Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T07:26:44.605Z Has data issue: false hasContentIssue false

4 - Dendritic cell activation and uptake of bacteria in vivo

from II - Dendritic cells and innate immune responses to bacteria

Published online by Cambridge University Press:  12 August 2009

Maria Rescigno
Affiliation:
European Institute of Oncology, Milan
Get access

Summary

INTRODUCTION

Pathogenic bacteria have evolved several strategies to gain access across epithelial surfaces particularly those lining the mucosae. After their epithelial transcytosis bacteria find a first line of immune defense represented by professional phagocytes, including macrophages and dendritic cells. These cells are particularly apt at bacterial uptake, killing and processing for the initiation/maintenance of adaptive immune responses. Furthermore, intracellular bacteria can induce by epithelial cells the release of inflammatory mediators and cytokines that will recruit other immune cells, particularly neutrophils. Dendritic cells are not simply passive players waiting for possible invaders, they can actively participate to bacterial sampling by intercalating between epithelial cells. This mechanism is not restricted to pathogenic bacteria. Since gut dendritic cells have been thoroughly studied, in this chapter we will focus on dendritic cells located in the intestinal mucosa and on their role in the uptake and handling of luminal bacteria.

THE ANATOMY OF THE INTESTINAL MUCOSAL EPITHELIUM AND THE GUT ASSOCIATED LYMPHOID TISSUE (GALT)

