-grade arithmetic. Journal of Educational Research, vol. 16, pp. 161–263.CrossRefGoogle Scholar
Brownell, W. A., & Moser, H. E. (1949). Meaningful vs. mechanical learning: A study in Grade III subtraction. Durham, NC: Duke University Press.Google Scholar
Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University Press.Google Scholar
Bruner, J. S. (1970). The growth and structure of skill. In Connolly, K. (Ed.), Mechanisms of motor skill development (pp. 63–94). New York: Academic Press.Google Scholar
Bruner, J. S., & Postman, L. (1949). On the perception of incongruity: A paradigm. Journal of Personality, vol. 18, pp. 206–223.CrossRefGoogle Scholar
Bryan, W. L., & Harter, N. (1897). Studies in the physiology and psychology of the telegraphic language. Psychological Review, vol. 4, pp. 27–53.CrossRefGoogle Scholar
Bryan, W. L., (1899). Studies on the telegraphic language: The acquisition of a hierarchy of habits. Psychological Review, vol. 6, pp. 345–375.Google Scholar
Buchanan, B. G. (2001). Creativity at the meta-level. AI Magazine, vol. 22, pp. 13–28.Google Scholar
Buchanan, B. G., & Feigenbaum, E. A. (1978). Dendral and Meta-Dendral: Their application dimension. Artificial Intelligence, vol. 11, pp. 5–24.CrossRefGoogle Scholar
Buchanan, B., Moore, J., Carenini, G., Forsythe, D., Ohlsson, S., & Banks, G. (1995). An intelligent interactive system for delivering individualized information to patients. Artificial Intelligence in Medicine, vol. 7, pp. 117–154.CrossRefGoogle ScholarPubMed
Buckley, K. W. (1989). Mechanical man: John Broadus Watson and the beginnings of behaviorism. New York: Guilford Press.Google Scholar
Budd, G. E. (2006). On the origin and evolution of major morphological characters. Biological Reviews, vol. 81, pp. 609–628.CrossRefGoogle ScholarPubMed
Buderi, R. (1996). The invention that changed the world: How a small group of radar pioneers won the Second World War and launched a technological revolution. New York: Simon & Schuster.Google Scholar
Buller, D. J. (2005). Evolutionary psychology: The emperor's new paradigm. TRENDS in Cognitive Science, vol. 9, pp. 277–283.CrossRefGoogle ScholarPubMed
Burroughs, W. J. (2005). Climate change in prehistory: The end of the reign of chaos. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In Sleeman, D. & Brown, J. S. (Eds.), Intelligent tutoring systems (pp. 157–199). New York: Academic Press.Google Scholar
Bush, G. L. (1975). Modes of animal speciation. Annual Review of Ecology and Systematics, vol. 6, pp. 339–364.CrossRefGoogle Scholar
Butterfield, H. (1957). The origins of modern science 1300–1800 (revised ed.). New York: Free Press.Google Scholar
Butterworth, A., & Laurence, R. (2005). Pompeii: The living city. New York: St. Martin's Press.Google Scholar
Butts, R. E. (Ed.). (1989). William Whewell: Theory of scientific method (revised ed.). Indianapolis, IN: Hackett.
Bynum, C. W. (2001). Metamorphosis and identity. New York: Zone Books.Google Scholar
Calandra, B., & Barron, A. E. (2005). A preliminary investigation of advance organizers for a complex educational website. Journal of Educational Multimedia and Hypermedia, vol. 14, pp. 5–23.Google Scholar
Callander, R. A. (1978). River meandering. Annual Review of Fluid Mechanics, vol. 10, pp. 129–158.CrossRefGoogle Scholar
Calvin, W. H. (1991). Ascent of mind: Ice age climates and the evolution of intelligence. New York: Bantam Books.Google Scholar
Camazine, S., Deneubourg, J. -L., Franks, N. R., Sneyd, J., Theraulaz, G., & Bonabeau, E. (2001). Self-organization in biological systems. Princeton, NJ: Princeton University Press.Google Scholar
Cameron, K. A., Jacks, J. Z., & O'Brien, M. E. (2002). An experimental investigation of strategies for resisting persuasion. Current Research in Social Psychology, vol. 7, pp. 205–224. Electronic publication available at http://www.uiowa.edu/~grpproc/crisp/crisp.7.12.htm.Google Scholar
Camilleri, K. (2006). Heisenberg and the wave-particle duality. Studies in History and Philosophy of Modern Physics, vol. 37, pp. 298–315.CrossRefGoogle Scholar
Campbell, D. T. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, vol. 67, pp. 380–400.CrossRefGoogle ScholarPubMed
Campitelli, G., & Gobet, F. (2005). The mind's eye in blindfold chess. European Journal of Cognitive Psychology, vol. 17, pp. 23–45.CrossRefGoogle Scholar
Caprara, G. V., & Cervone, D. (2000). Personality: Determinants, dynamics, and potentials. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Caramazza, A., McCloskey, M., & Green, B. (1980). Naive beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition, vol. 9, pp. 117–123.CrossRefGoogle Scholar
Caramazzo, A., & Shelton, J. A. (1998). Domain-specific knowledge systems in the brain: The animate-inanimate distinction. Journal of Cognitive Neuroscience, vol. 10, pp. 1–34.CrossRefGoogle Scholar
Carbonell, J. G. (1983). Learning by analogy: Formulating and generalizing plans from past experience. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning: An artificial intelligence approach (pp. 137–161). Palo Alto, CA: Tioga.Google Scholar
Carbonell, J. G. (1986). Derivational analogy: A theory of reconstructive problem solving and expertise acquisition. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning: An artificial intelligence approach (vol. 2, pp. 371–392). Los Altos, CA: Morgan Kauffmann.Google Scholar
Carlson, W. B., & Gorman, M. E. (1992). A cognitive framework to understand technological creativity: Bell, Edison, and the telephone. In Weber, R. J. & Perkins, D. N. (Eds.), Inventive minds: Creativity in technology (pp. 48–79). New York: Oxford University Press.Google Scholar
Carnie, A. (2008). Constituent structure. New York: Oxford University Press.Google Scholar
Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Carroll, P. B., & Mui, C. (2008). Billion-dollar lessons: What you can learn from the most inexcusable business failures of the last 25 years. New York: Portfolio.Google Scholar
Carroll, S. B. (2005). Endless forms most beautiful: The new science of evo devo and the making of the animal kingdom. New York: Norton.Google Scholar
Casper, B. M, & Noer, R. J. (1972). Revolutions in physics. New York: Norton.Google Scholar
Catrambone, R. (1995). Aiding subgoal learning: Effects on transfer. Journal of Educational Psychology, vol. 8, pp. 5–17.CrossRefGoogle Scholar
Catrambone, R. (1998). The subgoal learning model: Creating better examples so that students can solve novel problems. Journal of Experimental Psychology: General, vol. 127, pp. 355–376.CrossRefGoogle Scholar
Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, vol. 54, pp. 1–22.CrossRefGoogle Scholar
Cavalli-Sforza, L. L. (2000). Genes, peoples, and languages (Seielstad, M., Trans.). New York: Farrar, Straus and Giroux.Google Scholar
Cech, T. R. (2001). Overturning the dogma: Catalytic RNA. In Pfenninger, K. H. & Shubik, V. R. (Eds.), The origins of creativity (pp. 5–17). Oxford, UK: Oxford University Press.Google Scholar
Cervone, D. (2004). The architecture of personality. Psychological Review, vol. 111, pp. 183–204.CrossRefGoogle ScholarPubMed
Cervone, D. (2005). Personality architecture: Within-person structures and processes. Annual Review of Psychology, vol. 56, pp. 423–452.CrossRefGoogle ScholarPubMed
Champagne, A. B., Gunstone, R. F., & Klopfer, L. E. (1985). In West, L. H. T. & Pines, A. L. (Eds.), Cognitive structure and conceptual change (pp. 61–90). New York: Academic Press.Google Scholar
Chan, C., Burtis, J., & Bereiter, C. (1997). Knowledge building as a mediator of conflict in conceptual change. Cognition and Instruction, vol. 15, pp. 1–40.CrossRefGoogle Scholar
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognitive Science, vol. 8, pp. 293–332.Google Scholar
Chase, W. G., & Ericsson, K. A. (1981). Skilled memory. In Anderson, John R. (Ed.), Cognitive skills and their acquisition (pp. 141–189). Hillsdale, NJ: Erlbaum.Google Scholar
Chase, W. G., & Simon, H. A. (1973a). Skill in chess. American Scientist, vol. 61, pp. 394–403.Google Scholar
Chase, W. G., (1973b). The mind's eye in chess. In Chase, W. G. (Ed.), Visual information processing (pp. 215–281). New York: Academic Press.Google Scholar
Chauvet, J.-M., Deschamps, E. B., & Hillaire, C. (1996). Dawn of art: The Chauvet Cave. The oldest known paintings in the world. New York: Harry N. Abrams.Google Scholar
Chechik, G., Meilijson, I., & Ruppin, E. (1998). Synaptic pruning in development: A computational account. Neural Computation, vol. 10, pp. 1759–1777.CrossRefGoogle ScholarPubMed
Cheng, P. W., & Holyoak, K. J. (1985). Pragmatic reasoning schemas. Cognitive Psychology, vol. 17, pp. 391–416.CrossRefGoogle ScholarPubMed
Cheyney, E. P. (1924). Law in history. American Historical Review, vol. 29, pp. 231–248.CrossRefGoogle Scholar
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In Giere, R. N. (Ed.), Cognitive models of science (pp. 129–186). Minneapolis: University of Minnesota Press.Google Scholar
Chi, M. T. H. (1997). Creativity: Shifting across ontological categories flexibly. In Ward, T. B., Smith, S. M., & Vaid, J. (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 209–234). Washington, DC: American Psychological Association.Google Scholar
Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, vol. 14, pp. 161–199.CrossRefGoogle Scholar
Chi, M. T. H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In Vosniadou, S. (Ed.), Handbook of research on conceptual change (pp. 61–82). Hillsdale, NJ: Erlbaum.Google Scholar
Chi, M. T. H., & Brem, S. K. (2009). Contrasting Ohlsson's resubsumption theory with Chi's categorical shift theory. Educational Psychologist, vol. 44, pp. 58–63.CrossRefGoogle Scholar
Chi, M. T. H., Glaser, R., & Farr, M. (Eds.). (1988). The nature of expertise. Hillsdale, NJ: Erlbaum.
Chi, M. T. H., & Hausmann, R. G. M. (2003). Do radical discoveries require ontological shifts? In Shavinina, L.V. (Ed.), International handbook on innovation (vol. 3, pp. 430–444). Oxford, UK: Elsevier.Google Scholar
Chi, M. T. H., & Ohlsson, S. (2005). Complex declarative learning. In Holyoak, K. J. & Morrison, R. G. (Eds.), The Cambridge handbook of thinking and reasoning (pp. 371–399). Cambridge, UK: Cambridge University Press.Google Scholar
Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In Limón, M. & Mason, L. (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3–27). Dordrecht, the Netherlands: Kluwer.Google Scholar
Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T., & Hausmann, R. G. (2001). Learning from human tutoring. Cognitive Science, vol. 25, pp. 471–533.CrossRefGoogle Scholar
Chi, M. T. H., Slotta, J. D., & Leeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, vol. 4, pp. 27–43.CrossRefGoogle Scholar
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, vol. 63, pp. 1–49.CrossRefGoogle Scholar
Chipp, H. B. (1988). Picasso's “Guernica”: History, transformations, meanings. Berkeley: University of California Press.Google Scholar
Chomsky, N. (1957/1972). Syntactic structures. The Hague, the Netherlands: Mouton.Google Scholar
Chomsky, N. (1964). Current issues in linguistic theory. The Hague, the Netherlands: Mouton.Google Scholar
Chronicle, E. P., Ormerod, T. C., & MacGregor, J. N. (2001). When insight just won't come: The failure of visual cues in the nine-dot problem. Quarterly Journal of Experimental Psychology, vol. 54, pp. 903–919.CrossRefGoogle ScholarPubMed
Chronicle, E. P., MacGregor, J. N., & Ormerod, T. C. (2004). What makes an insight problem? The roles of heuristics, goal conception, and solution recoding in knowledge-lean problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 30, pp. 14–27.Google ScholarPubMed
Churchland, P. M. (1995). The engine of reason, the seat of the soul: A philosophical journey into the brain. Cambridge, MA: MIT Press.Google Scholar
Churchland, P. S. (1996). Toward a neurobiology of the mind. In Llinás, R. & Churchland, P. S. (Eds.), The mind-brain continuum: Sensory processes (pp. 281–303). Cambridge, MA: MIT Press.Google Scholar
Clagett, M. (1959). The science of mechanics in the Middle Ages. Madison: University of Wisconsin Press.Google Scholar
Clancey, W. J. (1985). Heuristic classification. Artificial Intelligence, vol. 27, pp. 289–350.CrossRefGoogle Scholar
Clancey, W. J. (1997). Situated cognition: On human knowledge and computer representations. Cambridge, UK: Cambridge University Press.Google Scholar
Clark, H. H. (1969). Linguistic processes in deductive reasoning. Psychological Review, vol. 76, pp. 387–404.CrossRefGoogle Scholar
Clement, J. (1982). Students' preconceptions in introductory mechanics. American Journal of Physics, vol. 50, pp. 66–71.CrossRefGoogle Scholar
Clottes, J., & Courtin, J. (1996). The cave beneath the sea: Paleolithic images at Cosquer. New York: Harry N. Abrams.Google Scholar
Cohen, E. A., & Gooch, J. (1991). Military misfortunes: The anatomy of failure in war. New York: Vintage.Google Scholar
Cohen, P. A., Kulik, J. A., & Kulik, C.-L. C. (1982). Educational outcomes of tutoring: A meta-analysis of findings. American Educational Research Journal, vol. 19, pp. 237–248.CrossRefGoogle Scholar
Cole, M., Engeström, Y., & Vasquez, O. (Eds.). (1997). Mind, culture, and activity: Seminal papers from the laboratory of comparative human cognition. Cambridge, UK: Cambridge University Press.
Colish, M. L. (1997). Medieval foundations of the Western intellectual tradition 400–1400. New Haven, CT: Yale University Press.Google Scholar
Collins, A. M., & Loftus, E. F. (1975). A spreading-activation theory of semantic processing. Psychological Review, vol. 82, pp. 407–428.CrossRefGoogle Scholar
Comins, N. F. (2001). Heavenly errors: Misconceptions about the real nature of the universe. New York: Columbia University Press.CrossRefGoogle Scholar
Commons, M. L., Trudeau, E. J., Stein, S. A., Richards, F. A., & Krause, S. R. (1998). Hierarchical complexity of tasks shows the existence of developmental stages. Developmental Review, vol. 18, pp. 237–278.CrossRefGoogle Scholar
Conway, F., & Siegelman, J. (2005). Dark hero of the information age: In search of Norbert Wiener, the father of cybernetics. New York: Basic Books.Google Scholar
Cooper, B. (1992). Beethoven and the creative process. Oxford, UK: Oxford University Press.Google Scholar
Cooper, R. P. (2006). Cognitive architectures as Lakatosian research programs: Two case studies. Philosophical Psychology, vol. 19, pp. 199–220.CrossRefGoogle Scholar
Corkill, A. J. (1992). Advance organizers: Facilitators of recall. Educational Psychology Review, vol. 4, pp. 33–67.CrossRefGoogle Scholar
Cornwell, J. (Ed.). (2004). Explanations: Styles of explanation in science. Oxford, UK: Oxford University Press.
Corrigan-Halpern, A. (2006). Feedback in complex learning: Considering the relationship between utility and processing demands. Doctoral dissertation. Chicago, IL: Department of Psychology, University of Illinois at Chicago.Google Scholar
Corrigan-Halpern, A., & Ohlsson, S. (2002). Feedback effects in the acquisition of a hierarchical skill. In Gray, W. D. & Schunn, C. D. (Eds.), Proceedings of the Twenty-Fourth Annual Conference of the Cognitive Science Society (pp. 226–231). Mahwah, NJ: Erlbaum.Google Scholar
Cosejo, D. G., Oesterreich, J., & Ohlsson, S. (2009). Re-categorization: Restructuring in categorization. Proceedings of the 31st Annual Meeting of the Cognitive Science Society (pp. 573–578). Amsterdam, the Netherlands, 29 July to 1 August, 2009.Google Scholar
Cosmides, L. (1989). The logic of social exchange: Has natural selection shaped how humans reason? Studies with the Wason selection task. Cognition, vol. 31, pp. 187–276.CrossRefGoogle ScholarPubMed
Costeau, J. Y. (1953). The silent world. New York: Harper & Brothers.Google Scholar
Costeau, J. Y. (1963). The living sea. New York: Harper & Row.Google Scholar
Costeau, J. Y. (1964). World without sun. New York: Harper & Row.Google Scholar
Cowan, R., & Jonard, N. (2003). The dynamics of collective invention. Journal of Economic Behavior & Organization, vol. 52, pp. 513–532.CrossRefGoogle Scholar
Cox, J. D. (2005). Climate crash: Abrupt climate change and what it means for our future. Washington, DC: Joseph Henry Press.Google Scholar
Crain, S., & Pietroski, P. (2002). Why language acquisition is a snap. Linguistic Review, vol. 19, pp. 163–183.Google Scholar
Crane, N. (2002). Mercator: The man who mapped the planet. New York: Henry Holt.Google Scholar
Crevier, D. (1993). AI: The tumultuous history of the search for artificial intelligence. New York: Basic Books.Google Scholar
Crockenberg, S. B. (1972). Creativity tests: A boon or boondoggle for education?Review of Educational Research, vol. 42, pp. 27–45.CrossRefGoogle Scholar
Crossman, E. R. F. (1959). A theory of the acquisition of speed-skill. Ergonomics, vol. 2, pp. 153–156.CrossRefGoogle Scholar
Crovitz, H. E. (1971). The capacity of memory loci in artificial memory. Psychonomic Science, vol. 24, pp. 187–188.CrossRefGoogle Scholar
Csikszentmihalyi, M. (1997). Creativity: Flow and the psychology of discovery and invention. New York: HarperCollins.Google Scholar
Cummins, R. (1975). Functional analysis. Journal of Philosophy, vol. 72, pp. 741–765.CrossRefGoogle Scholar
Cummins, R. (1983a). Analysis and subsumption in the behaviorism of Hull. Philosophy of Science, vol. 50, pp. 96–111.CrossRefGoogle Scholar
Cummins, R. (1983b). The nature of psychological explanation. Cambridge, MA: MIT Press.Google Scholar
Cummins, R. (2000). “How does it work?” versus “What are the laws?”: Two conceptions of psychological explanation. In Keil, F. C. & Wilson, R. A. (Eds.), Explanation and cognition (pp. 117–144). Cambridge, MA: MIT Press.Google Scholar
Cushing, J. T. (1991). Quantum theory and explanatory discourse: Endgame for understanding?Philosophy of Science, vol. 58, pp. 337–358.CrossRefGoogle Scholar
Cziko, G. (1995). Without miracles: Universal selection theory and the second Darwinian revolution. Cambridge, MA: MIT Press.Google Scholar
Dacey, J. S., & Lennon, K. H. (1998). Understanding creativity: The interplay of biological, psychological, and social factors. San Francisco, CA: Jossey-Bass.Google Scholar
D'Andrade, R. (1995). The development of cognitive anthropology. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Darden, L. (1992). Strategies for anomaly resolution. In Giere, R. N. (Ed.), Minnesota Studies in the Philosophy of Science (vol. 15): Cognitive models of science (pp. 251–273). Minneapolis: University of Minnesota Press.Google Scholar
Darwin, C. (1859/2004). The origin of species by means of natural selection. New York: Barnes & Noble Classics.Google Scholar
Davies, P. S. (2003). Norms of nature: Naturalism and the nature of functions. Cambridge, MA: MIT Press.Google Scholar
Davis, M. (Ed.). (1965/2004). The undecidable: Basic papers on undecidable propositions, unsolvable problems and computable functions. Mineola, NY: Dover.
Davis, R., Buchanan, B., & Shortliffe, E. (1977). Production rules as a representation for a knowledge-based consultation program. Artificial Intelligence, vol. 8, pp. 15–45.CrossRefGoogle Scholar
Davidson, D. (1990). The structure and content of truth. Journal of Philosophy, vol. 87, pp. 279–328.CrossRefGoogle Scholar
Dawkins, R. (1976). The selfish gene. New York: Oxford University Press.Google Scholar
Dawson-Tunik, T. L., Commons, M., Wilson, M., & Fischer, K. W. (2005). The shape of development. European Journal of Developmental Psychology, vol. 2, pp. 163–195.CrossRefGoogle Scholar
Deese, J. (1965). The structure of associations in language and thought. Baltimore, MD: Johns Hopkins University Press.Google Scholar
DeLatil, P. (1954). The underwater naturalist (Fitzgerald, E., Trans.). London: Jarrolds.Google Scholar
Delaney, P. F., Reder, L. M., Staszewski, J. J., & Ritter, F. E. (1998). The strategy-specific nature of improvement: The power law applies by strategy within task. Psychological Science, vol. 9, pp. 1–7.CrossRefGoogle Scholar
Demasters, S., Settlage, J., & Good, R. (1995). Students' conceptions of natural selection and its role in evolution: Cases of replication and comparison. Journal of Research in Science Teaching, vol. 32, pp. 535–550.CrossRefGoogle Scholar
Denbigh, K. G. (1989). The many faces of irreversibility. British Journal for the Philosophy of Science, vol. 40, pp. 501–518.CrossRefGoogle Scholar
DeSoto, D. B., London, M., & Handel, S. (1965). Social reasoning and spatial paralogic. Journal of Personality and Social Psychology, vol. 2, pp. 513–521.CrossRefGoogle Scholar
Detterman, D. K. (1993). The case for the prosecution: Transfer as epiphenomenon. In Detterman, D. K. & Sternberg, R. J. (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 1–24). Norwood, NJ: Ablex.Google Scholar
Detterman, D. K., & Sternberg, R. J. (Eds.). (1993). Transfer on trial: Intelligence, cognition, and instruction. Norwood, NJ: Ablex.
