from I - An Introduction to the Techniques
Published online by Cambridge University Press: 05 June 2012
We now turn to a new tool that gives substantially improved performance guarantees for some problems. So far we have used linear programming relaxations to design and analyze various approximation algorithms. In this section, we show how nonlinear programming relaxations can give us better algorithms than we know how to obtain via linear programming; in particular we use a type of nonlinear program called a semidefinite program. Part of the power of semidefinite programming is that semidefinite programs can be solved in polynomial time.
We begin with a brief overview of semidefinite programming. Throughout the chapter we assume some basic knowledge of vectors and linear algebra; see the notes at the end of the chapter for suggested references on these topics. We then give an application of semidefinite programming to approximating the maximum cut problem. The algorithm for this problem introduces a technique of rounding the semidefinite program by choosing a random hyperplane. We then explore other problems for which choosing a random hyperplane, or multiple random hyperplanes, is useful, including approximating quadratic programs, approximating clustering problems, and coloring 3-colorable graphs.
A Brief Introduction to Semidefinite Programming
Semidefinite programming uses symmetric, positive semidefinite matrices, so we briefly review a few properties of these matrices. In what follows, XT< is the transpose of the matrix X, and vectors v ∈ ℛn are assumed to be column vectors, so that vTv is the inner product of v with itself, while vvT is an n by n matrix.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.