The intestinal epithelium is the first line of defense toward dangerous microorganisms. It opposes a physical, electric and chemical barrier against luminal bacteria. The permeability of the barrier is regulated by the presence of both tight junctions (TJ) between epithelial cells (ECs) and a negatively charged mucous glycocalix. TJ seal adjacent ECs to one another and regulate solute and ion flux between cells. The glycocalix sets the size of macromolecules that can reach the apical membrane of ECs and opposes an electric barrier to bacteria.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sansonetti, P. J. (2004). War and peace at mucosal surfaces. Nat. Rev. Immunol. 4, 953–64.CrossRefGoogle ScholarPubMed
Mowat, A. M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3, 331–41.CrossRefGoogle ScholarPubMed
Schneeberger, E. E. and Lynch, R. D. (2004). The tight junction: a multifunctional complex. Am. J. Physiol. Cell Physiol. 286, C1213–28.CrossRefGoogle ScholarPubMed
Frey, A., Giannasca, K. T., Weltzin, R., Giannasca, P. J., Reggio, H., Lencer, W. I. and Neutra, M. R. (1996). Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184, 1045–59.CrossRefGoogle ScholarPubMed
Ganz, T. (2003). Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–20.CrossRefGoogle ScholarPubMed
Kraehenbuhl, J. P. and Neutra, M. R. (2000). Epithelial M cells: differentiation and function. Annu. Rev. Cell Dev. Biol. 16, 301–32.CrossRefGoogle ScholarPubMed
Banchereau, J., Briere, F., Caux, C., Davoust, J., Lebecque, S., Liu, Y. J., Pulendran, B. and Palucka, K. (2000). Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811.CrossRefGoogle ScholarPubMed
Bilsborough, J. and Viney, J. L. (2004). Gastrointestinal dendritic cells play a role in immunity, tolerance, and disease. Gastroenterology 127, 300–9.CrossRefGoogle ScholarPubMed
Kelsall, B. L. and Rescigno, M. (2004). Mucosal dendritic cells in immunity and inflammation. Nat. Immunol. 5, 1091–5.CrossRefGoogle ScholarPubMed
Jang, M. H., Kweon, M. N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P. D.et al. (2004). Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc. Natl Acad. Sci. U S A 101, 6110–15.CrossRefGoogle ScholarPubMed
Maric, I., Holt, P. G., Perdue, M. H. and Bienenstock, J. (1996). Class II major histocompatibility complex antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J. Immunol. 156, 1408–14.Google Scholar
Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R., Granucci, F., Kraehenbuhl, J. P. and Ricciardi-Castagnoli, P. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat. Immunol. 2, 361–7.CrossRefGoogle ScholarPubMed
Rescigno, M., Rotta, G., Valzasina, B. and Ricciardi-Castagnoli, P. (2001). Dendritic cells shuttle microbes across gut epithelial monolayers. Immunobiology 204, 572–81.CrossRefGoogle ScholarPubMed
Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A., Vyas, J. M., Boes, M., Ploegh, H. L., Fox, J. G.et al. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–8.CrossRefGoogle ScholarPubMed
Rimoldi, M., Chieppa, M., Vulcano, M., Allavena, P. and Rescigno, M. (2004). Intestinal epithelial cells control dendritic cell function. Ann. N Y Acad. Sci. 1029, 1–9.CrossRefGoogle ScholarPubMed
Nagler-Anderson, C. (2001). Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1, 59–67.CrossRefGoogle ScholarPubMed
Viney, J. L., Mowat, A. M., O'Malley, J. M., Williamson, E. and Fanger, N. A. (1998). Expanding dendritic cells in vivo enhances the induction of oral tolerance. J. Immunol. 160, 5815–25.Google ScholarPubMed
Kunkel, D., Kirchhoff, D., Nishikawa, S., Radbruch, A. and Scheffold, A. (2003). Visualization of peptide presentation following oral application of antigen in normal and Peyer's patches-deficient mice. Eur. J. Immunol. 33, 1292–301.CrossRefGoogle ScholarPubMed
Kunisawa, J., Takahashi, I., Okudaira, A., Hiroi, T., Katayama, K., Ariyama, T., Tsutsumi, Y., Nakagawa, S., Kiyono, H. and Mayumi, T. (2002). Lack of antigen-specific immune responses in anti-interleukin-7 receptor alpha chain antibody-treated Peyer's patch-null mice following intestinal immunization with microencapsulated antigen. Eur. J. Immunol. 32, 2347–55.3.0.CO;2-V>CrossRefGoogle Scholar