Dial, K. P. (2003). Wing-assisted incline running and the evolution of flight. Science, vol. 299, pp. 402–404.CrossRefGoogle ScholarPubMed
Diamond, J. (2005). Collapse: How societies choose to fail or succeed. London: Penguin Books.Google Scholar
Dickison, M. R. (2007). The allometry of giant flightless birds. Doctoral dissertation. Durham, NC: Department of Biology, Duke University.Google Scholar
Dispenza, J. (2007). Evolve your brain: The science of changing your mind. Deerfield Beach, FL: Health Communications.Google Scholar
DiVesta, F. J., & Walls, R. T. (1967). Transfer of object-function in problem solving. American Educational Research Journal, vol. 4, pp. 207–215.CrossRefGoogle Scholar
Dobzhansky, T. (1973). Nothing in biology makes sense except in the light of evolution. American Biology Teacher, vol. 35, pp. 125–129.CrossRefGoogle Scholar
Dole, J. A., & Sinatra, G. M. (1998). Reconceptualizing change in the cognitive construction of knowledge. Educational Psychologist, vol. 33, pp. 109–128.CrossRefGoogle Scholar
Dole, J. A., Valencia, S. W., Greer, E. A., & Wardrop, J. L. (1991). Effects of two types of prereading instruction on the comprehension of narrative and expository text. Reading Research Quarterly, vol. 26, pp. 142–159.CrossRefGoogle Scholar
Donald, M. (1991). Origins of the modern mind: Three stages in the evolution of culture and cognition. Cambridge, MA: Harvard University Press.Google Scholar
Donald, M. (2001). A mind so rare: The evolution of human consciousness. New York: Norton.Google Scholar
Donaldson, M. (1963). A study of children's thinking. London: Tavistock.Google Scholar
Donini, F. M., Lenzerini, M., Nardi, D., Pirri, F., & Schaerf, M. (1990). Nonmonotonic reasoning. Artificial Intelligence Review, vol. 4, pp. 163–210.CrossRefGoogle Scholar
Dorward, F. M. C., & Day, R. H. (1996). Loss of 3-D shape constancy in interior spaces: The basis of the Ames-room illusion. Perception, vol. 26, pp. 707–718.CrossRefGoogle Scholar
Douven, I. (2002). Testing inference to the best explanation. Synthese, vol. 130, pp. 355–377.CrossRefGoogle Scholar
Dretske, F. (1997). Naturalizing the mind. Cambridge, MA: MIT Press.Google Scholar
Dreyfus, A., Jungwirth, E., & Eliovitch, R. (1990). Applying the “cognitive conflict” strategy for conceptual change – some implications, difficulties and problems. Science Education, vol. 74, pp. 555–569.CrossRefGoogle Scholar
Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children's ideas in science. Milton Keynes, UK: Open University Press.
Dubos, R. J. (1976). Louis Pasteur: Free lance of science. New York: Charles Scribner's Sons.Google Scholar
Duffey, R. B., & Saull, J. W. (2003). Know the risk. Learning from errors and accidents: Safety and risk in today's technology. Burlington, MA: Elsevier Science.Google Scholar
Dugas, R. (1955/1988). A history of mechanics. New York: Dover.Google Scholar
Duhem, P. (1914/1991). The aim and structure of physical theory (Wiener, P. P., Trans.). Princeton, NJ: Princeton University Press.Google Scholar
Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 365–395). Cambridge, MA: MIT Press.Google Scholar
Dunbar, K. (1997). How scientists think: On-line creativity and conceptual change in science. In Ward, T. B., Smith, S. M. & Vaid, J. (Eds.), Creative thought: An investigation of conceptual structures and processes (pp. 461–493). Washington, DC: American Psychological Association.Google Scholar
Dunbar, K., & Blanchette, I. (2001). The in vivo/in vitro approach to cognition: The case of analogy. TRENDS in Cognitive Sciences, vol. 5, pp. 334–339.CrossRefGoogle ScholarPubMed
Dunbar, K. N., & Fugelsang, J. A. (2005). Causal thinking in science: How scientists and students interpret the unexpected. In Gorman, M. E., Tweney, R. D., Gooding, D. C., & Kincannon, A. P. (Eds.), Scientific and technological thinking (pp. 57–79). Mahwah, NJ: Erlbaum.Google Scholar
Duncker, K. (1935/1974). Zur Psychologie des produktiven Denkens (Dritter Neudruck). Berlin, Germany: Springer Verlag. [English version: Duncker, K. (1945). On problem-solving. Psychological Monographs, vol. 58, Whole No. 270.]Google Scholar
Durkin, H. E. (1937). Trial-and-error, gradual analysis, and sudden reorganization: An experimental study of problem solving. Archives of Psychology, vol. 30, pp. 1–85.Google Scholar
Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Belmont, CA: Thomson/Wadsworth.Google Scholar
Ebbing, D. D., & Wrighton, M. S. (1990). General chemistry (3rd ed.). Dallas, TX: Houghton Mifflin.Google Scholar
Ebbinghaus, H. (1885/1964). Memory: A contribution to experimental psychology. New York: Dover.Google Scholar
Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York: Basic Books.Google Scholar
Edmondson, A. C. (2004a). Learning from failure in health care: Frequent opportunities, pervasive barriers. Quality and Safety in Health Care, vol. 13 (supplement 2), pp. ii3–ii9.CrossRefGoogle ScholarPubMed
Edmondson, A. C. (2004b). Learning from mistakes is easier said than done: Group and organizational influences on the detection and correction of human error. Journal of Applied Behavioral Science, vol. 40, pp. 66–90.CrossRefGoogle Scholar
Einstein, A. (1934). On the method of theoretical physics. Philosophy of Science, vol. 1, pp. 163–169.CrossRefGoogle Scholar
Einstein, A., & Infeld, L. (1938). The evolution of physics: The growth of ideas from early concepts to relativity and quanta. New York: Simon & Schuster.Google Scholar
Egan, D. E., & Greeno, J. G. (1974). Theory of rule induction: Knowledge acquired in concept learning, serial pattern learning, and problem solving. In Gregg, L. W. (Ed.), Knowledge and cognition (pp. 43–103). Potomac, MD: Erlbaum.Google Scholar
Ehrlich, H. J., & Leed, D. (1969). Dogmatism, learning, and resistance to change: A review and a new paradigm. Psychological Bulletin, vol. 71, pp. 249–260.CrossRefGoogle Scholar
Eliasmith, C., & Thagard, P. (1997). Waves, particles, and explanatory coherence. British Journal for the Philosophy of Science, vol. 48, pp. 1–19.CrossRefGoogle Scholar
Eldredge, N. (1989). Time frames: The evolution of punctuated equilibria. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: An alternative to phyletic gradualism. In Schopf, T. J. M. (Ed.), Models in paleobiology (pp. 82–115). San Francisco, CA: Freeman, Cooper and Co. [Reprinted as Appendix to Eldredge (1989), pp. 193–223. Page references are to the reprinted version.]Google Scholar
Elio, R., & Scharf, P. B. (1990). Modeling novice-to-expert shifts in problem-solving strategy and knowledge organization. Cognitive Science, vol. 14, pp. 579–639.CrossRefGoogle Scholar
Ellis, W. D. (1967). A source book of Gestalt psychology. New York: Humanities Press.Google Scholar
Erdelyi, M. H. (1998). The recovery of unconscious memories: Hypermnesia and reminiscence. Chicago, IL: University of Chicago Press.Google Scholar
Erdoes, R. (1988). A.D. 1000: Living on the brink of apocalypse. New York: Barnes & Noble.Google Scholar
Ericsson, K.A. (1996). The road to excellence. Mahwah, NJ: Erlbaum.Google Scholar
Ericsson, K. A., Charness, N., Feltovich, P. J., & Hoffman, R. R. (Eds.). (2006). The Cambridge handbook of expertise and expert performance. Cambridge, UK: Cambridge University Press.CrossRef
Ericsson, K. A., Krampe, R. Th., & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, vol. 100, pp. 363–406.CrossRefGoogle Scholar
Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, vol. 47, pp. 273–305.CrossRefGoogle ScholarPubMed
Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis: Verbal reports as data. Cambridge, MA: MIT Press.Google Scholar
Ernst, G. W., & Newell, A. (1969). GPS: A case study in generality and problem solving. New York: Academic Press.Google Scholar
Eslinger, P. J., & Damasio, A. R. (1986). Preserved motor learning in Alzheimer's disease: Implications for anatomy and behavior. Journal of Neuroscience, vol. 6, pp. 3006–3009.CrossRefGoogle ScholarPubMed
Estes, W. K. (1950). Toward a statistical theory of learning. Psychological Review, vol. 57, pp. 94–107.CrossRefGoogle Scholar
Estes, W. K. (1956). The problem of inference from curves based on group data. Psychological Bulletin, vol. 53, pp. 134–140.CrossRefGoogle ScholarPubMed
Evans, J. St. B. T. (2007). Hypothetical thinking: Dual processes in reasoning and judgment. New York: Psychology Press.Google Scholar
Fagan, B. (2005). The long summer: How climate changed civilization (paperback ed.). New York: Basic Books.Google Scholar
Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The structure-mapping engine: Algorithm and examples. Artificial Intelligence, vol. 41, pp. 1–63.CrossRefGoogle Scholar
Feigenbaum, E. A. (1989). What hath Simon wrought? In Klahr, D. & Kotovsky, K. (Eds.), Complex information processing: The impact of Herbert A. Simon (pp. 165–182). Hillsdale, NJ: Erlbaum.Google Scholar
Feist, G. J. (1999). The influence of personality on artistic and scientific creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 273–296). Cambridge, UK: Cambridge University Press.Google Scholar
Felleman, D. J., & Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, vol. 1, pp. 1–47.CrossRefGoogle ScholarPubMed
Feltovich, P. J., Ford, K. M., & Hoffman, R. R. (Eds.). (1997). Expertise in context. Menlo Park, CA: AAAI Press.
Ferrari, M., & Chi, M. T. H. (1998). The nature of naïve explanations of natural selection. International Journal of Science Education, vol. 20, pp. 1231–1256.CrossRefGoogle Scholar
Festinger, L. (1957/1962). A theory of cognitive dissonance. Stanford, CA: Stanford University Press.Google Scholar
Feyerabend, P. (1975/1988). Against method (revised ed.). London, UK: Verso.Google Scholar
Fiehler, K., Ullsperger, M., & Cramon, D. Y. (2005). Electrophysiological correlates of error correction. Psychophysiology, vol. 42, pp. 72–82.CrossRefGoogle ScholarPubMed
Finke, R. A. (1989). Principles of mental imagery. Cambridge, MA: MIT Press.Google Scholar
Finke, R. A., Ward, T. B., & Smith, S. M. (1992). Creative cognition: Theory, research, and applications. Cambridge, MA: MIT Press.Google Scholar
Firth-Cozens, J. (2001). Cultures for improving patient safety through learning: The role of teamwork. Quality in Health Care, vol. 10 (supplement II), pp. ii26–ii31.Google ScholarPubMed
Fischer, I. (1975). Another look at Eratosthenes' and Posidonius' determinations of the Earth's circumference. Quarterly Journal of the Royal Astronomical Society, vol. 16, pp. 152–167.Google Scholar
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior. Reading, MA: Addison-Wesley.Google Scholar
Fitts, P. (1964). Perceptual-motor skill learning. In Melton, A. (Ed.), Categories of human learning (pp. 243–285). New York: Academic Press.Google Scholar
Flavell, J. H. (1963). The developmental psychology of Jean Piaget. New York: Van Nostrand Reinhold.CrossRefGoogle Scholar
Fleck, J. I. (2008). Working memory demands in insight versus analytical problem solving. European Journal of Cognitive Psychology, vol. 20, pp. 139–176.CrossRefGoogle Scholar
Fleck, J. I., & Weisberg, R. W. (2004). The use of verbal protocols as data: An analysis of insight in the candle problem. Memory & Cognition, vol. 32, pp. 990–1006.CrossRefGoogle ScholarPubMed
Fodor, J. A. (1968). Psychological explanation: An introduction to the philosophy of psychology. New York: Random House.Google Scholar
Fodor, J. A. (1976). The language of thought. Hassocks, UK: Harvester Press.Google Scholar
Fodor, J. A. (1983). The modularity of mind: An essay on faculty psychology. Cambridge, MA: MIT Press.Google Scholar
Fodor, J. A. (1997). Connectionism and the problem of systematicity (continued): Why Smolensky's solution still doesn't work. Cognition, vol. 62, pp. 109–119.CrossRefGoogle ScholarPubMed
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis. Cognition, vol. 28, pp. 3–71.CrossRefGoogle ScholarPubMed
Forbus, K. D., Gentner, D., & Law, K. (1994). MAC/FAC: A model of similarity-based retrieval. Cognitive Science, vol. 19, pp. 141–205.CrossRefGoogle Scholar
Ford, C. M. (1999). Interpretative style, motivation, ability and context as predictors of executives' creative performance. Creativity and Innovation Management, vol. 8, pp. 188–196.CrossRefGoogle Scholar
Ford, J. (1992). What is chaos, that we should be mindful of it? In Davies, P. (Ed.), The new physics (1st paperback ed., pp. 348–372). Cambridge, UK: Cambridge University Press.Google Scholar
Ford, M. (2005). Human nonmonotonic reasoning: The importance of seeing the logical strength of arguments. Synthese, vol. 146, pp. 71–92.CrossRefGoogle Scholar
Fortun, M., & Schweber, S. S. (1993). Scientists and the legacy of World War II: The case of operations research (OR). Social Studies of Science, vol. 23, pp. 595–642.CrossRefGoogle Scholar
Fossati, D., Di Eugenio, D., Brown, C., & Ohlsson, S. (2008). Learning linked lists: Experiments with the iList system. In Woolf, B. P., Aïmeur, E., Nkambou, R., & Lajoie, S. (Eds.), Intelligent tutoring systems (pp. 80–89). Berlin, Germany: Springer-Verlag.Google Scholar
Fossati, D., Di Eugenio, B., Brown, C., Ohlsson, S., Cosejo, D., & Chen, L. (2009). Supporting computer science curriculum: Exploring and learning linked lists with iList. IEEE Transactions on Learning Technologies, vol. 2, pp. 107–120.CrossRefGoogle Scholar
Foster, J. (2005). From simplistic to complex systems in economics. Cambridge Journal of Economics, vol. 29, pp. 873–892.CrossRefGoogle Scholar
Foster, K. R., Wenseleers, T., & Ratnieks, F. L. W. (2006). Kin selection is the key to altruism. Trends in Ecology and Evolution, vol. 21, pp. 57–60.CrossRefGoogle ScholarPubMed
Franzén, A. (1960). The warship Vasa: Deep diving and marine archeology in Stockholm. Stockholm, Sweden: Norstedt and Bonnier.Google Scholar
French, D. L., Laskov, R., & Scharff, M. D. (1989). The role of somatic hypermutation in the generation of antibody diversity. Science, vol. 244, pp. 1152–1157.CrossRefGoogle ScholarPubMed
Freud, A. (1946). The ego and the mechanisms of defence (Baines, C., Trans.). New York: International Universities Press.Google Scholar
Freud, S. (1923). The ego and the id (Riviere, J., Trans.). Standard Edition, vol. 19, pp. 3–66.
Friedman, M. (1974). Explanation and scientific understanding. Journal of Philosophy, vol. 71, pp. 5–19.CrossRefGoogle Scholar
Friedman, M. (1991). The re-evaluation of logical positivism. Journal of Philosophy, vol. 88, pp. 505–519.CrossRefGoogle Scholar
Fuchs-Beauchamp, K. D., Karnes, M. B., & Johnson, L. J. (1993). Creativity and intelligence in preschoolers. Gifted Child Quarterly, vol. 37, pp. 113–117.CrossRefGoogle Scholar
Fugelsang, J. A., Stein, C. B., Green, A. E., & Dunbar, K. N. (2004). Theory and data interactions of the scientific mind: Evidence from the molecular and the cognitive laboratory. Canadian Journal of Experimental Psychology, vol. 58, pp. 86–95.CrossRefGoogle ScholarPubMed
Furniss, T. (2005). A history of space exploration. London: Mercury Books.Google Scholar
Furth, H. G. (1968). Piaget's theory of knowledge: The nature of representation and interiorization. Psychological Review, vol. 75, pp. 143–154.CrossRefGoogle ScholarPubMed
Furth, H. G. (1969). Piaget and knowledge: Theoretical foundations. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Futuyma, D. J., & Moreno, G. (1988). The evolution of ecological specialization. Annual Review of Ecology and Systematics, vol. 19, pp. 207–233.CrossRefGoogle Scholar
Gabbay, D., & Woods, J. (2001). The new logic. Logic Journal of the Interest Group in Pure and Applied Logics, vol. 9, pp. 141–174.Google Scholar
Gaddis, J. L. (2002). The landscape of history: How historians map the past. New York: Oxford University Press.Google Scholar
Gagné, R. M. (1965). The conditions of learning. New York: Holt, Rinehart and Winston.Google Scholar
Gagné, R. M., Foster, H., & Crowley, M. (1948). The measurement of transfer of training. Psychological Bulletin, vol. 45, pp. 97–130.CrossRefGoogle ScholarPubMed
Galenson, D. W. (2006). Old masters and young geniuses: The two life cycles of artistic creativity. Princeton, NJ: Princeton University Press.Google Scholar
Galton, F. (1892/1962). Hereditary genius: An inquiry into its laws and consequences (2nd ed.). London: Collins/Fontana.Google Scholar
Gärdenfors, P. (1988). Knowledge in flux: Modeling the dynamics of epistemic states. Cambridge, MA: MIT Press.Google Scholar
Gardner, H. (1980). Artful scribbles: The significance of children's drawings. New York: Basic Books.Google Scholar
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.Google Scholar
Gardner, H. (1985). The mind's new science: A history of the cognitive revolution. New York: Basic Books.Google Scholar
Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham and Gandhi. New York: Basic Books.Google Scholar
Garzke, W. H., Foecke, T., Matthias, P., & Wood, D. (2000). A marine forensic analysis of the RMS Titanic. Proceedings of the OCEANS 2000 MTS/IEEE Conference and Exhibition, Providence, Rhode Island, September 11–14 (vol. 1, pp. 673–690).CrossRefGoogle Scholar
Gaskell, G. (Ed.). (2007). Oxford handbook of psycholinguistics. New York: Oxford University Press.CrossRef
Gaver, W. W. (1993). What in the world do we hear: An ecological approach to auditory event perception. Ecological Psychology, vol. 5, pp. 1–29.CrossRefGoogle Scholar
Gazzaniga, M. S. (1992). Nature's mind: The biological roots of thinking, emotions, sexuality, language, and intelligence. New York: Basic Books.Google Scholar
Gelman, R. (2000). The epigenesis of mathematical thinking. Journal of Applied Developmental Psychology, vol. 21, pp. 27–37.CrossRefGoogle Scholar
Gelman, R., & Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA: Harvard University Press.Google Scholar
Gelman, R., & Meck, E. (1983). Preschoolers' counting: Principles before skill. Cognition, vol. 13, pp. 343–359.CrossRefGoogle ScholarPubMed
Gelman, R., Meck, E., & Merkin, S. (1986). Young children's numerical competence. Cognitive Development, vol. 1, pp. 1–29.CrossRefGoogle Scholar
Gensler, W. J. (1987). Impossibilities in chemistry: Their rise, nature, and some great falls. In Davis, P. J. & Park, D. (Eds.), No way: The nature of the impossible (pp. 73–89). New York: Freeman.Google Scholar
Gentner, D. (1983). Structure-mapping: A theoretical framework for analogy. Cognitive Science, vol. 7, pp. 155–170.CrossRefGoogle Scholar
German, T. P., & Barrett, H. C. (2005). Functional fixedness in a technologically sparse culture. Psychological Science, vol. 16, pp. 1–5.CrossRefGoogle Scholar
Getzels, J. W. (1979). Problem finding: A theoretical note. Cognitive Science, vol. 3, pp. 167–172.CrossRefGoogle Scholar
Ghiselin, B. (Ed.). (1952). The creative process: A symposium. New York: New American Library.
Gibson, J. J. (1966). The senses considered as perceptual systems. New York: Houghton Mifflin.Google Scholar
Gibson, J. J. (1977). The theory of affordances. In Shaw, R. E. & Bransford, J. (Ed.), Perceiving, acting and knowing: Toward an ecological psychology (pp. 67–82). Hillsdale, NJ: Erlbaum.Google Scholar
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, vol. 12, pp. 306–355.CrossRefGoogle Scholar
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, vol. 15, pp. 1–38.CrossRefGoogle Scholar
Gies, F., & Gies, J. (1991). Life in a medieval village. New York: HarperCollins.Google Scholar
Gilbert, C. D. (1998). Adult cortical dynamics. Physiological Reviews, vol. 78, pp. 467–485.CrossRefGoogle ScholarPubMed
Gilbert, C. D., & Sigman, M. (2007). Brain states: Top-down influences in sensory processing. Neuron, vol. 54, pp. 677–696.CrossRefGoogle ScholarPubMed
Gilhooly, K. J., & Murphy, P. (2005). Differentiating insight from non-insight problems. Thinking and Reasoning, vol. 11, pp. 279–302.CrossRefGoogle Scholar
Gleick, J. (1987). Chaos: Making a new science. New York: Penguin Books.Google Scholar
Glick, J., & Wapner, S. (1968). Development of transitivity: Some findings and problems of analysis. Child Development, vol. 39, pp. 621–638.CrossRefGoogle Scholar
Glisky, E. L. (1992). Acquisition and transfer of declarative and procedural knowledge by memory-impaired patients: A computer data-entry task. Neuropsychologica, vol. 30, pp. 899–910.CrossRefGoogle ScholarPubMed
Glucksberg, S., & Weisberg, R. W. (1966). Verbal behavior and problem solving: Some effects of labeling in a functional fixedness problem. Journal of Experimental Psychology, vol. 71, pp. 659–664.CrossRefGoogle Scholar
Goddard, R. H. (1919). A method of reaching extreme altitudes. Smithsonian Miscellaneous Collections, vol. 71, no. 2. [Reprinted in Goddard, R. H. (2002). Rockets: Two classic papers (pp. xiii–80). New York: Dover.]Google Scholar
Goldfinch, S. (2000). Remaking New Zealand and Australian economic policy. Victoria, NZ: Victoria University Press.Google Scholar
Goldstein, E. B. (2008). Cognitive psychology: Connecting mind, research, and everyday experience (2nd ed.). Belmont, CA: Thomson Wadsworth.Google Scholar
Goldstone, R. L., & Sakamoto, Y. (2003). The transfer of abstract principles governing complex adaptive systems. Cognitive Psychology, vol. 46, pp. 414–466.CrossRefGoogle ScholarPubMed
Gollan, T. H., & Acenas, L.-A. R. (2004). What is a TOT? Cognate and translation effects on tip-of-the-tongue states in Spanish-English and Tagalog-English bilinguals. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 30, pp. 246–269.Google ScholarPubMed
Goodman, N. (1954/1983). Fact, fiction, and forecast (4th ed.). Cambridge, MA: Harvard University Press.Google Scholar
Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., & Kushnir, T. (2004). A theory of causal learning in children: Causal maps and Bayes nets. Psychological Review, vol. 111, pp. 3–32.CrossRefGoogle ScholarPubMed
Gopnik, A., & Meltzoff, A. N. (1997). Words, thoughts, and theories. Cambridge, MA: MIT Press.Google Scholar
Gopnik, A., & Wellman, H. M. (1994). The theory theory. In Hirschfeld, L. A. & Gelman, S. A. (Eds.), Mapping the mind: Domain specificity in cognition and culture (pp. 255–293). Cambridge, UK: Cambridge University Press.Google Scholar
Gould, S. J. (1986, November). Of kiwi eggs and the Liberty Bell. Natural History, vol. 90, pp. 20–29. [Reprinted in S. J. Gould (1991), Bully for Brontosaurus: Reflections in natural history (pp. 109–122). New York: Norton.]Google Scholar
Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.Google Scholar
Gödel, K. (1962/1992). On formally undecidable propositions of Principia Mathematica and related systems (Meltzer, B., Trans.). New York: Dover.Google Scholar
Graesser, A. C., Gernsbacher, M. A., & Goldman, S. R. (Ed.). (2003). Handbook of discourse processes. Mahwah, NJ: Erlbaum.
