Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-23T07:34:48.877Z Has data issue: false hasContentIssue false

10 - Further Uses of Rounding Data and Dynamic Programming

from II - Further Uses of the Techniques

Published online by Cambridge University Press:  05 June 2012

David P. Williamson
Affiliation:
Cornell University, New York
David B. Shmoys
Affiliation:
Cornell University, New York
Get access

Summary

In this chapter, we return to the technique of applying dynamic programming via rounding data. We look at two, more technically difficult, applications of this technique to find polynomial-time approximation schemes for two different problems.

First, we consider the traveling salesman problem, introduced in Section 2.4, for instances in which the cities are points in the Euclidean plane and the cost of traveling between two cities is the Euclidean distance between the corresponding points. In this case the dynamic program works by recursively dividing the plane into squares. Starting with the smallest squares, we compute the least-cost set of paths for visiting all the cities in the squares, then use these to compute solutions for larger squares. We can show that the optimal tour can be modified at low cost such that it doesn't enter and exit any square too many times; this “rounding” of the optimal tour makes it possible to solve the dynamic program in polynomial time. This technique turns out to be widely applicable to problems in the Euclidean plane, including the Steiner tree problem and the k-median problem for Euclidean instances.

Second, we consider the maximum independent set problem in planar graphs. We show that the maximum independent set problem is easy to solve on trees, and can be solved in graphs that are “treelike.” We can measure how close a graph is to being a tree via a parameter called its treewidth, and we give an algorithm to solve the maximum independent set problem in time that is polynomial in the number of vertices and exponential in the treewidth of the input graph.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×