Macpherson, A. J. and Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–5.CrossRefGoogle ScholarPubMed
Yoshida, M., Claypool, S. M., Wagner, J. S., Mizoguchi, E., Mizoguchi, A., Roopenian, D. C., Lencer, W. I. and Blumberg, R. S. (2004). Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–83.CrossRefGoogle ScholarPubMed
Weltzin, R., Lucia-Jandris, P., Michetti, P., Fields, B. N., Kraehenbuhl, J. P., and Neutra, M. R. (1989). Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J. Cell Biol. 108, 1673–85.CrossRefGoogle ScholarPubMed
Rey, J., Garin, N., Spertini, F. and Corthesy, B. (2004). Targeting of secretory IgA to Peyer's patch dendritic and T cells after transport by intestinal M cells. J. Immunol. 172, 3026–33.CrossRefGoogle Scholar
Huang, F. P., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D. and MacPherson, G. G. (2000). A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes, see comments. J. Exp. Med. 191, 435–44.CrossRefGoogle Scholar
Fleeton, M. N., Contractor, N., Leon, F., Wetzel, J. D., Dermody, T. S. and Kelsall, B. L. (2004). Peyer's patch dendritic cells process viral antigen from apoptotic epithelial cells in the intestine of reovirus-infected mice. J. Exp. Med. 200, 235–45.CrossRefGoogle ScholarPubMed
Shortman, K. and Liu, Y. J. (2002). Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–61.CrossRefGoogle ScholarPubMed
Iwasaki, A. and Kelsall, B. L. (2000). Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3alpha, MIP-3beta, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–94.CrossRefGoogle ScholarPubMed
Niedergang, F., Didierlaurent, A., Kraehenbuhl, J. P. and Sirard, J. C. (2004). Dendritic cells: the host Achille's heel for mucosal pathogens?Trends Microbiol. 12, 79–88.CrossRefGoogle ScholarPubMed
Bell, S. J., Rigby, R., English, N., Mann, S. D., Knight, S. C., Kamm, M. A. and Stagg, A. J. (2001). Migration and maturation of human colonic dendritic cells. J. Immunol. 166, 4958–67.CrossRefGoogle ScholarPubMed
Viala, J., Chaput, C., Boneca, I. G., Cardona, A., Girardin, S. E., Moran, A. P., Athman, R., Memet, S., Huerre, M. R., Coyle, A. J.et al. (2004). Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–74.CrossRefGoogle ScholarPubMed
Lala, S., Ogura, Y., Osborne, C., Hor, S. Y., Bromfield, A., Davies, S., Ogunbiyi, O., Nunez, G. and Keshav, S. (2003). Crohn's disease and the nucleotide-binding oligomerization domain2 gene: a role for paneth cells. Gastroenterology 125, 47–57.CrossRefGoogle Scholar
Rosenstiel, P., Fantini, M., Brautigam, K., Kuhbacher, T., Waetzig, G. H., Seegert, D. and Schreiber, S. (2003). Tnuclear factor-alpha and interferon-gamma regulate the expression of the nucleotide-binding oligomerization domain2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 124, 1001–9.CrossRefGoogle Scholar
Gutierrez, O., Pipaon, C., Inohara, N., Fontalba, A., Ogura, Y., Prosper, F., Nunez, G. and Fernandez-Luna, J. L. (2002). Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J. Biol. Chem. 277, 41701–5.CrossRefGoogle ScholarPubMed
Eckmann, L., Kagnoff, M. F. and Fierer, J. (1993). Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun. 61, 4569–74.Google ScholarPubMed
Jung, H. C., Eckmann, L., Yang, S. K., Panja, A., Fierer, J., Morzycka-Wroblewska, E. and Kagnoff, M. F. (1995). A distinct array of proinflammatory cytokines is expressed in human colon epithelial cells in response to bacterial invasion. J. Clin. Invest. 95, 55–65.CrossRefGoogle ScholarPubMed
McCormick, B. A., Colgan, S. P., Delp-Archer, C., Miller, S. I. and Madara, J. L. (1993). Salmonella typhimuriumattachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J. Cell Biol. 123, 895–907.Google ScholarPubMed
McCormick, B. A., Hofman, P. M., Kim, J., Carnes, D. K., Miller, S. I. and Madara, J. L. (1995). Surface attachment ofSalmonella typhimurium to intestinal epithelia imprints the subepithelial matrix with gradients chemotactic for neutrophils. J. Cell Biol. 131, 1599–608.Google Scholar
Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M. and Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–103.CrossRefGoogle ScholarPubMed