Graesser, A. C., Kassler, M. A., Kreuz, R. J., & McLain-Allen, B. (1998). Verification of statements about story worlds that deviate from normal conceptions of time: What is true about Einstein's Dreams?Cognitive Psychology, vol. 35, pp. 246–301.CrossRefGoogle ScholarPubMed
Graesser, A. C., Millis, K. K., & Zwaan, R. A. (1997). Discourse comprehension. Annual Review of Psychology, vol. 48, pp. 163–189.CrossRefGoogle ScholarPubMed
Grant, D. A., Hake, H. W., & Hornseth, J. P. (1951). Acquisition and extinction of a verbal conditioned response with differing percentages of reinforcement. Journal of Experimental Psychology, vol. 42, pp. 1–5.CrossRefGoogle Scholar
Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: An introduction to microstrategies and to their use in describing and predicting interactive behavior. Journal of Experimental Psychology: Applied, vol. 6, pp. 322–335.Google ScholarPubMed
Gray, W. D., Schoelles, M. J., & Sims, C. R. (2005). Adapting to the task environment: Explorations in expected value. Cognitive Systems Research, vol. 6, pp. 27–40.CrossRefGoogle Scholar
Greenaway, F. (1966). John Dalton and the atom. Ithaca, NY: Cornell University Press.Google Scholar
Greeno, J. G. (1974). Hobbits and orcs: Acquisition of a sequential concept. Cognitive Psychology, vol. 6, pp. 270–292.CrossRefGoogle Scholar
Greeno, J. G., & Berger, D. (1987, July). A model of functional knowledge and insight (Technical Report No. GK-1). Berkeley: University of California.Google Scholar
Greeno, J. G., & Moore, J. L. (1993). Situativity and symbols: Response to Vera and Simon. Cognitive Science, vol. 17, pp. 49–59.CrossRefGoogle Scholar
Greenwood, J. D. (1999). Understanding the “cognitive revolution” in psychology. Journal of the History of the Behavioral Sciences, vol. 35, pp. 1–22.3.0.CO;2-4>CrossRefGoogle Scholar
Gregory, T. R. (2008). The evolution of complex organs. Evolution: Education and Outreach, vol. 1, pp. 358–389.Google Scholar
Grent-‘t-Jong, T., & Woldorff, M. G. (2007). Timing and sequence of brain activity in top-down control of visual-spatial attention. Public Library of Science Biology, vol. 5, p. e12.Google ScholarPubMed
Grice, H. P. (1975). Logic and conversation. In Cole, P. & Morgan, J. L. (Eds.), Syntax and semantics (vol. 3): Speech acts (pp. 41–58). New York: Seminar. [Reprinted in Grice, P. (1989). Studies in the way of words (pp. 22–40). Cambridge, MA: Harvard University Press.]Google Scholar
Griffin, T., & Ohlsson, S. (2001). Beliefs versus knowledge: A necessary distinction for explaining, predicting, and assessing conceptual change. In Moore, J. D. & Stenning, K. (Eds.), Proceedings of the Twenty-Third Annual Conference of the Cognitive Science Society (pp. 364–369). Mahwah, NJ: Erlbaum.Google Scholar
Griffiths, P. E. (1993). Functional analysis and proper functions. British Journal for the Philosophy of Science, vol. 44, pp. 409–422.CrossRefGoogle Scholar
Griggs, R. A., & Osterman, L. J. (1980). Conversion errors in processing artificial set inclusions. Quarterly Journal of Experimental Psychology, vol. 32, pp. 241–246.CrossRefGoogle Scholar
Groner, R., Groner, M., & Bischof, W. F. (Eds.). (1983). Methods of heuristics. Hillsdale, NJ: Erlbaum.
Groopman, J. (2007). How doctors think. Boston, MA: Houghton Mifflin.Google Scholar
Grosser, M. (1962/1979). The discovery of Neptune. New York: Dover.Google Scholar
Gruber, H. E. (1974). Darwin on man: A psychological study of scientific creativity. London: Wildwood House.Google Scholar
Gruber, H. E. (1992). The evolving systems approach to creative work. In Wallace, D. B. & Gruber, H. E. (Eds.), Creative people at work: Twelve cognitive case studies (pp. 3–24). New York: Oxford University Press.Google Scholar
Gruber, H. E., & Wallace, D. B. (1999). The case study method and evolving systems approach for understanding unique creative people at work. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 93–115). Cambridge, UK: Cambridge University Press.Google Scholar
Hadamard, J. (1949/1954). An essay on the psychology of invention in the mathematical field (enlarged ed.). New York: Dover.Google Scholar
Hahlweg, K., & Hooker, C. A. (Eds.). (1989). Issues in evolutionary epistemology. Albany: State University of New York Press.
Haider, H., & Frensch, P. A. (2002). Why aggregated learning follows the power law of practice when individual learning does not: Comment on Rickard (1997, 1999), Delaney et al. (1998), and Palmeri (1999). Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 28, pp. 392–406.Google Scholar
Haith, M. M., Hazan, C., & Goodman, G. S. (1988). Expectation and anticipation of dynamic visual events by 3.5-month-old babies. Child Development, vol. 59, pp. 467–479.CrossRefGoogle ScholarPubMed
Hàjek, A., & Hall, N. (2002). Induction and probability. In Machamer, P. & Silberstein, M. (Eds.), The Blackwell guide to the philosophy of science (pp. 149–172). Cambridge, UK: Blackwell.Google Scholar
Hall, A. R. (1956). The scientific revolution 1500–1800: The formation of the modern scientific attitude. Boston, MA: Beacon Press.Google Scholar
Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, vol. 53, pp. 1056–1065.CrossRefGoogle Scholar
Hanke, D. (2004). Teleology: The explanation that bedevils biology. In Cornwell, J. (Ed.), Explanations: Styles of explanation in science (pp. 143–155). Oxford, UK: Oxford University Press.Google Scholar
Hanson, N. R. (1965). Patterns of discovery: An inquiry into the conceptual foundations of science. Cambridge, UK: Cambridge University Press.Google Scholar
Harman, G. H. (1965). The inference to the best explanation. Philosophical Review, vol. 74, pp. 88–95.CrossRefGoogle Scholar
Harman, G. H. (1968). Enumerative induction as inference to the best explanation. Journal of Philosophy, vol. 65, pp. 529–533.CrossRefGoogle Scholar
Harman, P. M. (2001). The natural philosophy of James Clerk Maxwell. New York: Cambridge University Press.Google Scholar
Harmon-Jones, E., & Mills, J. (1999). Cognitive dissonance: Progress on a pivotal theory in social psychology. Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Harris, M. (1968). The rise of anthropological theory: A history of theories of culture. New York: Thomas Y. Crowell.Google Scholar
Hartmann, H. (1958). Ego psychology and the problem of adaptation (Rapaport, D., Trans.). New York: International University Press.CrossRefGoogle Scholar
Haskell, R. E. (2001). Transfer of learning: Cognition, instruction, and reasoning. New York: Academic Press.CrossRefGoogle Scholar
Hayes, J. R., & Simon, H. A. (1974). Understanding written problem instructions. In Gregg, L. W. (Ed.), Knowledge and cognition (pp. 167–200). Potomac, MD: Erlbaum.Google Scholar
Heathcote, A., Brown, S., & Mewhort, D. J. K. (2000). The power law repealed: The case for an exponential law of practice. Psychonomic Bulletin & Review, vol. 7, pp. 185–207.CrossRefGoogle Scholar
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.Google Scholar
Hebb, D. O. (1963). The semiautonomous process: Its nature and nurture. American Psychologist, vol. 18, pp. 16–27.CrossRefGoogle Scholar
Heckhausen, H., & Beckmann, J. (1990). Intentional action and action slips. Psychological Review, vol. 97, pp. 36–48.CrossRefGoogle Scholar
Heims, S. J. (1991). The cybernetics group. Cambridge, MA: MIT Press.Google Scholar
Hempel, C. G. (1959). The logic of functional analysis. In Gross, L. (Ed.), Symposium on sociological theory (pp. 271–307). New York: Harper & Row. [Reprinted in C. G. Hempel (1965), Aspects of scientific explanation and other essays in the philosophy of science (pp. 297–330). New York: Free Press.]Google Scholar
Hempel, C. G., & Oppenheim, P. (1948). Studies in the logic of explanation. Philosophy of Science, vol. 15, pp. 135–175.CrossRefGoogle Scholar
Henle, M. (1962). On the relation between logic and thinking. Psychological Review, vol. 69, pp. 366–378.CrossRefGoogle ScholarPubMed
Henry, J. (2002). The scientific revolution and the origins of modern science (2nd ed.). New York: Palgrave.Google Scholar
Herrnstein, R. J., & Murray, C. (1994). The bell curve: Intelligence and class structure in American life. New York: Free Press.Google Scholar
Hertzmann, E. (1957). Mozart's creative process. Musical Quarterly, vol. 43, pp. 187–200.CrossRefGoogle Scholar
Hewson, P. W., & Hewson, M. G. A. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, vol. 13, pp. 1–13.CrossRefGoogle Scholar
Hiebert, J. (Ed.). (1986). Conceptual and procedural knowledge: The case of mathematics. Hillsdale, NJ: Erlbaum.
Higbee, K. L. (1979). Recent research on visual mnemonics: Historical roots and educational fruits. Review of Educational Research, vol. 49, pp. 611–629.CrossRefGoogle Scholar
Hilgard, E. R., & Bower, G. H. (1966). Theories of learning (3rd ed.). New York: Appleton-Century-Crofts.Google Scholar
Hillier, J. (1992). Electron microscopy and the microprobe analysis: Recalling the ambience of some inventions. In Weber, R. J. & Perkins, D. N. (Eds.), Inventive minds: Creativity in technology (pp. 97–114). New York: Oxford University Press.Google Scholar
Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, vol. 1, pp. 495–502.Google Scholar
Hoadley, C. M., Ranney, M., & Schank, P. (1994). WanderECHO: A connectionist simulation of limited coherence. In Ram, A. & Eiselt, K. (Eds.), Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society (pp. 421–426). Hillsdale, NJ: Erlbaum.Google Scholar
Hocevar, D. (1980). Intelligence, divergent thinking, and creativity. Intelligence, vol. 4, pp. 25–40.CrossRefGoogle Scholar
Hocevar, D. (1981). Measurement of creativity: Review and critique. Journal of Personality Assessment, vol. 45, pp. 450–464.CrossRefGoogle ScholarPubMed
Hodges, A. (1983). Alan Turing: The Enigma. New York: Simon & Schuster.Google Scholar
Hodgson, G. M. (1996). Economics and evolution: Bringing life back into economics. Ann Arbor: University of Michigan Press.Google Scholar
Hoffman, J., Berner, M., Butz, M. V., Herbort, O., Kiesel, A., Kunde, W., & Lenhard, A. (2007). Explorations of anticipatory behavioral control (ABC): A report from the cognitive psychology unit of the University of Würzburg. Cognitive Processing, vol. 8, pp. 133–142.CrossRefGoogle Scholar
Hoffman, R. R., & Deffenbacher, K. A. (1992). A brief history of applied cognitive psychology. Applied Cognitive Psychology, vol. 6, pp. 1–48.CrossRefGoogle Scholar
Hofstadter, D. (1999). Gödel, Escher, Bach: An eternal golden braid. New York: Basic Books.Google Scholar
Holding, D. H. (1985). The psychology of chess skill. Hillsdale, NJ: Erlbaum.Google Scholar
Holland, J. H. (1998). Emergence: From chaos to order. Reading, MA: Addison-Wesley.Google Scholar
Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986). Induction: Processes of inference, learning, and discovery. Cambridge, MA: MIT Press.Google Scholar
Holmes, F. L. (1992). Antoine Lavoisier and Hans Krebs: Two styles of scientific creativity. In Wallace, D. B. and Gruber, H. E. (Eds.), Creative people at work: Twelve cognitive case studies (pp. 44–68). New York: Oxford University Press.Google Scholar
Holmes, J. G. (2002). Interpersonal expectations as the building blocks of social cognition: An interdependence theory perspective. Personal Relations, vol. 9, pp. 1–26.CrossRefGoogle Scholar
Holyoak, K. J., & Thagard, P. R. (1989a). A computational model of analogical problem solving. In Vosniadou, S. & Ortony, A. (Eds.), Similarity and analogical reasoning (pp. 242–266). Cambridge, UK: Cambridge University Press.Google Scholar
Holyoak, K. J., (1989b). Analogical mapping by constraint satisfaction. Cognitive Science, vol. 13, pp. 295–355.CrossRefGoogle Scholar
Homberg, U. (2004). In search of the sky compass in the insect brain. Naturwissenschaften, vol. 91, pp. 199–208.CrossRefGoogle ScholarPubMed
Horai, S., Hayasaka, K., Kondo, R., Tsugane, K., & Takahata, N. (1995). Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proceedings of the National Academy of Science USA, vol. 92, pp. 532–536.CrossRefGoogle ScholarPubMed
Hough, S. E. (2004). Earthshaking science: What we know (and don't know) about earthquakes. Princeton, NJ: Princeton University Press.Google Scholar
Howe, M. J. A. (1996). The childhoods and early lives of geniuses: Combining psychological and biographical evidence. In Ericsson, K. A. (Ed.), The road to excellence: The acquisition of expert performance in arts and sciences, sports, and games (pp. 255–270). Mahwah, NJ: Erlbaum.Google Scholar
Hsiao, H. S. (1972). The attraction of moths (Trichoplusia ni) to infrared radiation. Journal of Insect Physiology, vol. 18, pp. 1705–1714.CrossRefGoogle Scholar
Hsiao, H. S. (1973). Flight paths of night-flying moths to light. Journal of Insect Physiology, vol. 19, pp. 1971–1976.CrossRefGoogle Scholar
Hua, J. Y., & Smith, S. J. (2004). Neural activity and the dynamics of central nervous system development. Nature Neuroscience, vol. 7, pp. 327–332.CrossRefGoogle ScholarPubMed
Hughes, G., & Cresswell, M. (1996). A new introduction to modal logic. London, UK: Routledge.CrossRefGoogle Scholar
Hull, D. L. (1990). Science as a process: An evolutionary account of the social and conceptual development of science. Chicago, IL: University of Chicago Press.Google Scholar
Hull, D. L. (2001). Science and selection: Essays on biological evolution and the philosophy of science. Cambridge, UK: Cambridge University Press.Google Scholar
Hume, D. (1777/1910). An enquiry concerning human understanding (Eliot, Charles W., Ed.). Harvard Classics (vol. 37, pp. 289–420). New York: Collier. Available at http://18th.eserver.org/hume-enquiry.html#6.CrossRefGoogle Scholar
Hummel, J. E., & Holyoak, K. J. (1997). Distributed representations of structure: A theory of analogical access and mapping. Psychological Review, vol. 104, pp. 427–466.CrossRefGoogle Scholar
Hummel, J. E., (2003). A symbolic-connectionist theory of relational inference and generalization. Psychological Review, vol. 110, pp. 220–264.CrossRefGoogle ScholarPubMed
Hunt, E. B. (1962). Concept learning: An information processing problem. New York: John Wiley.CrossRefGoogle Scholar
Hunter, I. M. L. (1957). The solving of three-term series problems. British Journal of Psychology, vol. 48, pp. 286–298.CrossRefGoogle ScholarPubMed
Hurley, P. J. (2006). A concise introduction to logic (9th ed.). New York: Thomson-Wadsworth.Google Scholar
Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.Google Scholar
Huttenlocher, J. (1968). Constructing spatial images: A strategy in reasoning. Psychological Review, vol. 75, pp. 550–560.CrossRefGoogle Scholar
Huttenlocher, P. R., Courten, C., Garey, L. J., & Loos, H. (1982). Synaptogenesis in human visual cortex – Evidence for synapse elimination during normal development. Neuroscience Letters, vol. 33, pp. 247–252.CrossRefGoogle ScholarPubMed
Imbrie, J., & Imbrie, K. P. (2002). Ice ages: Solving the mystery (revised ed.). Cambridge, MA: Harvard University PressGoogle Scholar
Inhelder, B., & Piaget, J. (1964). The early growth of logic in the child: Classification and seriation. London, UK: Routledge.Google Scholar
Isaak, M. I., & Just, M. A. (1995). Constraints on thinking in insight and invention. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 281–325). Cambridge, MA: MIT Press.Google Scholar
Jack, A. I., & Roepstorff, A. (2002). Instrospection and cognitive brain mapping: From stimulus-response to script-report. TRENDS in the Cognitive Sciences, vol. 6, pp. 333–339.CrossRefGoogle ScholarPubMed
Jacks, J. Z., & Cameron, K. A. (2003). Strategies for resisting persuasion. Basic and Applied Social Psychology, vol. 25, pp. 145–161.CrossRefGoogle Scholar
Jahn, G. (2004). Tree turtles in danger: Spontaneous construction of causally relevant spatial situation models. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 30, pp. 969–987.Google Scholar
James, W. (1890). The principles of psychology (vols. 1 and 2). London: MacMillan.Google Scholar
James, W. (1907/1975). Pragmatism. Cambridge, MA: Harvard University Press.Google Scholar
Janoff-Bulman, R. (1992). Shattered assumptions: Towards a new psychology of trauma. New York: Free Press.Google Scholar
Jansen, M. B. (2000). The making of modern Japan. Cambridge, MA: Harvard University Press.Google Scholar
Jay, E. S., & Perkins, D. N. (1997). Problem finding: The search for mechanism. In Runco, M. A. (Ed.), Creativity research handbook (vol. 1, pp. 257–293). Cresskill, NJ: Hampton Press.Google Scholar
Jensen, M. S., & Finely, F. N. (1995). Teaching evolution using historical arguments in a conceptual change strategy. Science Education, vol. 79, pp. 147–166.CrossRefGoogle Scholar
Jerne, N. K. (1967). Antibodies and learning: Selection versus instruction. In Quarton, G. C., Melnechuk, T., & Schmitt, F. O. (Eds.), The neurosciences: A study program (pp. 200–205). New York: Rockefeller University Press.Google Scholar
John-Steiner, V. (2000). Creative collaboration. New York: Oxford University Press.Google Scholar
Johnson, A., Moher, T., Ohlsson, S., & Gillingham, M. (1999). The Round Earth Project: Collaborative VR for conceptual learning. IEEE Computer Graphics and Applications, vol. 19, pp. 60–69.CrossRefGoogle Scholar
Johnson, A., Moher, T., Ohlsson, S., & Leigh, J. (2001). Exploring multiple representations in elementary school science education (pp. 201–208). Proceedings of the IEEE VR 2001 Conference, March 13–17, Yokohama, Japan.CrossRef
Johnson, S. (2004). Emergence: The connected lives of ants, brains, cities, and software. New York: Scribner.Google Scholar
Johnson, S. (2006). The ghost map: The story of London's most terrifying epidemic – and how it changed science, cities, and the modern world. New York: Riverhead Books.Google Scholar
Johnson, W. L. (1986). Intention-based diagnosis of novice programming errors. Los Altos, CA: Morgan Kauffmann.Google Scholar
Johnson-Frey, S. H. (2004). The neural bases of complex tool use in humans. TRENDS in Cognitive Sciences, vol. 8, pp. 71–78.CrossRefGoogle ScholarPubMed
Johnson-Laird, P. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.Google Scholar
Johnson-Laird, P. N. (1999). Deductive reasoning. Annual Review of Psychology, vol. 50, pp. 109–135.CrossRefGoogle ScholarPubMed
Johnson-Laird, P. N. (2006). How we reason. New York: Oxford University Press.Google Scholar
Jones, R. M., & VanLehn, K. (1994). Acquisition of children's addition strategies: A model of impasse-free, knowledge-level learning. Machine Learning, vol. 16, pp. 11–36.CrossRefGoogle Scholar
Jones, T. (2004). Reductionism and antireductionism: Rights and wrongs. Metaphilosophy, vol. 35, pp. 614–647.CrossRefGoogle Scholar
Joravsky, D. (1986). The Lysenko affair. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Josephson, J. R., & Josephson, S. G. (Eds.). (1994). Abductive inference: Computation, philosophy, technology. Cambridge, UK: Cambridge University Press.CrossRef
Jovanovic, B., & Nyarko, Y. (1995). A Bayesian learning model fitted to a variety of empirical learning curves. Brookings Papers on Economic Activity: Microeconomics, vol. 1995, pp. 247–305.CrossRefGoogle Scholar
Jung-Beeman, M., Bowden, E. M., Haberman, J., Frymiare, J. L., Arambel-Liu, S., Greenblattt, R., Reber, P. J., & Kounios, J. (2004). Neural activity when people solve verbal problems with insight. Public Library of Science Biology, vol. 2, pp. 500–510. Available at http://biology.plosjournals.org.Google ScholarPubMed
Just, M. A., Carpenter, P. A., & Varma, S. (1999). Computational modeling of high-level cognition and brain function. Human Brain Mapping, vol. 8, pp. 128–136.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Just, M. A., & Varma, S. (2007). The organization of thinking: What functional brain imaging reveals about the neuroarchitecture of complex cognition. Cognitive, Affective & Behavioral Neuroscience, vol. 7, pp. 153–191.CrossRefGoogle ScholarPubMed
Kahn, D. (1998). Seizing the Enigma: The race to break the German U-boat codes 1939–1943. New York: Barnes and Noble.Google Scholar
Kaplan, C. A. (1989). Hatching a theory of incubation: Does putting a problem aside really help? If so, why? Doctoral dissertation. Pittsburgh, PA: Department of Psychology, Carnegie-Mellon University.Google Scholar
Kaplan, C. A., & Simon, H.A. (1990). In search of insight. Cognitive Psychology, vol. 22, pp. 374–419.CrossRefGoogle Scholar
Kaufmann, G. (2003). What to measure? A new look at the concept of creativity. Scandinavian Journal of Educational Research, vol. 47, pp. 235–251.CrossRefGoogle Scholar
Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. New York: Oxford University Press.Google Scholar
Kay, H. (1951). Learning of a serial task by different age groups. Quarterly Journal of Experimental Psychology, vol. 3, pp. 166–183.CrossRefGoogle Scholar
Keane, M. (1989). Modelling problem solving in Gestalt ‘insight’ problems. Irish Journal of Psychology, vol. 10, pp. 201–215.CrossRefGoogle Scholar
Keane, M. T., Ledgeway, T., & Duff, S. (1994). Constraints on analogical mapping: A comparison of three models. Cognitive Science, vol. 18, pp. 387–338.CrossRefGoogle Scholar
Keeley, L. H. (1997). War before civilization. New York: Oxford University Press.Google Scholar
Keil, F. C. (1979). Semantic and conceptual development: An ontological perspective. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Keil, F. C., & Wilson, R. A. (Ed.). (2000). Explanation and cognition. Cambridge, MA: MIT Press.
Keller, F. S. (1958). The phantom plateau. Journal of the Experimental Analysis of Behavior, vol. 1, pp. 1–13.CrossRefGoogle ScholarPubMed
Kelman, H. C., & Baron, R. M. (1968). Determinants of modes of resolving inconsistency dilemmas: A functional analysis. In Abelson, R. P., Aronson, E., McGuire, W. J., Newcomb, T. M., Rosenberg, M. J., & Tannenbaum, P. H. (Eds.), Theories of cognitive consistency: A sourcebook (pp. 670–683). Chicago, IL: Rand McNally.Google Scholar
Kennedy, W. G., & Trafton, J. G. (2007). Long-term symbolic learning. Cognitive Systems Research, vol. 8, pp. 237–247.CrossRefGoogle Scholar
Kershaw, T., & Ohlsson, S. (2004). Multiple causes of difficulty in insight: The case of the nine-dot problem. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 30, pp. 3–13.Google ScholarPubMed
Kieras, D., & Bovair, S. (1986). The acquisition of procedures from text: A production-system analysis of transfer of training. Journal of Memory and Language, vol. 25, pp. 507–524.CrossRefGoogle Scholar
Kiesler, C. A., Collins, B. E., & Miller, N. (Eds.). (1969). Attitude change: A critical analysis of theoretical approaches. New York: Wiley.
Kilmurray, E., & Ormond, R. (Eds.). (1998). John Singer Sargent. Princeton, NJ: Princeton University Press.
Kim, K. H. (2005). Can only intelligent people be creative?Journal of Secondary Gifted Education, vol. 16, pp. 57–66.CrossRefGoogle Scholar
King, R. (2007). The judgment of Paris: The revolutionary decade that gave the world impressionism. New York: Walker.Google Scholar
Kingsolver, J. G., & Koehl, M. A. (1985). Aerodynamics, thermoregulation, and the evolution of insect wings: Differential scaling and evolutionary change. Evolution, vol. 39, pp. 488–504.CrossRefGoogle ScholarPubMed
Kintsch, W. (1988). The role of knowledge in discourse comprehension: A construction-integration model. Psychological Review, vol. 95, pp. 163–182.CrossRefGoogle ScholarPubMed
Kintsch, W. (1998). Comprehension: A paradigm for cognition. Cambridge, UK: Cambridge University Press.Google Scholar
Kirkham, R. L. (1992). Theories of truth: A critical introduction. Cambridge, MA: MIT Press.Google Scholar
Kitcher, P. (1988). Explanatory unification. In Pitt, J. C. (Ed.), Theories of explanation (pp. 167–187). New York: Oxford University Press.Google Scholar
Kitcher, P. (1993). The advancement of science. New York: Oxford University Press.Google Scholar
Klahr, D., Langley, P., & Neches, R. (Eds.). (1987). Production system models of learning and development. Cambridge, MA: MIT Press.
Klahr, D., & Wallace, J. G. (1976). Cognitive development: An information processing view. Hillsdale, NJ: Erlbaum.Google Scholar
Klein, K., & Fiss, W. H. (1999). The reliability and stability of the Turner and Engle working memory task. Behavioral Research Methods, Instruments, and Computers, vol. 31, pp. 429–432.CrossRefGoogle ScholarPubMed
Kneale, W., & Kneale, M. (1962/1984). The development of logic. Oxford, UK: Clarendon Press.Google Scholar
Knoblich, G., Ohlsson, S., Haider, H., & Rhenius, D. (1999). Constraint relaxation and chunk decomposition in insight problem solving. Journal of Experimental Psychology: Learning, Memory & Cognition, vol. 25, pp. 1534–1555.Google Scholar
Knoblich, G., Ohlsson, S., & Raney, G. (2001). An eye movement study of insight problem solving. Memory and Cognition, vol. 29, p. 1000–1009.CrossRefGoogle ScholarPubMed
Koestler, A. (1964). The act of creation. New York: Macmillan.Google Scholar
Koestler, A. (1966). Biological and mental evolution – An exercise in analogy. In Oehser, P. H. (Ed.), Knowledge among men (pp. 95–107). New York: Simon & Schuster and the Smithsonian Institution.Google Scholar
Koestler, A. (1972). Beyond atomism and holism – the concept of the holon. In Koestler, A. & Smythies, J. R. (Eds.), Beyond reductionism: New perspectives in the life sciences (pp. 192–232). London, UK: Hutchinson.Google Scholar
Koffka, K. (1922). Perception: An introduction to the Gestalt-theorie. Psychological Bulletin, vol. 19, pp. 531–585.CrossRefGoogle Scholar
Koffka, K. (1935). Principles of Gestalt psychology. London, UK: Routledge & Kegan Paul.Google Scholar
Köhler, W. (1924). Die physischen Gestalten in Ruhe and im stationären Zustand: Eine naturphilosophische Untersuchung. Erlangen, Germany: Verlag der Philosophischen Akademie.Google Scholar
Köhler, W. (1972). The task of Gestalt psychology. Princeton, NJ: Princeton University Press.Google Scholar
Köhler, W. (1976). The place of value in a world of facts. New York: Liveright.Google Scholar
Konradt, U. (1995). Strategies of failure diagnosis in computer-controlled manufacturing systems: Empirical analysis and implications for the design of adaptive decision support systems. International Journal of Human-Computer Interaction, vol. 43, pp. 503–521.Google Scholar
Kornblith, H. (Ed.). (1985). Naturalizing epistemology. Cambridge, MA: MIT Press.
Kornblith, H. (1995). Inductive inference and its natural ground: An essay in naturalistic epistemology. Cambridge, MA: MIT Press.Google Scholar
Kosslyn, S. M. (1980). Image and mind. Cambridge, UK: Harvard University Press.Google Scholar
Kounios, J., Frymiare, J. L, Bowden, E. M., Fleck, J. I., Subramaniam, K., Parrish, T. B., & Jung-Beeman, M. (2006). The prepared mind: Neural activity prior to problem presentation predicts subsequent solution by sudden insight. Psychological Science, vol. 17, pp. 882–890.CrossRefGoogle ScholarPubMed
Koyré, A. (1950). The significance of the Newtonian synthesis. Archives Internationales d'Historie des Sciences, vol. 3, pp. 291–311. [Reprinted in Koyré, A. (1968). Newtonian studies (pp. 3–24). Chicago, IL: University of Chicago Press.]Google Scholar
Koyré, A. (1958). From the closed world to the infinite universe. New York: Harper & Row.Google Scholar
Kragh, H. (2000). Conceptual changes in chemistry: The notion of a chemical element, ca. 1900–1925. Studies in the History and Philosophy of Modern Physics, vol. 31, pp. 435–450.CrossRefGoogle Scholar
Kretzmann, N., Kenny, A., & Pinborg, J. (Eds.). (1988). The Cambridge history of later medieval philosophy. New York: Cambridge University Press.
Kuhn, D. (1989). Children and adults as intuitive scientists. Psychological Review, vol. 96, pp 674–689.CrossRefGoogle ScholarPubMed
Kuhn, D. (1995). Microgenetic study of change: What has it told us?Psychological Science, vol. 6, pp. 133–139.CrossRefGoogle Scholar
Kuhn, T. S. (1957). The Copernican revolution: Planetary astronomy in the development of Western thought. New York: Random House.Google Scholar
Kuhn, T. S. (1970). The structure of scientific revolutions (2nd ed.). Chicago, IL: University of Chicago Press.Google Scholar
Kuhn, T. S. (1977). The essential tension: Selected studies in scientific tradition and change. Chicago, IL: University of Chicago Press.Google Scholar
Kunej, D., & Turk, I. (2000). New perspectives on the beginnings of music: Archeological and musicological analysis of a middle paleolithic bone “flute.” In Wallin, N., Merker, B., & Brown, S. (Eds.), The origins of music (p. 235–268). Cambridge, MA: MIT Press.Google Scholar
Kuran, T. (1995). The inevitability of future revolutionary surprises. American Journal of Sociology, vol. 100, pp. 1528–1551.CrossRefGoogle Scholar
Kvarning, L. A., & Ohrelius, B. (1992). The Swedish warship Wasa. New York: Macmillan.Google Scholar
Lacey, R., & Danziger, D. (1999). The year 1000: What life was like at the turn of the first millennium. Boston, MA: Little, Brown.Google Scholar
Laird, J. E., & Newell, A. (1993). A universal weak method. In Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.), The Soar papers: Research on integrated intelligence (vol. 1, pp. 245–292). Cambridge, MA: MIT Press.Google Scholar
Lajoie, S. P., & Lesgold, A. M. (1992). Dynamic assessment of proficiency for solving procedural knowledge tasks. Educational Psychologist, vol. 27, pp. 365–384.CrossRefGoogle Scholar
Lakatos, I. (1980). Philosophical papers (vol. 1): The methodology of scientific research programmes. Cambridge, UK: Cambridge University Press.Google Scholar
Lambert, E. B. (2005). Children's drawing and painting from a cognitive perspective: A longitudinal study. Early Years, vol. 25, pp. 249–269.CrossRefGoogle Scholar
Lane, N. E. (1987). Skill acquisition rates and patterns: Issues and training implications. New York: Springer-Verlag.CrossRefGoogle Scholar
Langley, P. (1983). Learning search strategies through discrimination. International Journal of Man-Machine Studies, vol. 18, pp. 513–541.CrossRefGoogle Scholar
Langley, P. (1985). Learning to search: From weak methods to domain-specific heuristics. Cognitive Science, vol. 9, pp. 217–260.CrossRefGoogle Scholar
Langley, P. (1987). A general theory of discrimination learning. In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and development (pp. 99–161). Cambridge, MA: MIT Press.Google Scholar
Langley, P., & Jones, R. (1988). A computational model of scientific insight. In Sternberg, R. J. (Ed.), The nature of creativity: Contemporary psychological approaches (pp. 177–201). Cambridge, UK: Cambridge University Press.Google Scholar
Langley, P., Wogulis, J., & Ohlsson, S. (1990). Rules and principles in cognitive diagnosis. In Frederiksen, N., Glaser, R., Lesgold, A., & Shafto, M. (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 217–250). Hillsdale, NJ: Erlbaum.Google Scholar
Larkin, J. H. (1981). Enriching formal knowledge: A model for learning to solve textbook physics problems. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition (pp. 311–334). Hillsdale, NJ: Erlbaum.Google Scholar
Larson, J. R. (1997). Modeling the entry of shared and unshared information into group discussion: A review and basic language computer program. Small Group Research, vol. 28, pp. 454–479.CrossRefGoogle Scholar
Larson, J. R. (1998). Diagnosing groups: The pooling, management, and impact of shared and unshared case information in team-based medical decision making. Journal of Personality and Social Psychology, vol. 75, pp. 93–108.CrossRefGoogle ScholarPubMed
Larson, J. R. (2010). In search of synergy in small group performance. New York: Psychology Press.Google Scholar
Larson, J. R., Christensen, C., Franz, T. M., & Abbott, A. S. (1998). Diagnosing groups: The pooling, management, and impact of shared and unshared case information in team-based medical decision making. Journal of Personality and Social Psychology, vol. 75, pp. 93–108.CrossRefGoogle ScholarPubMed
Larson, J. R., Foster-Fishman, P. G., & Keys, C. B. (1994). Discussion of shared and unshared information in decision-making groups. Journal of Personality and Social Psychology, vol. 67, p. 446–461.CrossRefGoogle Scholar
Lashley, K. S. (1929). Brain mechanisms and intelligence: A quantitative study of injuries to the brain. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Laughlin, R. B. (2005). A different universe: Reinventing physics from the bottom down. New York: Basic Books.Google Scholar
Laurence, S., & Margolis, E. (2001). The poverty of the stimulus argument. British Journal of the Philosophy of Science, vol. 52, pp. 217–276.CrossRefGoogle Scholar
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Lawson, A., & Thompson, L. (1988). Formal reasoning ability and misconceptions concerning genetics and natural selection. Journal of Research in Science Teaching, vol. 25, pp. 733–746.CrossRefGoogle Scholar
Lebiere, C. (1999). The dynamics of cognition: An ACT-R model of cognitive arithmetic. Kognitionswissenschaft, vol. 8, pp. 5–19.CrossRefGoogle Scholar
Lee, H., & Cho, Y. (2007). Factors affecting problem finding depending on degree of structure of problem situation. Journal of Educational Research, vol. 101, pp. 113–125.CrossRefGoogle Scholar
Leinhardt, G. (1987). The development of an expert explanation: An analysis of a sequence of subtraction lessons. Cognition and Instruction, vol. 4, pp. 225–282.CrossRefGoogle Scholar
Leinhardt, G., & Ohlsson, S. (1990) Tutorials on the structure of tutoring from teachers. Journal of Artificial Intelligence in Education, vol. 2, pp. 21–46.Google Scholar
Lenat, D. B. (1983). Toward a theory of heuristics. In Groner, R., Groner, M., & Bischof, W. F. (Eds.), Methods of heuristics (pp. 351–404). Hillsdale, NJ: Erlbaum.Google Scholar
Leplat, J., & Rasmussen, J. (1984). Analysis of human errors in industrial incidents and accidents for improvement of work safety. Accident Analysis and Prevention, vol. 16, pp. 77–88.CrossRefGoogle Scholar
Leplin, J. (1982). The assessment of auxiliary hypotheses. British Journal for the Philosophy of Science, vol. 33, pp. 235–249.CrossRefGoogle Scholar
Levelt, W. J. M. (1974). Formal grammars in linguistics and psycholinguistics (vol. 1): An introduction to the theory of formal languages and automata. The Hague, the Netherlands: Mouton.CrossRefGoogle Scholar
Levine, M. W. (2000). Fundamental's of sensation and perception (3rd ed.). Oxford, UK: Oxford University Press.Google Scholar
Levinson, M. (2006). The box: How the shipping container made the world smaller and the world economy bigger. Princeton, NJ: Princeton University Press.Google Scholar
Levy, D., & Newborn, M. (1991). How computers play chess. New York: W. H. Freeman.Google Scholar
Lewin, R. (1992). Complexity: Life at the edge of chaos. New York: Macmillan.Google Scholar
Lewis, C. (1987). Composition of productions. In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and development (pp. 329–358). Cambridge, MA: MIT Press.Google Scholar
Lewis, C. (1988). Why and how to learn why: Analysis-based generalization of procedures. Cognitive Science, vol. 12, pp. 211–256.CrossRefGoogle Scholar
Liebherr, J. K., & McHugh, J. V. (2003). Coleoptera. In Resh, V. H. & Cardé, R. T. (Eds.), Encyclopedia of insects (pp. 209–229). New York: Academic Press.Google Scholar
Limón, M. (2001). On the cognitive conflict as an instructional strategy for conceptual change: A critical appraisal. Learning and Instruction, vol. 11, pp. 357–380.CrossRefGoogle Scholar
Limón, M., & Mason, L. (Eds.). (2002). Reconsidering conceptual change: Issues in theory and practice. Dordrecht, the Netherlands: Kluwer.CrossRef
Lipton, P. (2004). Inference to the best explanation (2nd ed.). London, UK: Routledge.Google Scholar
Little, D. M., & Thulborn, K. R. (2006). Prototype-distortion category learning: A two-phase process across a distributed network. Brain and Cognition, vol. 60, pp. 233–243.CrossRefGoogle ScholarPubMed
Liu, S.-C., & Liu, S.-Y. (2001). An efficient expert system for air compressor troubleshooting. Expert Systems, vol. 18, pp. 203–214.CrossRefGoogle Scholar
Lockhart, R. S. (2002). Levels of processing, transfer-appropriate processing, and the concept of robust encoding. Memory, vol. 10, pp. 397–403.CrossRefGoogle ScholarPubMed
Lockman, J. J. (2000). A perception-action perspective on tool use development. Child Development, vol. 71, pp. 137–144.CrossRefGoogle ScholarPubMed
Logan, G. D. (1998). Toward an instance theory of automatization. Psychological Review, vol. 95, pp. 492–527.CrossRefGoogle Scholar
Lombrozo, T., & Carey, S. (2006). Functional explanation and the function of explanation. Cognition, vol. 99, pp. 167–204.CrossRefGoogle ScholarPubMed
Losee, J. (2005). Theories on the scrap heap: Scientists and philosophers on the falsification, rejection, and replacement of theories. Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
Lovejoy, A. O., & Boas, G. (1935/1997). Primitivism and related ideas in antiquity. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Lu, X., Di Eugenio, B., Kershaw, T., Ohlsson, S., & Corrigan-Halpern, A. (2007). Expert vs. non-expert tutoring: Dialogue moves, interaction patterns and multi-utterance turns. Lecture Notes in Computer Science, vol. 4394, pp. 456–467.CrossRefGoogle Scholar
Lubart, T. I. (2000–2001). Models of the creative process: Past, present and future. Creativity Research Journal, vol. 13, pp. 295–308.CrossRefGoogle Scholar
Lucas, J. R. (1961). Minds, machines and Gödel. Philosophy, vol. 36, pp. 112–127.CrossRefGoogle Scholar
Luchins, A. S. (1942). Mechanization in problem solving: The effect of Einstellung. Psychological Monographs (Whole No. 248), vol. 54, pp. 1–95.Google Scholar
Luchins, A. S., & Luchins, E. H. (1959). Rigidity of behavior: A variational approach to the effect of Einstellung. Eugene: University of Oregon Books.Google Scholar
Luiten, J., Ames, W., & Ackerson, G. (1980). A meta-analysis of the effects of advance organizers on learning and retention. American Educational Research Journal, vol. 17, pp. 211–218.CrossRefGoogle Scholar
Lukacs, J. (2001). Five days in London May 1940. New Haven, CT: Yale University Press.Google Scholar
Luo, J., & Knoblich, G. (2007). Studying insight problem solving with neuroscientific methods. Methods, vol. 42, pp. 77–86.CrossRefGoogle ScholarPubMed
Luo, J., Niki, K., & Knoblich, G. (2006). Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain Research Bulletin, vol. 70, pp. 430–443.CrossRefGoogle ScholarPubMed
Luwel, K., Verschaffel, L., Onghena, P., & Corte, E. (2003). Flexibility in strategy use: Adaptation of numerosity judgement strategies to task characteristics. European Journal of Cognitive Psychology, vol. 15, pp. 247–266.CrossRefGoogle Scholar
Lynch, A. (1996). Thought contagion: How belief spreads through society. New York: Basic Books.Google Scholar
Lynn, M. L., & Williams, R. N. (1990). Belief-bias and labor unions: The effect of strong attitudes on reasoning. Journal of Organizational Behavior, vol. 11, pp. 335–343.CrossRefGoogle Scholar
MacGregor, J. N., Ormerod, T. C., & Chronicle, E. P. (2001). Information processing and insight: A process model of performance on the nine-dot and related problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 27, pp. 176–201.Google ScholarPubMed
Mackie, G. (2006). Does democratic deliberation change minds?Politics, Philosophy and Economics, vol. 5, pp. 279–303.CrossRefGoogle Scholar
Macksey, K. (1998). Military errors of World War Two. Reading, UK: Cassell Military Classics.Google Scholar
Mackworth, A. K. (1992). Constraint satisfaction. In Shapiro, S. C. (Ed.), Encyclopedia of artificial intelligence (pp. 285–293). New York: Wiley.Google Scholar
Magnani, L. (2001). Abduction, reason, and science: Processes of discovery and explanation. New York: Kluwer/Plenum.CrossRefGoogle Scholar
Maier, N. R. F. (1931). Reasoning in humans: II. The solution of a problem and its appearance in consciousness. Journal of Comparative Psychology, vol. 12, pp. 181–194. [Excerpted in Wason and Johnson-Laird (1968), pp. 17–27.]CrossRefGoogle Scholar
Maier, N. R. F. (1945). Reasoning in humans: III. The mechanism of equivalent stimuli and of reasoning. Journal of Experimental Psychology, vol. 35, pp. 349–360. [Reprinted in Maier, N. R. F. (1970). Problem solving and creativity in individuals and groups (pp. 143–154). Belmont, CA: Brooks/Cole.]CrossRefGoogle Scholar
Mandelbrot, B. B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, vol. 156, pp. 636–638.CrossRefGoogle Scholar
Mandelbrot, B. B. (1983). The fractal geometry of nature (updated ed.). New York: W. H. Freeman.Google Scholar
Mandelbrot, B. B., & Hudson, R. L. (2004). The (mis)behavior of markets: A fractal view of risk, ruin, and reward. New York: Basic Books.Google Scholar
Mandler, G. (2002). Origins of the cognitive (r)evolution. Journal of the History of the Behavioral Sciences, vol. 38, p. 339–353.CrossRefGoogle ScholarPubMed
Mansfield, R. S., Busse, T. V., & Krepelke, E. J. (1978). The effectiveness of creativity training. Review of Educational Research, vol. 48, pp. 517–536.CrossRefGoogle Scholar
Marcus, E. R. (1999). Modern ego psychology. Journal of the American Psychoanalytic Assocation, vol. 47, pp. 843–871.CrossRefGoogle ScholarPubMed
Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., Xu, F., & Clahsen, H. (1992). Overregularization in language acquisition. Monographs of the Society for Research in Child Development, vol. 57, pp. 1–178.CrossRefGoogle ScholarPubMed
Margolis, H. (1987). Patterns, thinking, and cognition: A theory of judgment. Chicago, IL: University of Chicago Press.Google Scholar
Margolis, H. (1993). Paradigms and barriers: How habits of mind govern scientific beliefs. Chicago, IL: University of Chicago Press.Google Scholar
Markman, A. B. (1999). Knowledge representation. Mahwah, NJ: Erlbaum.Google Scholar
Markman, A. B., & Gentner, D. (2000). Structure mapping in the comparison process. American Journal of Psychology, vol. 113, pp. 501–538.CrossRefGoogle ScholarPubMed
Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information. New York: W. H. Freeman.Google Scholar
Marshall, S. P. (1995). Schemas in problem solving. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Martin, D. (1980). Three Mile Island: Prologue or epilogue?Cambridge, MA: Ballinger.Google Scholar
Mason, R. A., & Just, M. A. (2007). Lexical ambiguity in sentence comprehension. Brain Research, vol. 1146, pp. 115–127.CrossRefGoogle ScholarPubMed
Matsen, B. (2008). Titanic's last secrets. New York: Twelve.Google Scholar
Matsen, B. (2009). Jacques Cousteau: The sea king. New York: Pantheon Books.Google Scholar
Matthews, M. R. (2004). Thomas Kuhn's impact on science education: What lessons can be learned?Science Education, vol. 88, pp. 90–118.CrossRefGoogle Scholar
Mattson, M. E., & Baars, B. J. (1992). Error-minimizing mechanisms: Boosting or editing? In Baars, B. J. (Ed.), Experimental slips and human error: Exploring the architecture of volition (pp. 263–287). New York: Plenum Press.Google Scholar
Mayer, R. E. (1979). Can advance organizers influence meaningful learning?Review of Educational Research, vol. 49, pp. 371–383.CrossRefGoogle Scholar
Mayr, E. (1942/1999). Systematics and the origin of species from the viewpoint of a zoologist. Cambridge, MA: Harvard University Press.Google Scholar
Mazur, J. E., & Hastie, R. (1978). Learning as accumulation: A reexamination of the learning curve. Psychological Bulletin, vol. 85, pp. 1256–1274.CrossRefGoogle ScholarPubMed