Sierro, F., Dubois, B., Coste, A., Kaiserlian, D., Kraehenbuhl, J. P. and Sirard, J. C. (2001). Flagellin stimulation of intestinal epithelial cells triggers CCL20-mediated migration of dendritic cells. Proc. Natl. Acad. Sci. U S A 98, 13722–7.CrossRefGoogle ScholarPubMed
Sozzani, S., Allavena, P., D'Amico, G., Luini, W., Bianchi, G., Kataura, M., Imai, T., Yoshie, O., Bonecchi, R. and Mantovani, A. (1998). Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J. Immunol. 161, 1083–6.Google ScholarPubMed
Gewirtz, A. T., Simon, P. O. Jr., Schmitt, C. K., Taylor, L. J., Hagedorn, C. H., O'Brien, A. D., Neish, A. S. and Madara, J. L. (2001). Salmonella typhimuriumtranslocates flagellin across intestinal epithelia, inducing a proinflammatory response. J. Clin. Invest. 107, 99–109.Google ScholarPubMed
Lyons, S., Wang, L., Casanova, J. E., Sitaraman, S. V., Merlin, D. and Gewirtz, A. T. (2004). Salmonella typhimuriumtranscytoses flagellin via an SPI2-mediated vesicular transport pathway. J. Cell Sci. 117, 5771–80.Google ScholarPubMed
Ramos, H. C., Rumbo, M. and Sirard, J. C. (2004). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends Microbiol. 12, 509–17.CrossRefGoogle ScholarPubMed
Rimoldi, M., Chieppa, M., Larghi, P., Vulcano, M., Allavena, P. and Rescigno, M. (2005). Monocyte-derived dendritic cells activated by bacteria or by bacteria-stimulated epithelial cells are functionally different. Blood 106, 2818–26.CrossRefGoogle ScholarPubMed
Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. and Medzhitov, R. (2004). Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–41.CrossRefGoogle ScholarPubMed
Kobayashi, K., Hernandez, L. D., Galan, J. E., Janeway, C. A. Jr., Medzhitov, R. and Flavell, R. A. (2002). interleukin-1R-associated kinase-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202.CrossRefGoogle Scholar
Janssens, S., Burns, K., Tschopp, J. and Beyaert, R. (2002). Regulation of interleukin-1- and lipopolysaccharide-induced nuclear factor-kappaB activation by alternative splicing of MyD88. Curr. Biol. 12, 467–71.CrossRefGoogle Scholar
Kelly, D., Campbell, J. I., King, T. P., Grant, G., Jansson, E. A., Coutts, A. G., Pettersson, S. and Conway, S. (2004). Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of peroxisome-proliferator-activated receptor-gamma and RelA. Nat. Immunol. 5, 104–12.CrossRefGoogle ScholarPubMed
Neish, A. S., Gewirtz, A. T., Zeng, H., Young, A. N., Hobert, M. E., Karmali, V., Rao, A. S. and Madara, J. L. (2000). Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289, 1560–3.CrossRefGoogle ScholarPubMed
Akbari, O., DeKruyff, R. H. and Umetsu, D. T. (2001). Pulmonary dendritic cells producing interleukin-10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2, 725–31.CrossRefGoogle ScholarPubMed
Alpan, O., Rudomen, G. and Matzinger, P. (2001). The role of dendritic cells, B cells, and M cells in gut-oriented immune responses. J. Immunol. 166, 4843–52.CrossRefGoogle Scholar
Iwasaki, A. and Kelsall, B. L. (1999). Freshly isolated Peyer's patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T helper type 2 cells. J. Exp. Med. 190, 229–39.CrossRefGoogle Scholar
Williamson, E., Bilsborough, J. M. and Viney, J. L. (2002). Regulation of mucosal dendritic cell function by receptor activator of nuclear factor-kappa B (RAnatural killer)/RAnatural killer ligand interactions: impact on tolerance induction. J. Immunol. 169, 3606–12.CrossRefGoogle Scholar
Iwasaki, A. and Kelsall, B. L. (2001). Unique functions of cd11b(+), cd8alpha(+), and double-negative Peyer's patch dendritic cells. J. Immunol. 166, 4884–90.CrossRefGoogle Scholar
Sato, A., Hashiguchi, M., Toda, E., Iwasaki, A., Hachimura, S. and Kaminogawa, S. (2003). CD11b+ Peyer's patch dendritic cells secrete interleukin-6 and induce IgA secretion from naive B cells. J. Immunol. 171, 3684–90.CrossRefGoogle ScholarPubMed
Stagg, A. J., Kamm, M. A. and Knight, S. C. (2002). Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur. J. Immunol. 32, 1445–54.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Mora, J. R., Bono, M. R., Manjunath, N., Weninger, W., Cavanagh, L. L., Rosemblatt, M. and Andrian, U. H. (2003). Selective imprinting of gut-homing T cells by Peyer's patch dendritic cells. Nature 424, 88–93.CrossRefGoogle ScholarPubMed