McCann, H. G. (1978). Chemistry transformed: The paradigmatic shift from phlogiston to oxygen. Norwood, NJ: Ablex.Google Scholar
McCarthy, J. (1980). Circumscription – a form of non-monotonic reasoning. Artificial Intelligence, vol. 13, pp. 27–39.CrossRefGoogle Scholar
McCarty, M. E., Clifton, R. K., & Collard, R. R. (2001). The beginnings of tool use by infants and toddlers. Infancy, vol. 2, pp. 233–256.CrossRefGoogle Scholar
McCloskey, M. (1983). Naïve theories of motion. In Gentner, D. & Stevens, A.L. (Eds.), Mental models (pp. 299–323). Hillsdale, NJ: Erlbaum.Google Scholar
McDade, C. E. (1978). Subsumption versus educational set: Implications for sequencing of instructional materials. Journal of Educational Psychology, vol. 70, pp. 137–141.CrossRefGoogle Scholar
McDermott, D., & Doyle, J. (1980). Non-monotonic logic (part I). Artificial Intelligence, vol. 13, pp. 41–72.CrossRefGoogle Scholar
McDermott, J., & Forgy, C. (1978). Production system conflict resolution strategies. In Waterman, D. A. & Hayes-Roth, F. (Eds.), Pattern-directed inference systems (pp. 177–199). New York: Academic Press.Google Scholar
McDermott, J., & Hauser, M. (2005). The origins of music: Innateness, uniqueness, and evolution. Music Perception, vol. 23, pp. 29–59.CrossRefGoogle Scholar
McKie, R. (2000). Ape man: The story of human evolution. London, UK: BBC Worldwide.Google Scholar
McLaughlin, P. (2001). What functions explain: Functional explanation and self-reproducing systems. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
McNeil, N. M., & Alibali, M. W. (2005). Why won't you change your mind? Knowledge of operational patterns hinders learning and performance on equations. Child Development, vol. 76, pp. 883–899.CrossRefGoogle ScholarPubMed
Mednick, S. (1962). The associative basis of the creative process. Psychological Review, vol. 69, pp. 220–232.CrossRefGoogle ScholarPubMed
Menand, Louis. (2001). The metaphysical club. New York: Farrar, Straus and Giroux.Google Scholar
Metcalfe, J. (1986). Feeling of knowing in memory and problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 12, pp. 288–294.Google Scholar
Metcalfe, J., & Wiebe, D. (1987). Intuition in insight and nonsight problem solving. Memory and Cognition, vol. 15, pp. 238–246.CrossRefGoogle Scholar
Meyer, M. (2009). The year that changed the world: The untold story behind the fall of the Berlin wall. New York: Scribner.Google Scholar
Meyers, M. A. (2007). Happy accidents: Serendipity in modern medical breakthroughs. New York: Arcade.Google Scholar
Miller, A. I. (2001). Einstein, Picasso: Space, time, and the beauty that causes havoc. New York: Basic Books.Google Scholar
Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, vol. 63, pp. 81–97.CrossRefGoogle ScholarPubMed
Miller, G. A. (1996). The science of words. New York: Scientific American Library.Google Scholar
Miller, G. A. (2003). The cognitive revolution: A historical perspective. TRENDS in the Cognitive Sciences, vol. 7, pp. 141–144.CrossRefGoogle ScholarPubMed
Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart and Winston.CrossRefGoogle Scholar
Miller, J. W., & Koblick, I. G. (1995). Living and working in the sea (2nd ed.). Plymouth, VT: Five Corners.Google Scholar
Mishina, K. (1999). Learning by new experiences: Revisiting the Flying Fortress learning curve. In Lamoreaux, N. R., Raff, D. M. G., & Temin, P. (Eds.), Learning by doing in markets, firms, and countries (pp. 145–179). Chicago, IL: Chicago University Press.Google Scholar
Misiak, H., & Sexton, V. S. (1973). Phenomenological, existential, and humanistic psychologies: A historical survey. New York: Grune & Stratton.Google Scholar
Mitchell, M. F. (2000). The scope and organization of production: Firm dynamics over the learning curve. RAND Journal of Economics, vol. 31, pp. 180–205.CrossRefGoogle Scholar
Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, vol. 18, pp. 203–226.CrossRefGoogle Scholar
Mithen, S. (1996). The prehistory of the mind: The cognitive origins of art, religion and science. London, UK: Thames and Hudson.Google Scholar
Mitrovic, A. (2002). NORMIT, a Web-enabled tutor for database normalization. Proceedings of the International Conference on Computers in Education, ICCE 2002, Auckland, New Zealand, December 3–6 (pp. 1276–1280).CrossRefGoogle Scholar
Mitrovic, A. (2005). The effect of explaining on learning: A case study with a data normalization tutor. In Looi, C.-K., McCalla, G., Bredeweg, B., & Breuker, J. (Eds.), Proceedings of the 12th Conference on Artificial Intelligence in Education (pp. 499–506). Amsterdam, the Netherlands: IOS Press.Google Scholar
Mitrovic, A., Martin, B., & Mayo, M. (2002). Using evaluation to shape ITS design: Results and experiences with SQL-Tutor. International Journal of User Modeling and User-Adapted Interaction, vol. 12, pp. 243–279.CrossRefGoogle Scholar
Mitrovic, A., Martin, B., & Suraweera, P. (2007). Intelligent tutors for all: Constraint-based modeling methodology, systems and authoring. IEEE Intelligent Systems, vol. 22, pp. 38–45.CrossRefGoogle Scholar
Mitrovic, A., & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a data-base language. International Journal of Artificial Intelligence and Education, vol. 10, pp. 238–256.Google Scholar
Mitrovic, A., Ohlsson, S., & Martin, B. (2006). Problem-solving support in constraint-based tutors. Technology, Instruction, Cognition and Learning, vol. 3, pp. 43–50.Google Scholar
Mitrovic, A., Suraweera, P., Martin, B., & Weerasinghe, A. (2004). DB-suite: Experiences with three intelligent web-based database tutors. Journal of Interactive Learning Research, vol. 15, pp. 409–432,Google Scholar
Mokyr, J. (1992). The lever of riches: Technological creativity and economic progress. New York: Oxford University Press.CrossRefGoogle Scholar
Mokyr, J. (1993). The British industrial revolution: An economic perspective. Boulder, CO: Westview Press.Google Scholar
Moltmann, F. (2003). Propositional attitudes without propositions. Synthese, vol. 135, pp. 77–118.CrossRefGoogle Scholar
Montgomery, D. (2003). In a funk over the no-Nobel Prize: Overlooked MRI pioneer lobbies against decision. Washington Post, October 10, p. C01.Google Scholar
Montgomery, D. R. (2002). Valley formation by fluvial and glacial erosion. Geology, vol. 30, pp. 1047–1050.2.0.CO;2>CrossRefGoogle Scholar
Moore, B. R. (2004). The evolution of learning. Biological Reviews, vol. 79, pp. 301–335.CrossRefGoogle ScholarPubMed
Moray, N. (1987). Feedback and the control of skilled behaviour. In Holding, D. H. (Ed.), Human skills (pp. 15–39). New York: Wiley.Google Scholar
Morgan, L. C. (1894). An introduction to comparative psychology. London, UK: Walter Scott. [Facsimile edition issued by Adamant Media Corporation in 2005.]CrossRefGoogle Scholar
Morgan, P. M. (1992). Discovery and invention in polymer chemistry. In Weber, R. J. & Perkins, D. N. (Eds.), Inventive minds: Creativity in technology (pp. 178–193). New York: Oxford University Press.Google Scholar
Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, vol. 16, pp. 519–533.CrossRefGoogle Scholar
Moss, S. A. (2002). The impact of environmental clues in problem solving and incubation: The moderating effect of ability. Creativity Research Journal, vol. 14, pp. 207–211.CrossRefGoogle Scholar
Mujica-Parodi, L. R., Malaspina, D., & Sackeim, H. A. (2000). Logical processing, affect, and delusional thought in schizophrenia. Harvard Review of Psychiatry, vol. 8, pp. 73–83.CrossRefGoogle Scholar
Munn, N. L. (1946). Psychology: The fundamentals of human adjustment. Boston, MA: Houghton Mifflin.Google Scholar
Murray, J. P., & Youniss, J. (1968). Achievement of inferential transitivity and its relation to serial ordering. Child Development, vol. 39, pp. 1259–1268.CrossRefGoogle ScholarPubMed
Myung, I. J., Kim, C., & Pitt, M. A. (2000). Toward an explanation of the power law artifact: Insights from response surface analysis. Memory and Cognition, vol. 28, pp. 832–840.CrossRefGoogle ScholarPubMed
Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. New York: Harcourt, Brace & World.Google Scholar
Nagel, E., & Newman, J. R. (2001). Gödel's proof (revised ed.). New York: New York University Press.Google Scholar
Nason, S., & Laird, J. E. (2005). Soar-RL: Integrating reinforcement learning with Soar. Cognitive Systems Research, vol. 6, pp. 51–59.CrossRefGoogle Scholar
Neches, R. (1987). Learning through incremental refinement of procedures. In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and development (pp. 163–219). Cambridge, MA: MIT Press.Google Scholar
Neches, R., Langley, P., & Klahr, D. (1987). Learning, development, and production systems. In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and development (pp. 1–53). Cambridge, MA: MIT Press.Google Scholar
Necker, L. A. (1832). Observations on some remarkable phenomena seen in Switzerland; and an optical phenomenon which occurs on viewing a figure of a crystal of a geometric solid. London and Edinburgh Philosophical Magazine and Journal of Science, vol. 1, pp. 329–337. [Excerpt reprinted in Dember, W. N. (Ed.). (1964). Visual perception: The nineteenth century (pp. 78–80). New York: Wiley.]Google Scholar
Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.Google Scholar
Nelkin, M. (1994). Universality and scaling in fully developed turbulence. Advances in Physics, vol. 43, pp. 143–181.CrossRefGoogle Scholar
Nelson, R. R., & Winter, S. G. (1982). An evolutionary theory of economic change. Cambridge, MA: Harvard University Press.Google Scholar
Nersessian, N. J. (1992). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (Ed.), Minnesota Studies in the Philosophy of Science (vol. 15): Cognitive models of science (pp. 3–44). Minneapolis: University of Minnesota Press.Google Scholar
Nersessian, N. J. (2002). Abstraction via generic modeling in concept formation in science. Mind and Society, vol. 3, pp. 129–154.CrossRefGoogle Scholar
Nersessian, N. J. (2008). Creating scientific concepts. Cambridge MA: MIT Press.Google Scholar
Neurath, O. (1937). Unified science and its encyclopaedia. Philosophy of Science, vol. 4, pp. 265–277.CrossRefGoogle Scholar
Neuschatz, J. S., Lampinen, J. M., Preston, E. L., Hawkins, E. R., & Toglia, M. P. (2002). The effect of memory schemata on memory and the phenomenological experience of naturalistic situations. Applied Cognitive Psychology, vol. 16, pp. 687–708.CrossRefGoogle Scholar
Neves, D. M., & Anderson, J. R. (1981). Knowledge compilation: Mechanisms for the automatization of cognitive skills. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition (pp. 57–84). Hillsdale, NJ: Erlbaum.Google Scholar
Newborn, M. (2000). Deep Blue's contribution to AI. Annals of Mathematics and Artificial Intelligence, vol. 28, pp. 27–30.CrossRefGoogle Scholar
Newborn, M. (2003). Deep Blue: An artificial intelligence mile stone. New York: Springer.CrossRefGoogle Scholar
Newell, A. (1966, June). On the analysis of human problem solving protocols (Technical Report). Pittsburgh, PA: Carnegie Institute of Technology.Google Scholar
Newell, A. (1972). A theoretical exploration of mechanisms for coding the stimulus. In Melton, A. W. & Martin, E. (Eds.), Coding processes in human memory (pp. 373–434). New York: Wiley.Google Scholar
Newell, A. (1973). Production systems: Models of control structures. In Chase, W. G. (Ed.), Visual information processing (pp. 463–526). New York: Academic Press.Google Scholar
Newell, A. (1982). The knowledge level. Artificial Intelligence, vol. 18, pp. 87–127. [Reprinted in Rosenbloom, , P. S., Laird, J. E., & Newell, , A. (Eds.). The Soar papers: Research on integrated intelligence (vol. 1, pp. 136–176). Cambridge, MA: MIT Press.]CrossRefGoogle Scholar
Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In Anderson, J. R. (Ed.), Cognitive skills and their acquisition (pp. 1–55). Hillsdale, NJ: Erlbaum.Google Scholar
Newell, A., Shaw, J. C., & Simon, H. A. (1958). Elements of a theory of human problem solving. Psychological Review, vol. 65, pp. 151–166.CrossRefGoogle Scholar
Newell, A., Shaw, J. C., (1962). The processes of creative thinking. In Gruber, H. E., Terrell, G., & Wertheimer, M. (Eds.), Contemporary approaches to creative thinking: A symposium held at the University of Colorado (pp. 63–119). New York: Prentice-Hall.Google Scholar
Newell, A., & Simon, H. A. (1972a). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Newell, A., (1972b). Historical addendum. In Newell, A. & Simon, H. A.. Human problem solving (pp. 873–889). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Newell, A., (1976). Computer science as empirical inquiry: Symbols and search. Communications of the ACM, vol. 19, pp. 113–126.CrossRefGoogle Scholar
Newton, R. R. (1980). The sources of Eratosthenes' measurement of the Earth. Quarterly Journal of the Royal Astronomical Society, vol. 21, pp. 379–387.Google Scholar
Niaz, M. (2001). A rational reconstruction of the origin of the covalent bond and its implications for general chemistry textbooks. International Journal of Science Education, vol. 23, pp. 623–641.CrossRefGoogle Scholar
Nicolis, G. (1992). Physics of far-from-equilibrium systems and self-organization. In Davies, P. (Ed.), The new physics (1st paperback ed., pp. 316–347). Cambridge, UK: Cambridge University Press.Google Scholar
Nokes, T. J. (2009). Mechanisms of knowledge transfer. Thinking and Reasoning, vol. 15, pp. 1–36.CrossRefGoogle Scholar
Nokes, T. J., & Ohlsson, S. (2004). Declarative transfer from a memory task to a problem solving task. Cognitive Science Quarterly, vol. 3, pp. 259–296.Google Scholar
Nokes, T., & Ohlsson, S. (2005). Comparing multiple paths to mastery: What is learned?Cognitive Science, vol. 29, pp. 769–796.CrossRefGoogle ScholarPubMed
Norman, D. (1981). Categorization of action slips. Psychological Review, vol. 88, pp. 1–15.CrossRefGoogle Scholar
Norman, G. (2005). Research in clinical reasoning: Past history and current trends. Medical Education, vol. 39, pp. 418–427.CrossRefGoogle ScholarPubMed
Nussbaum, J. (1985). The Earth as a cosmic body. In Driver, R., Guesne, E., & Tiberghien, A. (Eds.), Children's ideas in science (pp. 170–192). Milton Keynes, UK: Open University Press.Google Scholar
Oaksford, M., & Chater, N. (1998). Rational models of cognition. Oxford, UK: Oxford University Press.Google Scholar
O'Connor, D. J. (1975). The correspondence theory of truth. London, UK: Hutchinson.Google Scholar
Ohlsson, S. (1983). The enaction theory of thinking and its educational implications. Scandinavian Journal of Educational Research, vol. 27, pp. 73–88.CrossRefGoogle Scholar
Ohlsson, S. (1984a). Restructuring revisited I. Summary and critique of the Gestalt theory of problem solving. Scandinavian Journal of Psychology, vol. 25, pp. 65–78.CrossRefGoogle Scholar
Ohlsson, S. (1984b). Restructuring revisited II. An information processing theory of restructuring and insight. Scandinavian Journal of Psychology, vol. 25, pp. 117–129.CrossRefGoogle Scholar
Ohlsson, S. (1984c). Induced strategy shifts in spatial reasoning. Acta Psychologica, vol. 57, pp. 47–67.CrossRefGoogle ScholarPubMed
Ohlsson, S. (1986). Some principles of intelligent tutoring. Instructional Science, vol. 14, pp. 293–326.CrossRefGoogle Scholar
Ohlsson, S. (1987a). Truth versus appropriateness: Relating declarative to procedural knowledge. In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and development (pp. 287–327). Cambridge, MA: MIT Press.Google Scholar
Ohlsson, S. (1987b). Transfer of training in procedural learning: A matter of conjectures and refutations? In Bolc, L. (Ed.), Computational models of learning (pp. 55–88). New York: Springer-Verlag.Google Scholar
Ohlsson, S. (1987c). Sense and reference in the design of interactive illustrations for rational numbers. In Lawler, R. & Yazdani, M. (Eds.), Artificial Intelligence and Education (pp. 203–237). Norwood, NJ: Ablex.Google Scholar
Ohlsson, S. (1988a). Computer simulation and its impact on educational research and practice. International Journal of Education, vol. 12, pp. 5–34.Google Scholar
Ohlsson, S. (1990a). Trace analysis and spatial reasoning: An example of intensive cognitive diagnosis and its implications for testing. In Frederiksen, N., Glaser, R., Lesgold, A., & Shafto, M. G. (Eds.), Diagnostic monitoring of skill and knowledge acquisition (pp. 251–296). Hillsdale, NJ: Erlbaum.Google Scholar
Ohlsson, S. (1990b). Cognitive science and instruction: Why the revolution is not here (yet). In Mandl, H., DeCorte, E., Bennett, N., & Freidrich, H. F. (Eds.), Learning and instruction, European research in an international context (vol. 2.1): Social and cognitive aspects of learning and instruction (pp. 561–600). New York: Pergamon Press.Google Scholar
Ohlsson, S. (1990c). The mechanism of restructuring in geometry. Proceedings of the Twelfth Annual Conference of the Cognitive Science Society, Cambridge, Massachusetts, July 25–28 (pp. 237–244). Hillsdale, NJ: Erlbaum.Google Scholar
Ohlsson, S. (1991) System hacking meets learning theory: Reflections on the goals and standards of research in Artificial Intelligence and education. Journal of Artificial Intelligence in Education, vol. 2, pp. 5–18.Google Scholar
Ohlsson, S. (1992a). Information-processing models of insight and related phenomena. In Keane, M. T. & Gilhooly, K. J. (Eds.), Advances in the psychology of thinking (vol. 1, pp. 1–44). New York: Harvester/Wheatsheaf.Google Scholar
Ohlsson, S. (1992b). The cognitive skill of theory articulation: A neglected aspect of science education?Science and Education, vol. 1, pp. 181–192.CrossRefGoogle Scholar
Ohlsson, S. (1992c). Simulating the understanding of arithmetic: Answer to Schoenfeld. Journal for Research in Mathematics Education, vol. 23, pp. 474–482.CrossRefGoogle Scholar
Ohlsson, S. (1992d). Constraint-based student modeling. Journal of Artificial Intelligence and Education, vol. 3, pp. 429–447.Google Scholar
Ohlsson, S. (1992e). The learning curve for writing books: Evidence from Professor Asimov. Psychological Science, vol. 3, pp. 380–382.CrossRefGoogle Scholar
Ohlsson, S. (1992f). Beyond rules and propositions: Reflections on Bereiter's concept of problem-centered knowledge. Interchange, vol. 23, pp. 367–378.CrossRefGoogle Scholar
Ohlsson, S. (1992g). Artificial instruction: A method for relating learning theory to instructional design. In Jones, M. & Winne, P. H. (Eds.), Foundations and frontiers in instructional computing systems (pp. 55–83). Berlin, Germany: Springer-Verlag.Google Scholar
Ohlsson, S. (1992h). Towards intelligent tutoring systems that teach knowledge rather than skills: Five research questions. In Scanlon, E. & O'Shea, T. (Eds.), New directions in educational technology (pp. 71–96). New York: Springer-Verlag.Google Scholar
Ohlsson, S. (1993a). The interaction between knowledge and practice in the acquisition of cognitive skills. In Meyrowitz, A. & Chipman, S. (Eds.), Foundations of knowledge acquisition: Cognitive models of complex learning (pp. 147–208). Norwell, MA: Kluwer.Google Scholar
Ohlsson, S. (1993b). Abstract schemas. Educational Psychologist, vol. 28, pp. 51–66.CrossRefGoogle Scholar
Ohlsson, S. (1993c). The impact of cognitive theory on the practice of courseware authoring. Journal of Computer Assisted Learning, vol. 9, pp. 194–221.CrossRefGoogle Scholar
Ohlsson, S. (1994). Declarative and procedural knowledge. In Husen, T. & Neville-Postlethwaite, T. (Eds.), The international encyclopedia of education (2nd ed., vol. 3, pp. 1432–1434). London, UK: Pergamon Press.Google Scholar
Ohlsson, S. (1995a). Epistemic obstacles and the marriage of fantasy to rigor: A response to Suchting. Science and Education, vol. 4, pp. 379–389.CrossRefGoogle Scholar
Ohlsson, S. (1995b). Learning to do and learning to understand: A lesson and a challenge for cognitive modeling. In Reimann, P. & Spada, H. (Eds.), Learning in humans and machines: Towards an interdisciplinary learning science (pp. 37–62). Oxford, UK: Elsevier.Google Scholar
Ohlsson, S. (1996a). Learning from performance errors. Psychological Review, vol. 103, pp. 241–262.CrossRefGoogle Scholar
Ohlsson, S. (1996b). Learning from error and the design of task environments. International Journal of Educational Research, vol. 25, pp. 419–449.CrossRefGoogle Scholar
Ohlsson, S. (1998). Spearman's g = Anderson's ACT? Reflections on The Bell Curve and the locus of generality in human cognition. Journal of the Learning Sciences, vol. 7, pp. 135–145.CrossRefGoogle Scholar
Ohlsson, S. (1999a). Theoretical commitment and implicit knowledge: Why anomalies do not trigger learning. Science and Education, vol. 8, pp. 559–574.CrossRefGoogle Scholar
Ohlsson, S. (1999b). Anchoring language in reality: Observations on reference and representation. Discourse Processes, vol. 28, pp. 93–105.CrossRefGoogle Scholar
Ohlsson, S. (2000). Falsification, anomalies and the naturalistic approach to cognitive change. Science and Education, vol. 9, pp. 173–186.CrossRefGoogle Scholar
Ohlsson, S. (2002). Generating and understanding qualitative explanations. In Graesser, A., Leon, J., & Otero, J. (Eds.), The psychology of science text comprehension (pp. 91–128). Mahwah, NJ: Erlbaum.Google Scholar
Ohlsson, S. (2007a). The effects of order: A constraint-based explanation. In Ritter, F. E., Nerb, J., Lehtinen, E., & O'Shea, T. M. (Eds.), In order to learn: How the sequence of topics influences learning (pp. 151–165). New York: Oxford University Press.Google Scholar
Ohlsson, S. (2007b). The separation of thought and action in Western tradition. In Brook, A. (Ed.), The prehistory of cognitive science (pp. 17–37). New York: MacMillan.Google Scholar
Ohlsson, S. (2007c). Psychology is about processes. Integrative Psychological and Behavioral Science, vol. 41, pp. 28–34.CrossRefGoogle ScholarPubMed
Ohlsson, S. (2008a). Computational models of skill acquisition. In Sun, R. (Ed.), The Cambridge handbook of computational psychology (pp. 359–395). Cambridge, UK: Cambridge University Press.Google Scholar
Ohlsson, S. (2008b). How is it possible to have a new idea? In Ventura, D., Maher, M. L., & Colton, S. (Eds.), Creative intelligent systems: Papers from the AAAI Spring Symposium (Technical Report SS-08–03, pp. 61–66). Menlo Park, CA: AAAI Press.Google Scholar
Ohlsson, S. (2009a). Resubsumption: A possible mechanism for conceptual change and belief revision. Educational Psychologist, vol. 44, pp. 20–40.CrossRefGoogle Scholar
Ohlsson, S. (2009b). Meaning change, multiple routes and the role of differentiation in conceptual change: Alternatives to resubsumption?Educational Psychologist, vol. 44, pp. 64–71.CrossRefGoogle Scholar
Ohlsson, S. (2010). Questions, patterns and explanations, not hypothesis testing, is the core of psychology as of any science. In Toomela, A. & Valsiner, J. (Eds.), Methodological thinking in psychology: 60 years gone astray? (pp. 27–44). Charlotte, NC: Information Age.Google Scholar
Ohlsson, S., & Bee, N. (1991). Radical strategy variability: A challenge to models of procedural learning. In Birnbaum, L. (Ed.), Proceedings of the International Conference of the Learning Sciences, Northwestern University, Evanston, Illinois, August 4–7 (pp. 351–356). Charlottesville, VA: Association for the Advancement of Computing in Education.Google Scholar
Ohlsson, S., Di Eugenio, B., Chow, B., Fossati, D., Lu, X., & Kershaw, T. C. (2007). Beyond the code-and-count analysis of tutoring dialogues. In Luckin, R., Koedinger, K. R., & Greer, J. (Eds.), Artificial Intelligence in education: Building technology rich learning contexts that work (pp. 349–356). Amsterdam, the Netherlands: IOS Press.Google Scholar
Ohlsson, S., Ernst, A., & Rees, E. (1992) The cognitive complexity of doing and learning arithmetic. Journal for Research in Mathematics Education, vol. 23, pp. 441–467.CrossRefGoogle Scholar
Ohlsson, S., & Hemmerich, J. (1999). Articulating an explanatory schema: A preliminary model and supporting data. In Hahn, M. & Stoness, S. (Eds.), Proceedings of the Twenty First Annual Meeting of the Cognitive Science Society (pp. 490–495). Mahwah, NJ: Erlbaum.Google Scholar
Ohlsson, S., & Jewett, J. J. (1995). Abstract computer models: Towards a new method for theorizing about adaptive agents. In Lavrac, N. & Wrobel, S. (Eds.), Machine Learning (pp. 33–52). Berlin, Germany: Springer-Verlag.Google Scholar
Ohlsson, S., & Jewett, J. J. (1997). Ideal adaptive agents and the learning curve. In Brzezinski, J., Krause, B., & Maruszewski, T. (Eds.), Idealization (vol. VIII): Modelling in psychology (pp. 139–176). Amsterdam, the Netherlands: Rodopi.Google Scholar
Ohlsson, S., & Kershaw, T. C. (2003). Creativity. Encyclopedia of education (2nd ed., vol 2, pp. 505–507). New York: Macmillan.Google Scholar
Ohlsson, S., & Langley, P. (1988). Psychological evaluation of path hypotheses in cognitive diagnosis. In Mandl, H. & Lesgold, A. (Eds.), Learning issues for intelligent tutoring systems (pp. 42–62). New York: Springer-Verlag.Google Scholar
Ohlsson, S., & Lehtinen, E. (1997). The role of abstraction in the assembly of complex ideas. International Journal of Educational Research, vol. 27, pp. 37–48.CrossRefGoogle Scholar
Ohlsson, S. & Mitrovic, A. (2006). Constraint-based knowledge representation for individualized instruction. Computer Science and Information Systems, vol. 3, pp. 1–22.Google Scholar
Ohlsson, S. & Mitrovic, A. (2007). Cognitive fidelity and computational efficiency of knowledge representations for intelligent tutoring systems. Technology, Instruction, Cognition and Learning, vol. 5, pp. 101–132.Google Scholar
Ohlsson, S., Moher, T. G., & Johnson, A. (2000). Deep learning in virtual reality: How to teach children that the Earth is round. In Gleitman, L. R. & Joshi, A. K. (Eds.), Proceedings of the Twenty-Second Annual Conference of the Cognitive Science Society (pp. 364–368). Mahwah, NJ: Erlbaum.Google Scholar
Ohlsson, S., & Rees, E. (1991a). The function of conceptual understanding in the learning of arithmetic procedures. Cognition and Instruction, vol. 8, pp. 103–179.CrossRefGoogle Scholar
Ohlsson, S., (1991b). Adaptive search through constraint violations. Journal of Experimental and Theoretical Artificial Intelligence, vol. 3, pp. 33–42.CrossRefGoogle Scholar
Ohlsson, S., & Regan, S. (2001). A function for abstract ideas in conceptual learning and discovery. Cognitive Science Quarterly, vol. 1, pp. 243–277.Google Scholar
Oldby, R. (1974/1994). The path to the double helix: The discovery of DNA. New York: Dover.Google Scholar
Olson, S. (2002). Mapping human history: Discovering the path through our genes. Boston, MA: Houghton Mifflin.Google Scholar
O'Quin, K., & Besemer, S. P. (1989). The development, reliability, and validity of the revised Creative Product Semantic Scale. Creativity Research Journal, vol. 2, pp. 267–278.CrossRefGoogle Scholar
O'Quin, K., (2006). Using the Creative Product Semantic Scale as a metric for results-oriented business. Creativity and Innovation Management, vol. 15, pp. 34–44.CrossRefGoogle Scholar
Orenstein, A. (1967). Maurice Ravel's creative process. Musical Quarterly, vol. 53, pp. 467–481.CrossRefGoogle Scholar
Oreskes, N. (Ed.). (2003). Plate tectonics: An insider's history of the modern theory of the earth. Boulder, CO: Westview Press.
Ormerod, P. (1998). Butterfly economics: A new general theory of social and economic behavior. New York: Pantheon Books.Google Scholar
Ormerod, T. C., MacGregor, J. N., & Chronicle, E. P. (2002). Dynamics and constraints in insight problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 28, pp. 791–799.Google ScholarPubMed
Orr, M., & Ohlsson, S. (2001). The relation between complexity and liking in jazz and blue grass. Psychology of Music, vol. 29, pp. 108–127.CrossRefGoogle Scholar
Orr, M. G., & Ohlsson, S. (2005) Relationship between complexity and liking as a function of expertise. Music Perception, vol. 22, pp. 583–611.CrossRefGoogle Scholar
Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, vol. 9, pp. 35–58.CrossRefGoogle Scholar
Overy, R. (1996). Why the Allies won. London, UK: Random House/Pimlico.Google Scholar
Pacey, A. (1992). The maze of ingenuity: Ideas and idealism in the development of technology (2nd ed.). Cambridge, MA: MIT Press.Google Scholar
Palermo, D. S. (1971). Is a scientific revolution taking place in psychology?Science Studies, vol. 1, pp. 135–155.CrossRefGoogle Scholar
Pally, S. (1955). Cognitive rigidity as a function of threat. Journal of Personality, vol. 23, pp. 346–355.CrossRefGoogle ScholarPubMed
Parssinen, T. M. (1974). Popular science and society: The phrenology movement in early Victorian Britain. Journal of Social History, vol. 8, pp. 1–20.CrossRefGoogle ScholarPubMed
Patrick, J., Grainger, L., Gregov, A., Halliday, P., Handley, J., James, N., & O'Reilly, S. (1999a). Training to break the barriers of habit in reasoning about unusual faults. Journal of Experimental Psychology: Applied, vol. 5, pp. 314–335.Google Scholar
Patrick, J., Gregov, A., Halliday, P., Handley, J., & O'Reilly, S. (1999b). Analysing operators' diagnostic reasoning during multiple events. Ergonomics, vol. 42, pp. 493–515.CrossRefGoogle Scholar
Patrick, J., James, N., Ahmed, A., & Halliday, P. (2006). Observational assessment of situation awareness, team differences and training implications. Ergonomics, vol. 49, pp. 393–417.CrossRefGoogle ScholarPubMed
Pauling, L. (1935/1960). The nature of the chemical bond and the structure of molecules and crystals: An introduction to modern structural chemistry (3rd ed.). Ithaca, NY: Cornell University Press.Google Scholar
Pearson, J., & Clifford, C. W. G. (2004). Determinants of visual awareness following interruptions during rivalry. Journal of Vision, vol. 4, pp. 196–202.CrossRefGoogle ScholarPubMed
Peirce, C. S. (1878a). How to make our ideas clear. Popular Science Monthly, vol. 12, pp. 286–302. [Reprinted in Houser, N., & Kloesel, C. (Eds.). (1992). The essential Peirce: Selected philosophical writings (vol. 1, pp. 124–141). Bloomington: Indiana University Press.]Google Scholar
Peirce, C. S. (1878b). Deduction, induction, and hypothesis. Popular Science Monthly, vol. 13, pp. 470–482. [Reprinted in Houser, N., & Kloesel, , C. (Eds.). (1992). The essential Peirce: Selected philosophical writings (vol. 1, pp. 186–199). Bloomington: Indiana University Press.]Google Scholar
Peirce, C. S. (1901/1998). On the logic of drawing history from ancient documents, especially from testimonies. In Houser, N. & Kloesel, C. (Eds.). (1998). The essential Peirce: Selected philosophical writings (vol. 2, pp. 75–114). Bloomington: Indiana University Press. [Previously unpublished manuscript, dated 1901.]Google Scholar
Peirce, C. S. (1903/1998). Pragmatism as the logic of abduction. In Houser, N. & Kloesel, C. (Eds.), The essential Peirce: Selected philosophical writings (vol. 2, pp. 226–241). Bloomington: Indiana University Press. [Previously unpublished manuscript, dated 1903.]Google Scholar
Penfield, W. (1975). They mystery of the mind: A critical study of consciousness and the human brain. Princeton, NJ: Princeton University Press.Google Scholar
Penrose, R. (1991). The emperor's new mind: Concerning computers, minds, and the laws of physics. London, UK: Penguin Books.Google Scholar
Perkins, D. N. (1981). The mind's best work. Cambridge, MA: Harvard University Press.Google Scholar
Perkins, D. N. (1994). Creativity: Beyond the Darwinian paradigm. In Boden, M. A. (Ed.), Dimensions of creativity (pp. 119–142). Cambridge, MA: MIT Press.Google Scholar
Perkins, D. N. (1995a). Insight in minds and genes. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 495–533). Cambridge, MA: MIT Press.Google Scholar
Perkins, D. N. (1995b). Outsmarting IQ: The emerging science of learnable intelligence. New York: Free Press.Google Scholar
Perkins, D. N., Tishman, S., Ritchhart, R., Donis, K., & Andrade, A. (2000). Intelligence in the wild: A dispositional view of intellectual traits. Educational Psychology Review, vol. 12, pp. 269–293.CrossRefGoogle Scholar
Perry, C. (1984). Normal accidents: Living with high-risk technologies. New York: Harper Collins.Google Scholar
Peters, E. E., & Levin, J. R. (1986). Effect of a mnemonic imagery strategy on good and poor readers' prose recall. Reading Research Quarterly, vol. 21, pp. 179–192.CrossRefGoogle Scholar
Peterson, H. (Ed.). (1954). A treasury of the world' greatest speeches. New York: Simon & Schuster.
Peterson, I. (1993). Newton's clock: Chaos in the solar system. New York: Freeman.Google Scholar
Petroski, H. (1992). To engineer is human: The role of failure in successful design. New York: Vintage Books.Google Scholar
Petroski, H. (2006). Success through failure: The paradox of design. Princeton, NJ: Princeton University Press.Google Scholar
Pettigrew, T. F. (1998). Intergroup contact theory. Annual Review of Psychology, vol. 49, pp. 65–85.CrossRefGoogle ScholarPubMed
Pfundt, H., & Duit, R. (1991). Bibliography: Students' alternative frameworks and science education (3rd ed.). Kiel, Germany: Institute for Science Education.Google Scholar
Piaget, J. (1950). The psychology of intelligence (Piercy, M., Trans.). London, UK: Routledge & Kegan Paul.Google Scholar
Piaget, J. (1952). The child's conception of number (Gattegno, C. & Hodgson, F. M., Trans.). London. UK: Routledge & Kegan Paul.Google Scholar
Piaget, J. (1963). The origins of intelligence in children (Cook, M., Trans.). New York: Norton.Google Scholar
Piaget, J. (1985). The equilibration of cognitive structures: The central problem of intellectual development (Brown, T. & Thampy, K. J., Trans.). Chicago, IL: University of Chicago Press.Google Scholar
Pierce, J. R., & Writer, J. (2005). Yellow Jack: How yellow fever ravaged America and Walter Reed discovered its deadly secrets. Hoboken, NJ: Wiley.Google Scholar
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Viking.Google Scholar
Pirolli, P. (2005). Rational analyses of information foraging on the web. Cognitive Science, vol. 29, pp. 343–373.CrossRefGoogle ScholarPubMed
Pitt, J. C. (Ed.). (1988). Theories of explanation. New York: Oxford University Press.
Planck, M. (1949). Scientific autobiography and other papers (Gaynor, F., Trans.). New York: Philosophical Library.Google Scholar
Plotkin, H. (1994). Darwin machines and the nature of knowledge. Cambridge, MA: Harvard University Press.Google Scholar
Plucker, J. A. & Renzulli, J. S. (1999). Psychometric approaches to the study of human creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 35–61). Cambridge, UK: Cambridge University Press.Google Scholar
Poincaré, H. (1908/1952). Science and method (Maitland, F., Trans.). New York: Dover Publications.Google Scholar
Polk, T. A., & Seifert, C. M. (Eds.). (2002). Cognitive modeling. Cambridge, MA: MIT Press.
Polya, G. (1962). Mathematical discovery: On understanding, learning, and teaching problem solving (vol. 1). New York: Wiley.Google Scholar
Polya, G. (1968). Mathematical discovery: On understanding, learning, and teaching problem solving (vol. 2). New York: Wiley.Google Scholar
Popper, K. (1959/1972). The logic of scientific discovery (Author, , Trans.; revised version). London, UK: Hutchinson.Google Scholar
Popper, K. R. (1969). Science: Conjectures and refutations. In Popper, K. R., Conjectures and refutations: The growth of scientific knowledge (2nd ed., pp. 33–65). London, UK: Routledge & Kegan Paul.Google Scholar
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, vol. 66, pp. 211–27.CrossRefGoogle Scholar
Posner, M. I. (1973). Cognition: An introduction. Glenview, IL: Scott, Foresman.Google Scholar
Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract ideas. Journal of Experimental Psychology, vol. 77, pp. 353–363.CrossRefGoogle ScholarPubMed
Post, E. L. (1943). Formal reductions of the general combinatorial decision problem. American Journal of Mathematics, vol. 65, pp. 197–215.CrossRefGoogle Scholar
Posthuma, D., & Geus, E. J. C. (2006). Progress in the molecular-genetic study of intelligence. Current Directions in Psychological Science, vol. 15, pp. 151–155.CrossRefGoogle Scholar
Postma, A. (2000). Detection of errors during speech production: A review of speech monitoring models. Cognition, vol. 77, pp. 97–131.CrossRefGoogle ScholarPubMed
Potts, R. (1996). Humanity's descent: The consequences of ecological instability. New York: William Morrow.Google Scholar
Powers, W. T. (1973). Behavior: The control of perception. Chicago, IL: Aldine.Google Scholar
Pratt, D. (2000). Plate tectonics: A paradigm under threat. Journal of Scientific Exploration, vol. 14, pp. 307–352.Google Scholar
Preckel, F., Holling, H., & Wiese, M. (2006). Relationship of intelligence and creativity in gifted and non-gifted students: An investigation of threshold theory. Personality and Individual Differences, vol. 40, pp. 159–170.CrossRefGoogle Scholar
Press, G. A. (1977). History and the development of the idea of history in antiquity. History and Theory, vol. 16, pp. 280–296.CrossRefGoogle Scholar
Prigogine, I. (1997). The end of certainty: Time, chaos, and the new laws of nature. New York: Free Press.Google Scholar
Pringle, J. W. S. (1951). On the parallel between learning and evolution. Behaviour, 1951, vol. 3, pp. 174–215.CrossRefGoogle Scholar
Proctor, R. W., & Dutta, A. (1995). Skill acquisition and human performance. Thousand Oaks, CA: Sage.Google Scholar
Purves, D., & Lichtman, J. W. (1980). Elimination of synapses in the developing nervous system. Science, vol. 210, pp. 153–157.CrossRefGoogle ScholarPubMed
Putnam, H. (2005). A philosopher looks at quantum mechanics (again). British Journal for the Philosophy of Science, vol. 56, pp. 615–634.CrossRefGoogle Scholar
Pylyshyn, Z. W. (1973). The role of competence theories in cognitive psychology. Journal of Psycholinguistic Research, vol. 2, pp. 21–50.CrossRefGoogle ScholarPubMed
Pylyshyn, Z. W. (1980). Computation and cognition: Issues in the foundations of cognitive science. Behavioral and Brain Sciences, vol. 3, pp. 111–169.CrossRefGoogle Scholar
Pylyshyn, Z. W. (1986). Computation and cognition: Toward a foundation for cognitive science. Cambridge, MA: MIT Press.Google Scholar
Quine, W. V. (1951). Two dogmas of empiricism. Philosophical Review, vol. 6, pp. 20–43.CrossRefGoogle Scholar
Quine, W. V., & Ullian, J. S. (1978). The web of belief (2nd ed.). New York: Random House.Google Scholar
Radnitzky, G., & Bartley, W. W. III (Eds.). (1987). Evolutionary epistemology, rationality, and the sociology of knowledge. La Salle, IL: Open Court.Google Scholar
Radvansky, G. A., & Dijkstra, K. (2007). Aging and situation model processing. Psychonomic Bulletin & Review, vol. 14, pp. 1027–1042.CrossRefGoogle ScholarPubMed
Raff, R. A. (1996). The shape of life: Genes, development, and the evolution of animal form. Chicago, IL: University of Chicago Press.Google Scholar
Ramirez, V. E. (2002). Find the right problem. Asia Pacific Education Review, vol. 3, pp. 18–23.CrossRefGoogle Scholar
Ranney, M., & Schank, P. (1998). Toward an integration of the social and the scientific: Observing, modeling, and promoting the explanatory coherence of reasoning. In Read, S. & Miller, L. (Eds.), Connectionist models of social reasoning and social behavior (pp. 245–274). Mahwah, NJ: Erlbaum.Google Scholar
Ranney, M., Schank, P., Mosmann, A., & Montoya, G. (1993). Dynamic explanatory coherence with competing beliefs: Locally coherent reasoning and a proposed treatment. In Chan, T.-W. (Ed.), Proceedings of the International Conference on Computers in Education: Applications of Intelligent Computer Technologies, ICCE'93, Taipei City, Taiwan, December 15–17 (pp. 101–106).Google Scholar
Read, S. J., & Marcus-Newhall, A. (1993). Explanatory coherence in social explanations: A parallel distributed processing account. Journal of Personality and Social Psychology, vol. 65, pp. 429–447.CrossRefGoogle Scholar
Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Reber, A. S. (1996). Implicit learning and tacit knowledge: An essay on the cognitive unconscious. New York: Oxford University Press.CrossRefGoogle Scholar
Reed, S. (1993). A schema-based theory of transfer. In Detterman, D. K. & Sternberg, R. J. (Eds.), Transfer on trial: Intelligence, cognition, and instruction (pp. 39–67). Norwood, NJ: Ablex.Google Scholar
Reigeluth, C. M., & Stein, F. S. (1983). The Elaboration Theory of instruction. In Reigeluth, C. M. (Ed.), Instructional-design theories and models: An overview of their current status (pp. 335–381). Hillsdale, NJ: Erlbaum.Google Scholar
Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naïve physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, vol. 18, pp. 1–34.CrossRefGoogle Scholar
Reis, D. A. (1991). Learning curves in food services. Journal of the Operational Research Society, vol. 42, pp. 623–629.CrossRefGoogle Scholar
Reisberg, D. (2006). Cognition: Exploring the science of the mind (3rd ed.). New York: Norton.Google Scholar
Reisch, G. A. (1994). Planning science: Otto Neurath and the “International Encyclopedia of Unified Science.”British Journal for the History of the Sciences, vol. 27, pp. 153–175.CrossRefGoogle Scholar
Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, vol. 13, pp. 81–132.CrossRefGoogle Scholar
Renkl, A., Mandl, H., & Gruber, H. (1996). Inert knowledge: Analyses and remedies. Educational Psychologist, vol. 31, pp. 115–121.CrossRefGoogle Scholar
Revlin, R., & Leirer, V. O. (1978). The effects of personal biases on syllogistic reasoning: Rational decision from personalized representations. In Revlin, R. & Mayer, R. E. (Eds.), Human reasoning (pp. 51–81). New York: Wiley.Google Scholar
Rhodes, R. (1989). The making of the atomic bomb. New York: Simon & Schuster.Google Scholar
Richardson, A. (1969). Mental imagery. London, UK: Routledge & Kegan Paul.CrossRefGoogle Scholar
Richardson, J. T. E. (1978). Mental imagery and the distinction between primary and secondary memory. Quarterly Journal of Experimental Psychology, vol. 30, pp. 471–485.CrossRefGoogle Scholar
Riedweg, C. (2005). Pythagoras: His life, teaching and influence (Cornell University, Trans.). Ithaca, NY: Cornell University Press.Google Scholar
Rips, L. J. (1994). The psychology of proof: Deductive reasoning in human thinking. Cambridge, MA: MIT Press.Google Scholar
Roberts, R. M. (1989). Serendipity: Accidental discoveries in science. New York: Wiley.Google Scholar
Robin, N., & Ohlsson, S. (1989) Impetus then and now: A detailed comparison between Jean Buridan and a single contemporary subject. In Herget, D. E. (Ed.), Proceedings of the First International Conference on the History and Philosophy of Science in Science Teaching, Florida State University, Tallahassee, Florida, November 6–10 (pp. 292–305). Science Education and Department of Philosophy, Florida State University.Google Scholar
Rock, D. (2006). Quiet leadership: Help people think better – don't tell them what to do!New York: HarperCollins.Google Scholar
Rogers, D. E. (2001). Embracing the range. In Pfenninger, K. H. & Shubik, V. R. (Eds.), The origins of creativity (pp. 47–57). Oxford, UK: Oxford University Press.Google Scholar
Rokeach, M. (1960). The open and closed mind. New York: Basic Books.Google Scholar
Rokeach, M. (1970). Beliefs, attitudes, and values: A theory of organization and change. San Francisco, CA: Jossey-Bass.Google Scholar
Rolls, E. T. (2000). Memory systems in the brain. Annual Review of Psychology, vol. 51, pp. 599–630.CrossRefGoogle Scholar
Rosch, E. (1978). Principles of categorization. In Rosch, E. & Lloyd, B. B. (Eds.), Cognition and categorization (pp. 27–48). Hillsdale, NJ: Erlbaum. [Reprinted in Margolis, E. & Laurence, S. (Eds.). (1999). Concepts: Core readings (pp.189–206). Cambridge, MA: MIT Press.]Google Scholar
Rosenberg, C. E. (1992). Explaining epidemics and other studies in the history of medicine. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Rosenberg, N. (1982). Inside the black box: Technology and economics. Cambridge, UK: Cambridge University Press.Google Scholar
Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1993). The Soar papers: Research on integrated intelligence (vols. 1 and 2). Cambridge, MA: MIT Press.