Johansson-Lindbom, B., Svensson, M., Wurbel, M. A., Malissen, B., Marquez, G. and Agace, W. (2003). Selective generation of gut tropic T cells in gut-associated lymphoid tissue (gut associated lymphoid tissue): requirement for gut associated lymphoid tissue dendritic cells and adjuvant. J. Exp. Med. 198, 963–9.CrossRefGoogle ScholarPubMed
Mora, J. R., Cheng, G., Picarella, D., Briskin, M., Buchanan, N. and Andrian, U. H. (2005). Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J. Exp. Med. 201, 303–16.CrossRefGoogle ScholarPubMed
Yrlid, U. and Macpherson, G. (2003). Phenotype and function of rat dendritic cell subsets. Apmis 111, 756–65.CrossRefGoogle ScholarPubMed
Turnbull, E. L., Yrlid, U., Jenkins, C. D. and Macpherson, G. G. (2005). Intestinal dendritic cell subsets: differential effects of systemic Toll-like receptor4 stimulation on migratory fate and activation in vivo. J. Immunol. 174, 1374–84.CrossRefGoogle Scholar
Smits, H. H., Beelen, A. J., Hessle, C., Westland, R., Jong, E., Soeteman, E., Wold, A., Wierenga, E. A. and Kapsenberg, M. L. (2004). Commensal Gram-negative bacteria prime human dendritic cells for enhanced interleukin-23 and interleukin-27 expression and enhanced Th1 development. Eur. J. Immunol. 34, 1371–80.CrossRefGoogle Scholar
Smits, H. H., Engering, A., Kleij, D., Jong, E. C., Schipper, K., Capel, T. M., Zaat, B. A., Yazdanbakhsh, M., Wierenga, E. A., Kooyk, Y. and Kapsenberg, M. L. (2005). Selective probiotic bacteria induce interleukin-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol. 115, 1260–7.CrossRefGoogle Scholar
Svensson, M., Maroof, A., Ato, M. and Kaye, P. M. (2004). Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805–16.CrossRefGoogle ScholarPubMed
Zhang, M., Tang, H., Guo, Z., An, H., Zhu, X., Song, W., Guo, J., Huang, X., Chen, T., Wang, J. and Cao, X. (2004). Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5, 1124–33.CrossRefGoogle ScholarPubMed
Soumelis, V. and Liu, Y. J. (2004). Human thymic stromal lymphopoietin: a novel epithelial cell-derived cytokine and a potential key player in the induction of allergic inflammation. Springer Semin. Immunopathol. 25, 325–33.CrossRefGoogle Scholar
Soumelis, V., Reche, P. A., Kanzler, H., Yuan, W., Edward, G., Homey, B., Gilliet, M., Ho, S., Antonenko, S., Lauerma, A.et al. (2002). Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing thymic stromal lymphopoietin. Nat. Immunol. 3, 673–80.CrossRefGoogle Scholar
Rimoldi, M., Chieppa, M., Salucci, V., Avogadri, F., Sonzogni, A., Sampietro, G. M., Nespoli, A., Viale, G., Allavena, P. and Rescigno, M. (2005). Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–14.CrossRefGoogle ScholarPubMed
Kosiewicz, M. M., Nast, C. C., Krishnan, A., Rivera-Nieves, J., Moskaluk, C. A., Matsumoto, S., Kozaiwa, K. and Cominelli, F. (2001). Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn's disease. J. Clin. Invest. 107, 695–702.CrossRefGoogle Scholar
Mastroeni, P. and Menager, N. (2003). Development of acquired immunity toSalmonella. J. Med. Microbiol. 52, 453–9.CrossRefGoogle Scholar
Hess, J., Ladel, C., Miko, D. and Kaufmann, S. H. (1996). Salmonella typhimuriumaroA– infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-alpha beta cells and interferon-gamma in bacterial clearance independent of intracellular location. J. Immunol. 156, 3321–6.Google ScholarPubMed
George, A. (1996). Generation of gamma interferon responses in murine Peyer's patches following oral immunization. Infect. Immun. 64, 4606–11.Google ScholarPubMed
Liesenfeld, O., Kosek, J. C. and Suzuki, Y. (1997). Gamma interferon induces Fas-dependent apoptosis of Peyer's patch T cells in mice following peroral infection withToxoplasma gondii. Infect. Immun. 65, 4682–9.Google ScholarPubMed
Vossenkamper, A., Struck, D., Alvarado-Esquivel, C., Went, T., Takeda, K., Akira, S., Pfeffer, K., Alber, G., Lochner, M., Forster, I. and Liesenfeld, O. (2004). Both interleukin-12 and interleukin-18 contribute to small intestinal Th1-type immunopathology following oral infection withToxoplasma gondii, but interleukin-12 is dominant over interleukin-18 in parasite control. Eur. J. Immunol. 34, 3197–207.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×