Roosenbloom, P., & Newell, A. (1986). The chunking of goal hierarchies: A generalized model of practice. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine learning: An artificial intelligence approach (vol. 2, pp. 247–288). Los Altos, CA: Kaufmann.Google Scholar
Rosenbloom, P., & Newell, A. (1987). Learning by chunking: A production system model of practice. In Klahr, D., Langley, P., & Neches, R. (Eds.), Production system models of learning and development (pp. 221–286). Cambridge, MA: MIT Press.Google Scholar
Rothenberg, A., & Hausman, C. R. (Eds.). (1976). The creativity question. Durham, NC: Duke University Press.
Ruiz, D., & Newell, A. (1993). Tower-noticing triggers strategy-change in the Tower of Hanoi: A Soar model. In Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.), The Soar papers: Research on integrated intelligence (vol. 2, pp. 934–941). Cambridge, MA: MIT Press.Google Scholar
Runco, M. A. (Ed.). (1994). Problem finding, problem solving, and creativity. Norwood, NJ: Ablex.
Runco, M. A. (2004). Creativity. Annual Review Psychology, vol. 55, pp. 657–687.CrossRefGoogle ScholarPubMed
Runco, M. A., McCarthy, K. A., & Svenson, E. (1994). Judgments of the creativity of artwork from students and professional artists. Journal of Psychology, vol. 28, pp. 23–31.CrossRefGoogle Scholar
Ruse, M. (2002). Robert Boyle and the machine metaphor. Zygon, vol. 37, pp. 581–595.CrossRefGoogle Scholar
Ryan, C. (1974). A bridge too far. New York: Simon & Schuster.Google Scholar
Salas, E., & Cannon-Bowers, J. A. (2001). The science of training: A decade of progress. Annual Review Psychology, vol. 52, pp. 471–499.CrossRefGoogle ScholarPubMed
Salmon, W. C. (1989). Four decades of scientific explanation. Minneapolis: University of Minnesota Press.Google Scholar
Salomon, G., & Perkins, D. N. (1989). Rocky roads to transfer: Rethinking mechanisms of a neglected phenomenon. Educational Psychologist, vol. 24, pp. 113–142.CrossRefGoogle Scholar
Sandkühler, S., & Bhattacharya, J. (2008). Deconstructing insight: EEG correlates of insightful problem solving. Public Library of Science, vol. 3, issue 1, pp. 1–12 (e1459). Available online at www.plosone.org.Google ScholarPubMed
Saugstad, P., & Raaheim, K. (1960). Problem-solving, past experience and availability of functions. British Journal of Psychology, vol. 51, pp. 97–104. [Excerpted in Wason and Johnson-Laird (1968), pp. 56–64.]CrossRefGoogle ScholarPubMed
Schacter, D. L. (2001). Forgotten ideas, neglected pioneers: Richard Semon and the story of memory. Ann Abor, MI: Psychology Press.Google Scholar
Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers and people. Cambridge, UK: Cambridge University Press.Google Scholar
Schank, R. C. (1986). Explanation patterns. Hillsdale, NJ: Erlbaum.Google Scholar
Scheerer, M. (1963). Problem-solving. Scientific American, vol. 208, pp. 118–128.CrossRefGoogle ScholarPubMed
Schick, K. D., & Toth, N. (1994). Making silent stones speak: Human evolution and the dawn of technology. New York: Simon & Schuster.Google Scholar
Schilling, M. A., & Phelps, C. (2007). Interfirm collaboration networks: The impact of large-scale network structure on firm innovation. Management Science, vol. 53, pp. 1113–1126.CrossRefGoogle Scholar
Schneider, W., & Oliver, W. L. (1991). An instructable connectionist/control architecture: Using rule-based instructions to accomplish connectionist learning in a human time scale. In VanLehn, K. (Ed.), Architectures for intelligence (pp. 113–145). Hillsdale, NJ: Erlbaum.Google Scholar
Schoenfeld, A. H., Smith, , , J. P. III, & Arcavi, A. (1993). Learning: The microgenetic analysis of one student's evolving understanding of a complex subject matter domain. In Glaser, R. (Ed.), Advances in instructional psychology (vol. 4, pp. 55–175). Hillsdale, NJ: Erlbaum.Google Scholar
Schooler, L. J., & Hertwig, R. (2005). How forgetting aids heuristic inference. Psychological Review, vol. 112, pp. 610–628.CrossRefGoogle ScholarPubMed
Schooler, J., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology: General, vol. 122, pp. 166–183.CrossRefGoogle Scholar
Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (Eds.). (2000). Cognitive task analysis. Mahwah, NJ: Erlbaum.
Schultz, D. P. (1969). A history of modern psychology. New York: Academic Press.Google Scholar
Schultz, T. R., & Lepper, M. R. (1996). Cognitive dissonance reduction as constraint satisfaction. Psychological Review, vol. 103, pp. 219–240.CrossRefGoogle Scholar
Schwartz, B. L. (2002). Tip-of-the-tongue states: Phenomenology, mechanism, and lexical retrieval. Mahwah, NJ: Erlbaum.Google Scholar
Scott, G., Leritz, L. E., & Mumford, M. D. (2004). The effectiveness of creativity training: A quantitative review. Creativity Research Journal, vol. 16, pp. 361–388.CrossRefGoogle Scholar
Sebag-Montefiore, H. (2000). Enigma: The battle for the code. New York: Wiley.Google Scholar
Seddon, G. M. (1983). The measurement and properties of divergent thinking ability as a single compound entity. Journal of Educational Measurement, vol. 20, pp. 393–402.CrossRefGoogle Scholar
Seifert, C. M., Meyer, D. E., Davidson, N., Patalano, A. L., & Yaniv, I. (1995). Demystification of cognitive insight: Opportunistic assimilation and the prepared-mind perspective. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 65–124). Cambridge, MA: MIT Press.Google Scholar
Selby, E. C., Shaw, E. J., & Houtz, J. C. (2005). The creative personality. Gifted Child Quarterly, vol. 49, pp. 300–314.CrossRefGoogle Scholar
Senders, J. W., & Moray, N. P. (1991). Human error: Cause, prediction, and reduction. Hillsdale, NJ: Erlbaum.Google Scholar
Shachtman, T. (2003). Laboratory warriors: How allied science and technology tipped the balance in World War II. New York: HarperCollins.Google Scholar
Shafir, E., & LeBoeuf, R. A. (2002). Rationality. Annual Review of Psychology, vol. 53, pp. 491–517.CrossRefGoogle ScholarPubMed
Shanahan, M., & Baars, B. (2005). Applying global workspace theory to the frame problem. Cognition, vol. 98, pp. 157–176.CrossRefGoogle ScholarPubMed
Shapin, S. (1998). The scientific revolution. Chicago, IL: University of Chicago Press.Google Scholar
Shiffrin, R. M. (1970). Memory search. In Norman, D. A. (Ed.), Models of human memory (pp. 375–447). New York: Academic Press.Google Scholar
Shiffrin, R. M., & Nosofsky, R. M. (1994). Seven plus or minus two: A commentary on capacity limitations. Psychological Review, vol. 101, pp. 357–361.CrossRefGoogle ScholarPubMed
Shrager, J., & Siegler, R. S. (1998). A model of children's strategy choices and strategy discoveries. Psychological Science, vol. 9, pp. 405–410.CrossRefGoogle Scholar
Shreeve, J. (1995). The Neandertal enigma: Solving the mystery of modern human origins. New York: William Morrow.Google Scholar
Siegler, R. S. (1986). Children's thinking. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children's addition. Journal of Experimental Psychology: General, vol. 116, pp. 250–264.CrossRefGoogle Scholar
Siegler, R. S. (1989). Hazards of mental chronometry: An example from children's subtraction. Journal of Educational Psychology, vol. 81, pp. 497–506.CrossRefGoogle Scholar
Siegler, R. S. (1996). Emerging minds: The process of change in children's thinking. New York: Oxford University Press.Google Scholar
Siegler, R., & Araya, R. (2005). A computational model of conscious and unconscious strategy discovery. In Kail, R. V. (Ed.), Advances in child development and behavior (vol. 33, pp. 1–42). Oxford, UK: Elsevier.Google Scholar
Siegler, R. S., & Crowley, K. (1991). The microgenetic method: A direct means for studying cognitive development. American Psychologist, vol. 46, pp. 606–620.CrossRefGoogle ScholarPubMed
Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: Erlbaum.Google Scholar
Silvi, B., & Savin, A. (1994). Classification of chemical bonds based on topological analysis of electron localization functions. Nature, vol. 371, pp. 683–686.CrossRefGoogle Scholar
Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, vol. 106, pp. 467–482. [Reprinted in Simon, H. A. (1970). The sciences of the artificial (pp. 84–118). Cambridge, MA: MIT Press.]Google Scholar
Simon, H. A.. (1966). Scientific discovery and the psychology of problem solving. In Colodny, R. G. (Ed.), Mind and cosmos: Essays in contemporary science and philosophy (pp. 22–40). Pittsburgh, PA: University of Pittsburgh Press.Google Scholar
Simon, H. A. (1990). Invariants of human behavior. Annual Review of Psychology, vol. 41, pp. 1–19.CrossRefGoogle ScholarPubMed
Simon, H. A., & Barenfeld, M. (1969). Information-processing analysis of perceptual processes in problem solving. Psychological Review, vol. 76, pp. 473–483.CrossRefGoogle ScholarPubMed
Simon, H. A., & Gilmartin, K. (1973). A simulation of memory for chess positions. Cognitive Psychology, vol. 5, pp. 29–46.CrossRefGoogle Scholar
Simon, H. A., & Hayes, J. R. (1976). The understanding process: Problem isomorphs. Cognitive Psychology, vol. 8, pp. 169–190.CrossRefGoogle Scholar
Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, vol. 26, pp. 145–159.CrossRefGoogle Scholar
Simonton, D. K. (1988). Scientific genius: A psychology of science. Cambridge, UK: Cambridge University Press.Google Scholar
Simonton, D. K. (2004). Creativity in science: Chance, logic, genius, and zeitgeist. New York: Cambridge University Press.CrossRefGoogle Scholar
Simpson, D. (2005). Phrenology and the neurosciences: Contributions of F. J. Gall and J. G. Spurzheim. ANZ Journal of Surgery, vol. 75, pp. 475–482.CrossRefGoogle Scholar
Simpson, G. G. (1953). The Baldwin effect. Evolution, vol. 7, pp. 110–117.CrossRefGoogle Scholar
Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard University Press.Google Scholar
Sio, U. N., & Ormerod, T. C. (2009). Does incubation enhance problem solving? A meta-analytic review. Psychological Bulletin, vol. 135, pp. 94–120.CrossRefGoogle ScholarPubMed
Sleeman, D., & Brown, J. S. (Eds.). (1982). Intelligent tutoring systems. London, UK: Academic Press.
Slezak, P. (1982). Gödel's theorem and the mind. British Journal of the Philosophy of Science, vol. 33, pp. 41–52.CrossRefGoogle Scholar
Slotta, J. D., & Chi, M. T. H. (2006). Helping students understand challenging topics in science through ontology training. Cognition and Instruction, vol. 24, pp. 261–289.CrossRefGoogle Scholar
Slotta, J. D., Chi, M. T. H., & Joram, E. (1995). Assessing students' misclassifications of physics concepts: An ontological basis for conceptual change. Cognition and Instruction, vol. 13, pp. 373–400.CrossRefGoogle Scholar
Smith, D. K., & Alexander, R. C. (1999). Fumbling the future: How Xerox invented, then ignored, the first personal computer. New York: toExcel.Google Scholar
Smith, E., Osherson, D., Rips, L., & Keane, M. (1988). Combining prototypes: A selective modification model. Cognitive Science, vol. 12, pp. 485–527. [Reprinted in Margolis, E., & Laurence, S. (Eds.). (1999). Concepts: Core readings (pp. 355–390). Cambridge, MA: MIT Press.]CrossRefGoogle Scholar
Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 24, pp. 1411–1436.Google Scholar
Smith, J. E. (1978). Purpose and thought: The meaning of pragmatism. New Haven, CT: Yale University Press.Google Scholar
Smith, J. P., III, DiSessa, A. A., & Roschelle, J. (1995). Misconceptions reconceived: A constructivist analysis of knowledge in transition. Journal of the Learning Sciences, vol. 3, pp. 115–163.CrossRefGoogle Scholar
Smith, K. U. (1966). Cybernetic theory and analysis of learning. In Bilodeau, E. A. (Ed.), Acquisition of skill (pp. 425–482). New York: Academic Press.Google Scholar
Smith, K. U., & Smith, M. F. (1966). Cybernetic principles of learning and educational design. New York: Holt, Rinehart and Winston.Google Scholar
Smith, S. M. (1995). Getting into and out of mental ruts: A theory of fixation, incubation, and insight. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 229–251). Cambridge, MA: MIT Books.Google Scholar
Smith, S. M., Ward, T. B., & Finke, R. A. (Eds.). (1995). The creative cognition approach. Cambridge, MA: MIT Press.
Smolin, L. (1992). Did the universe evolve? Classical and Quantum Gravity, vol. 9, pp. 173–191.CrossRefGoogle Scholar
Snoddy, G. S. (1926). Learning and stability: A psychophysiological analysis of a case of motor learning with clinical applications. Journal of Applied Psychology, vol. 10, pp. 1–36.CrossRefGoogle Scholar
Snooks, G. D. (2002). Uncovering the laws of global history. Social Evolution & History, vol. 1, pp. 25–53.Google Scholar
Solomons, T. (1988). Organic chemistry (4th ed.) New York: Wiley.Google Scholar
Solso, R. L., & McCarthy, J. E. (1981). Prototype formation of faces: A case of pseudo-memory. British Journal of Psychology, vol. 72, pp. 499–503.CrossRefGoogle Scholar
Somit, A., & Peterson, S. A. (Eds.). (1992). The dynamics of evolution: The punctuated equilibrium debate in the natural and social sciences. Ithaca, NY: Cornell University Press.
Spearman, C. (1904). “General intelligence,” objectively determined and measured. American Journal of Psychology, vol. 15, pp. 201–292.CrossRefGoogle Scholar
Spence, J. D. (1985). The memory palace of Matteo Ricci. London, UK: Penguin Books.Google Scholar
Spiro, M. E. (1953). Ghosts: An anthropological inquiry into learning and perception. Journal of Abnormal and Social Psychology, vol. 48, pp. 376–382.CrossRefGoogle ScholarPubMed
Spohrer, J. C., Soloway, E., & Pope, , E. (1985). A goal/plan analysis of buggy Pascal programs. Human-Computer Interaction, vol. 1, pp. 163–205.CrossRef
Sporns, O., & Tononi, G. (Eds.), (1994). Selectionism and the brain. New York: Academic Press.
Squire, L. R. (1987). Memory and brain. New York: Oxford University Press.Google Scholar
Stadler, M., Vetter, G., Haynes, J. D., & Kruse, P. (1996). Nonlinear phenomena in learning processes. In Pribram, K. H. & King, J. (Eds.), Learning as self-organization (pp. 157–169). Mahwah, NJ: Erlbaum.Google Scholar
Stallard, R. F. (1995). Tectonic, environmental, and human aspects of weathering and erosion: A global review using a steady-state perspective. Annual Review of Earth and Planetary Sciences, vol. 23, pp. 11–39.CrossRefGoogle Scholar
Standage, T. (2000). The Neptune file: A story of astronomical rivalry and the pioneers of planet hunting. New York: Walker.Google Scholar
Stanley, S. M. (1998). Children of the ice age: How a global catastrophe allowed humans to evolve. New York: W. H. Freeman.Google Scholar
Starkey, P., Spelke, E. S., & Gelman, R. (1990). Numerical abstraction by human infants. Cognition, vol. 36, pp. 97–127.CrossRefGoogle ScholarPubMed
Stearns, P. N. (1998). The industrial revolution in world history (2nd ed.). Boulder, CO: Westview Press.Google Scholar
Steiner, M. C., Munro, N. D., Surovell, T. A., Tchernov, E., & Bar-Yosef, O. (1999). Paleolithic population growth pulses evidenced by small animal exploitation. Science, vol. 283, pp. 190–194.CrossRefGoogle Scholar
Sténuit, R. (1966). The deepest days. New York: Coward-McCann.Google Scholar
Sternberg, R. J., & Davidson, J. E. (1982). The mind of the puzzler. Psychology Today, vol. 16, pp. 37–44.Google Scholar
Sternberg, R. J., & O'Hara, L. A. (1999). Creativity and intelligence. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 251–272). Cambridge, UK: Cambridge University Press.Google Scholar
Stevens, D., & Savin, H. B. (1962). On the form of learning curves. Journal of the Experimental Analysis of Behavior, vol. 5, pp. 15–18.CrossRefGoogle ScholarPubMed
Stone, C. L. (1983). A meta-analysis of advanced organizer studies. Journal of Experimental Education, vol. 51, pp. 194–199.CrossRefGoogle Scholar
Strathern, P. (2000). Mendeleyev's dream: The quest for the elements. New York: St. Martin's Press.Google Scholar
Stratton, S. M., Liu, Y.-T., Hong, S. L., Mayer-Kress, G., & Newell, K. M. (2007). Snoddy (1926) revisited: Time scales of motor learning. Journal of Motor Behavior, vol. 39, pp. 503–515.CrossRefGoogle ScholarPubMed
Strayer, D. L., & Johnson, W. A. (2001). Driven to distraction: Dual-task studies of simulated driving and conversing on a cellular telephone. Psychological Science, vol. 12, pp. 462–466.CrossRefGoogle ScholarPubMed
Strike, K. A., & Posner, G. J. (1985). A conceptual change view of learning and understanding. In West, L. & Pines, L. (Eds.), Cognitive structure and conceptual change (pp. 211–231). New York: Academic Press.Google Scholar
Strike, K. A., (1992). A revisionist theory of conceptual change. In Duschl, R. A. & Hamilton, R. J. (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147–176). New York: State University of New York Press.Google Scholar
Stringer, C., & McKie, R. (1997). African exodus: The origins of modern humanity. New York: Henry Holt.Google Scholar
Sumida, S. S., & Brochut, C. A. (2000). Phylogenetic context for the origin of feathers. American Zoologist, vol. 40, pp. 486–503.Google Scholar
Sun, R. (Ed.). (2008). The Cambridge handbook of computational psychology. Cambridge, UK: Cambridge University Press.CrossRef
Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science, vol. 25, pp. 203–244.CrossRefGoogle Scholar
Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in skill learning: A dual-process approach. Psychological Review, vol. 112, pp. 159–192.CrossRefGoogle ScholarPubMed
Suppes, P. (1957). Introduction to logic. Princeton, NJ: D. Van Nostrand.Google Scholar
Suraweera, P., & Mitrovic, A. (2004). An intelligent tutoring system for entity relationship modelling. International Journal of Artificial Intelligence in Education, vol. 14, pp. 375–417.Google Scholar
Suwa, M. (2003). Constructive perception: Coordinating perception and conception toward acts of problem-finding in a creative experience. Japanese Psychological Research, vol. 45, pp. 221–234.CrossRefGoogle Scholar
Swaab, T., Brown, C., & Hagoort, P. (2003). Understanding words in sentence contexts: The time course of ambiguity resolution. Brain and Language, vol. 86, pp. 326–343.CrossRefGoogle ScholarPubMed
Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, vol. 12, pp. 257–285.CrossRefGoogle Scholar
Swinney, D. A. (1979). Lexical access during sentence comprehension: (Re)Consideration of context effects. Journal of Verbal Learning and Verbal Behavior, vol. 18, pp. 645–659.CrossRefGoogle Scholar
Taatgen, N. (2002). Production compilation: A simple mechanism to model complex skill acquisition. Human Factors, vol. 45, pp. 61–76.CrossRefGoogle Scholar
Taatgen, N. (2005). Modeling parallelization and flexibility improvements in skill acquisition: From dual tasks to complex dynamic skills. Cognitive Science, vol. 29, pp. 421–455.CrossRefGoogle ScholarPubMed
Tainter, J. A. (1990). The collapse of complex societies. Cambridge, UK: Cambridge University Press.Google Scholar
Taleb, N. N. (2007). The black swan: The impact of the highly improbable. New York: Random House.Google Scholar
Tattersall, I., & Schwartz, J. H. (2000). Extinct humans. Boulder, CO: Westview.Google Scholar
Tavris, C., & Aronson, E. (2007). Mistakes were made (but not by me). Orlando, FL: Harcourt.Google Scholar
Thagard, P. (1990). The conceptual structure of the chemical revolution. Philosophy of Science, vol. 57, pp. 183–209.CrossRefGoogle Scholar
Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.Google Scholar
Thagard, P. (2007). Abductive inference: From philosophical analysis to neural mechanisms. In Feeney, A. & Heit, E. (Eds.), Inductive reasoning: Cognitive, mathematical, and neuroscientific approaches (pp. 226–247). Cambridge, UK: Cambridge University Press.Google Scholar
Thagard, P., & Shelley, C. (1997). Abductive reasoning: Logic, visual thinking, and coherence. In Chiara, M.-L. Dalla, Doets, K., Mundici, D., & Benthem, J. (Eds.), Logic and scientific methods (pp. 413–427). Dordrecht, the Netherlands: Kluwer.Google Scholar
Thagard, P., & Verbeurgt, K. (1998). Coherence as constraint satisfaction. Cognitive Science, vol. 22, pp. 1–24.CrossRefGoogle Scholar
Thayer, H. S. (Ed.). (1982). Pragmatism: The classic writings. Indianapolis, IN: Hackett Publishing.
Thomason, N. (1994). The power of ARCHED hypotheses: Feyerabend's Galileo as a closet rationalist. British Journal for the Philosophy of Science, vol. 45, pp. 255–264.CrossRefGoogle Scholar
Thorndike, E. L. (1898). Animal intelligence: An experimental study of the associative processes in animals. PhD dissertation, New York: Teachers College, Columbia University.CrossRefGoogle Scholar
Thorndike, E. L. (1927). The Law of Effect. American Journal of Psychology, vol. 39, pp. 212–222.CrossRefGoogle Scholar
Thorndike, E. L. (1932). The fundamentals of learning. New York: Teachers College, Columbia University.CrossRefGoogle Scholar
Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions. (I). Psychological Review, vol. 8, pp. 247–261.Google Scholar
Thorndyke, P. W. (1984). Applications of schema theory in cognitive research. In Anderson, J. R. & Kosslyn, S. M. (Eds.), Tutorials in learning and memory (pp. 167–191). San Francisco, CA: Freeman.Google Scholar
Timmerman, M. E., & Brouwer, W. H. (1999). Slow information processing after very severe head injury: Impaired access to declarative knowledge and intact application and acquisition of procedural knowledge. Neuropsychologica, vol. 37, pp. 467–478.CrossRefGoogle ScholarPubMed
Tishman, S., Jay, E., & Perkins, D. N. (1993). Teaching thinking dispositions: From transmission to enculturation. Theory into Practice, vol. 32, pp. 147–153.CrossRefGoogle Scholar
Titchener, E. B. (1912). The schema of introspection. American Journal of Psychology, vol. 23, pp. 485–508.CrossRefGoogle Scholar
Toffler, A. (1970). Future shock. New York: Random House.Google Scholar
Tomasello, M. (1999a). The human adaptation for culture. Annual Review of Anthropology, vol. 28, pp. 509–529.CrossRefGoogle Scholar
Tomasello, M. (1999b). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.Google Scholar
Toulmin, S. (1972). Human understanding. London, UK: Oxford University Press.Google Scholar
Toulmin, S., & Goodfield, J. (1962). The architecture of matter. New York: Harper & Row.Google Scholar
Traxler, M., & Gernsbacher, M. (Eds.). (2006). Handbook of psycholinguistics. Philadelphia, PA: Elsevier.
Trenhaile, A. S. (2002). Rock coasts, with particular emphasis on shore platforms. Geomorphology, vol. 48, pp. 7–22.CrossRefGoogle Scholar
Trickett, S. B., Schunn, C. D., & Trafton, J. G. (2005). Puzzles and peculiarities: How scientists attend to and process anomalies during data analysis. In Gorman, M. E., Tweney, R. D., Gooding, D. C., & Kincannon, A. P. (Eds.), Scientific and technological thinking (pp. 97–118). Mahwah, NJ: Erlbaum.Google Scholar
Tulving, E. (1985). Elements of episodic memory. Oxford, UK: Clarendon Press.Google Scholar
Tulving, E., & Pearlstone, Z. (1966). Availability versus accessibility of information in memory for words. Journal of Verbal Learning and Verbal Behavior, vol. 5, pp. 381–391.CrossRefGoogle Scholar
Tulving, E., & Psotka, J. (1971). Retroactive inhibition in free recall: Inaccessibility of information available in the memory store. Journal of Experimental Psychology, vol. 87, pp. 1–8.CrossRefGoogle Scholar
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, vol. 80, pp. 352–373.CrossRefGoogle Scholar
Turner, M. L., & Engle, R. W. (1989). Is working memory capacity task dependent?Journal of Memory and Language, vol. 28, pp. 127–154.CrossRefGoogle Scholar
Tyson, N. de Grasse (2004, November). The importance of being constant. Natural History, vol. 113, pp. 18–20.Google Scholar
Uffink, J. (2003). Irreversibility and the second law of thermodynamics. In Greven, A. & Warnecke, G. (Eds.), Entropy (pp. 121–146). Princeton, NJ: Princeton University Press.Google Scholar
Ullman, S. (1995). Sequence seeking and counter streams: A computational model for bidirectional information flow in the visual cortex. Cerebral Cortex, vol. 5, pp. 1–11.CrossRefGoogle ScholarPubMed
Usher, A. P. (1929/1954). A history of mechanical inventions (revised ed.). New York: Dover.Google Scholar
Uzumeri, M., & Nembhard, D. (1998). A population of learners: A new way to measure organizational learning. Journal of Operations Management, vol. 16, pp. 515–528.CrossRefGoogle Scholar
Uzzi, B., & Spiro, J. (2005). Collaboration and creativity: The small world problem. American Journal of Sociology, vol. 111, pp. 447–504.CrossRefGoogle Scholar
Andel, P. (1994). Anatomy of the unsought finding: Origin, history domains, traditions, appearances, patterns and programmability. British Journal for the Philosophy of Science, vol. 45, pp. 631–48.CrossRefGoogle Scholar
Maas, L. J., & Molenaar, P. C. M. (1992). Stagewise cognitive development: An application of catastrophe theory. Psychological Review, vol. 99, pp. 395–417.CrossRefGoogle ScholarPubMed
Dijk, T. A., & Kintsch, W. (1983). Strategies of discourse comprehension. New York: Academic Press.Google Scholar
VanLehn, K. (1990). Mind bugs: The origins of procedural misconceptions. Cambridge, MA: MIT Press.Google Scholar
VanLehn, K. (1991). Rule acquisition events in the discovery of problem-solving strategies. Cognitive Science, vol. 15, pp. 1–47.CrossRefGoogle Scholar
VanLehn, K. (1999). Rule-learning events in the acquisition of a complex skill: An evaluation of Cascade. Journal of the Learning Sciences, vol. 8, pp. 71–125.CrossRefGoogle Scholar
VanLehn, K., & Jones, R. (1993). Learning by explaining examples to oneself: A computational model. In Chipman, S. & Meyrowitz, A. L. (Eds.), Foundations of knowledge acquisition: Cognitive models of complex learning (pp. 25–82). Boston, MA: Kluwer.Google Scholar
VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model of the self-explanation effect. Journal of the Learning Sciences, vol. 2, pp. 1–59.CrossRefGoogle Scholar
VanLehn, K., Ohlsson, S., & Nason, R. (1994). Applications of simulated students: An exploration. Journal of Artificial Intelligence and Education, vol. 5, pp. 135–175.Google Scholar
Patten, J., Chao, C.-I., & Reigeluth, C. M. (1986). A review of strategies for sequencing and synthesizing instruction. Review of Educational Research, vol. 56, pp. 437–471.CrossRefGoogle Scholar
Varela, F. J., Thompson, E., & Rosch, E. (1993). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
Vaughan, D. (1997). The Challenger launch decision: Risky technology, culture, and deviance at NASA. Chicago, IL: University of Chicago Press.CrossRefGoogle Scholar
Veloso, M. M., & Carbonell, J. G. (1993). Derivational analogy in Prodigy: Automating case acquisition, storage and utilization. Machine Learning, vol. 10, pp. 249–278.CrossRefGoogle Scholar
Vera, A. H., & Simon, H. A. (1993). Situated action: A symbolic interpretation. Cognitive Science, vol. 17, pp. 7–48.CrossRefGoogle Scholar
Vincent, W. G. (1993). What engineers know and how they know it: Analytical studies from aeronautical history. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Bertalanffy, L. (1968/1973). General systems theory: Foundations, development, applications. Norwich, UK: Penguin Books.Google Scholar
Domarus, E. (1944/1964). The specific laws of logic in schizophrenia. In Kasanin, J. S. (Ed.), Language and thought in schizophrenia (pp. 104–114). New York: Norton.Google Scholar
Vosniadou, S. (1994a). Capturing and modeling the process of conceptual change. Learning and Instruction, vol. 4, pp. 45–69.CrossRefGoogle Scholar
Vosniadou, S. (1994b). Universal and culture-specific properties of children's mental models of the earth. In Hirschfeld, L. & Gelman, S. (Eds.), Mapping the mind. Cambridge, MA: Cambridge University Press.Google Scholar
Vosniadou, S., Baltas, A., & Vamvakoussi, X. (Eds.). (2007). Reframing the conceptual change approach in learning and instruction. Amsterdam, the Netherlands: Elsevier Science.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, vol. 24, pp. 535–585.CrossRefGoogle Scholar
Waldrop, M. M. (1992). Complexity: The emerging science at the edge of order and chaos. New York: Simon & Schuster.Google Scholar
Walker, R. (2004). Cultural memes, innate proclivities and musical behaviour: A case study of the western traditions. Psychology of Music, vol. 32, pp. 152–190.CrossRefGoogle Scholar
Walker, R. C. S. (1989). The coherence theory of truth: Realism, anti-realism, idealism. London, UK: Routledge.Google Scholar
Wallace, D. B., & Gruber, H. E. (Eds.). (1992). Creative people at work: Twelve cognitive case studies. New York: Oxford University Press.
Wallas, G. (1926). The art of thought. London, UK: Jonathan Cape.Google Scholar
Waller, J. (2002). The discovery of the germ: Twenty years that transformed the way we think about disease. New York: Columbia University Press.Google Scholar
Wallerstein, R. S. (2002). The growth and transformation of American ego psychology. Journal of the American Psychoanalytic Association, vol. 50, pp. 135–168.CrossRefGoogle ScholarPubMed
Walliser, B., Zwirn, D., & Zwirn, H. (2005). Abductive logics in a belief revision framework. Journal of Logic, Language and Information, vol. 14, pp. 87–117.CrossRefGoogle Scholar
Warren, J. M. (1965). The comparative psychology of learning. Annual Review of Psychology, vol. 16, pp. 95–118.CrossRefGoogle ScholarPubMed
Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, vol. 113, pp. 358–389.CrossRefGoogle ScholarPubMed
Wason, P. C., & Johnson-Laird, P. N. (Eds.). (1968). Thinking and reasoning. London, UK: Penguin.
Wason, P. C., & Johnson-Laird, P. N. (1972). Psychology of reasoning: Structure and content. London, UK: B. T. Batsford.Google Scholar
Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, vol. 20, pp. 158–177.CrossRefGoogle Scholar
Watson, J. D. (1968/1980). The double helix: A personal account of the discovery of the structure of DNA. New York: Norton.Google Scholar
Watson, J. D., & Crick, F. H C. (1953). A structure for deoxyribose nucleic acid. Nature, vol. 171, pp. 737–738.CrossRefGoogle ScholarPubMed
Watts, D. (1999). Small worlds: The dynamics of networks between order and randomness. Princeton, NJ: Princeton University Press.Google Scholar
Weber, B. H., & Depew, D. J. (Eds.). (2003). Evolution and learning: The Baldwin effect reconsidered. Cambridge, MA: MIT Press.
Weber, R. J., & Perkins, D. N. (Eds.). (1992). Inventive minds: Creativity in technology (pp. 48–79). New York: Oxford University Press.
Weinberg, S. (1977). The first three minutes: A modern view of the origin of the universe. New York: Basic Books.Google Scholar
Weinberg, S. (1992). Dreams of a final theory. New York: Pantheon Books.Google Scholar
Weinberg, W. (2001). Facing up: Science and its cultural adversaries. Cambridge, MA: Harvard University Press.Google Scholar
Weisberg, R. W. (1986). Creativity: Genius and other myths. New York: W. H. Freeman.Google Scholar
Weisberg, R. W. (1993). Creativity: Beyond the myth of genius. New York: W. H. Freeman.Google Scholar
Weisberg, R. W. (1995). Prolegomena to theories of insight in problem solving: A taxonomy of problems. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 157–196). Cambridge, MA: MIT Press.Google Scholar
Weisberg, R. W., & Alba, J. W. (1981). An examination of the alleged role of “fixation” in the solution of several “insight” problems. Journal of Experimental Psychology: General, vol. 110, pp. 169–192.CrossRefGoogle Scholar
Welford, A. T. (1968). Fundamentals of skill. London, UK: Methuen.Google Scholar
Wendt, H., & Imarisio, G. (2005). Nine years of research and development on advanced water electrolysis: A review of the research programme of the Commission of the European Communities. Journal of Applied Electrochemistry, vol. 18, pp. 1–14.CrossRefGoogle Scholar
Wenger, E. (1987). Artificial intelligence and tutoring systems: Computational and cognitive approaches to the communication of knowledge. Los Altos, CA: Kaufmann.Google Scholar
Wentorf, R. H. (1992). The synthesis of diamonds. In Weber, R. J. & Perkins, D. N. (Eds.), Inventive minds: Creativity in technology. New York: Oxford University Press.Google Scholar
Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt, II. Psychologische Forschung, vol. 4, pp. 301–350. [Excerpt in English translation titled Laws of organization in perceptual forms in Ellis (1967), pp. 71–88.]CrossRefGoogle Scholar
Wertheimer, M. (1959/1968). Productive thinking (enlarged ed. by Wertheimer, Michael). Northampton, UK: Tavistock Publications and Social Science Paperbacks.Google Scholar
Westfall, R. S. (1971). The construction of modern science: Mechanisms and mechanics. New York: Wiley.Google Scholar
Westfall, R. S. (1983). Never at rest: A biography of Isaac Newton. Cambridge, UK: Cambridge University Press.Google Scholar
Wheatstone, C. (1838). Contributions to the physiology of vision. Part the first. On some remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the Royal Society of London, vol. 128, pp. 371–394.CrossRefGoogle Scholar
Whitehead, A. N. (1929/1967). The aims of education and other essays. New York: Free Press.Google Scholar
Whitehead, A. N., & Russell, B. (1962). Principia Mathematica to *56. Cambridge, UK: Cambridge University Press.Google Scholar
Whitrow, G. J. (1989). Time in history: Views of time from prehistory to the present day. Oxford, UK: Oxford University Press.Google Scholar
Wiener, N. (1948). Cybernetics, or control and communication in the animal and the machine. New York: Wiley.Google ScholarPubMed
Wiig, S., & Aase, K. (2007). Fallible humans in infallible systems? Learning from errors in health care. Safety Science Monitor, vol. 11 (issue 3, article 6), pp. 1–13.Google Scholar
Wild, J. J. (1992). The origin of soft tissue ultrasonic echoing and early instrumental application to clinical medicine. In Weber, R. J. & Perkins, D. N. (Eds.), Inventive minds: Creativity in technology (pp. 123–124). New York: Oxford University Press.Google Scholar
Wiley, J. (1998). Expertise as mental set: The effects of domain knowledge in creative problem solving. Memory and Cognition, vol. 26, pp. 716–730.CrossRefGoogle ScholarPubMed
Willingham, D. B. (1998). A neuropsychological theory of motor skill learning. Psychological Review, vol. 105, pp. 558–584.CrossRefGoogle ScholarPubMed
Wilson, E. O. (1998). Consilience: The unity of knowledge. New York: Alfred A. Knopf.Google Scholar
Winograd, T. (1975). Frame representations and the declarative/procedural controversy. In Bobrow, D. G. & Collins, A. (Eds.), Representation and understanding: Studies in cognitive science (pp. 185–210). New York: Academic Press.Google Scholar
Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., & Lederman, S. J. (2006). Sensation and perception. Sunderland, MA: Sinauer.Google Scholar
Wolfradt, U., & Pretz, J. E. (2001). Individual differences in creativity: Personality, story writing, and hobbies. European Journal of Personality, vol. 15, pp. 297–310.CrossRefGoogle Scholar
Wolpert, L. (1992). The triumph of the embryo. Oxford, UK: Oxford University Press.Google Scholar
Woodworth, R. S. (1938). Experimental psychology. New York: Henry Holt.Google Scholar
Woolf, B. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. San Francisco, CA: Kauffman.Google Scholar
Woolf, N. J., & Hameroff, S. R. (2001). A quantum approach to visual consciousness. TRENDS in Cognitive Sciences, vol. 5, pp. 472–478.CrossRefGoogle ScholarPubMed
Wright, M. R. (1981/1995). Empedocles: The extant fragments. London, UK: Bristol Classic Press.Google Scholar
Wright, O. (1953/1988). How we invented the airplane: An illustrated history (Kelly, F. & Weissman, A., Eds.). New York: Dover. [Previously unpublished text dated 1920.]Google Scholar
Wuketits, F. M. (1990). Evolutionary epistemology and its implications for humankind. Albany: State University of New York.Google Scholar
Wynn, K., Bloom, P., & Chiang, W.-C. (2002). Enumeration of collective entities by 5-month-old infants. Cognition, vol. 83, pp. B55–B62.CrossRefGoogle ScholarPubMed
Yamnill, S., & McLean, G. N. (2001). Theories supporting transfer of training. Human Resource Development Quarterly, vol. 12, pp. 195–208.CrossRefGoogle Scholar
Yaniv, I., & Meyer, D. E. (1987). Activation and metacognition of inaccessible stored information: Potential bases for incubation effects in problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, vol. 13, pp. 187–205.Google ScholarPubMed
Yates, F. A. (1969). The art of memory. London, UK: Penguin Books.Google Scholar
Youmans, R., & Ohlsson, S. (2008). How practice produces suboptimal heuristics that render backup instruments ineffective. Ergonomics, vol. 51, pp. 441–475.CrossRefGoogle ScholarPubMed
Young, R. M. (1976). Seriation by children: An artificial intelligence analysis of a Piagetian task. Basel, Switzerland: Birkhäuser Verlag.CrossRefGoogle Scholar
Zakharov, K., Mitrovic, A., & Ohlsson, S. (2005). Feedback micro-engineering in EER-Tutor. In Looi, C.-K., McCalla, G., Bredeweg, B., & Breuker, J. (Eds.), Proceedings of the 12th Conference on Artificial Intelligence in Education (pp. 718–725). Amsterdam, the Netherlands: IOS Press.Google Scholar
Zöllner, F. (2006). Leonardo da Vinci, 1452–1519: Sketches and drawings. Hong Kong, China: Taschen.Google Scholar
Zöllner, F., & Nathan, J. (2003). Leonardo da Vinci: The complete paintings and drawings. Köln, Germany: Taschen.Google Scholar
Zuckerman, M., & Cohen, N. (1964). Sources of reports of visual and auditory sensations in perceptual-isolation experiments. Psychological Bulletin, vol. 62, pp. 1–20.CrossRefGoogle ScholarPubMed
Zwaan, R. A., & Radvansky, G. A. (1998). Situation models in language comprehension and memory. Psychological Bulletin, vol. 123, pp. 162–185.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Stellan Ohlsson, University of Illinois, Chicago
  • Book: Deep Learning
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511780295.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Stellan Ohlsson, University of Illinois, Chicago
  • Book: Deep Learning
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511780295.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Stellan Ohlsson, University of Illinois, Chicago
  • Book: Deep Learning
  • Online publication: 25 January 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511780295.015
Available formats
×