Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-28T03:02:02.318Z Has data issue: false hasContentIssue false

Chapter 7 - Differential diagnosis I: diseases, dysplasias, and syndromes

from Section I - Skeletal trauma

Published online by Cambridge University Press:  05 September 2015

Paul K. Kleinman
Affiliation:
Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
Paula W. Brill
Affiliation:
Chief of the Division of Pediatric Radiology at the New York-Presbyterian Hospital-Weill Cornell Center and Professor of Radiology and Pediatrics at Weill Cornell Medical College, New York, New York, USA
Paul K. Kleinman
Affiliation:
Children's Hospital Boston
Get access

Summary

Introduction

The differential diagnosis of the skeletal lesions of child abuse includes a variety of naturally occurring diseases, dysplasias, and syndromes. They may be characterized by fractures, subperiosteal new bone formation (SPNBF), irregular metaphyses, and miscellaneous osseous alterations that suggest a traumatic etiology (Table 7.1). The findings can occur in isolation or in combination, creating complex imaging patterns. In many entities, associated radiologic features allow differentiation from abuse. In most others, proper diagnosis is established by a systematic analysis of the history, clinical, and laboratory findings, in conjunction with the imaging alterations. This chapter discusses a variety of diseases in which the skeletal abnormalities may be a source of potential confusion with child abuse. Rickets, including osteopenia of prematurity (see Chapter 8), osteogenesis imperfecta (see Chapter 9), accidental injuries (see Chapter 10), obstetric injuries (see Chapter 11), and normal variants (see Chapter 12) are covered separately.

Inherited bone dysplasias

The diagnosis of child abuse is sometimes entertained at the initial presentation of infants with inherited bone dysplasias, which are extensively catalogued in the On Line Mendelian Inheritance in Man (OMIM®) with unique phenotype MIM numbers (1, 2). The conditions which can potentially lead to the mistaken diagnosis of child abuse are those with metaphyseal irregularity and fragmentation. Langer and colleagues described a form of spondylometaphyseal dysplasia (SMD) with metaphyseal fragmentation similar to that noted with abuse, and termed this condition SMD, Sutcliffe/corner fracture type (MIM 184255) (3–5). Patients with this disorder are short, with progressive coxa vara. The condition is genetically transmitted, with either autosomal or X-linked dominant inheritance. Although the radiographic features are strikingly similar to those in child abuse, the long bones are short and dysplastic and the spine is abnormal (Fig. 7.1). With weightbearing, remodeling, and evolution of the dysplastic features, conspicuous medial metaphyseal fragments may be associated with tibia vara (Fig. 7.2).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Warman, ML, Cormier-Daire, V, Hall, C, Krakow, D, Lachman, R, LeMerrer, M, et al. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A. 2011;155A(5):943–68.CrossRefGoogle ScholarPubMed
Online Mendelian Inheritance in Man, OMIM®. Johns Hopkins University 2013 [cited 7/9/2013]. Available from: .
Langer, LO, Brill, PW, Ozonoff, MB, Pauli, RM, Wilson, WG, Alford, BA, et al. Spondylometaphyseal dysplasia, corner fracture type: a heritable condition associated with coxa vara. Radiology. 1990;175(3):761–6.CrossRefGoogle ScholarPubMed
Spranger, J, Brill, P, Nishimura, G, Superti-Furga, A, Unger, S. Bone Dysplasias: An Atlas of Genetic Disorders of Skeletal Development, 3rd edn. New York, NY: Oxford University Press; 2012.CrossRefGoogle Scholar
Lachman, RS. Taybi and Lachman’s Radiology of Syndromes, Metabolic Disorders and Skeletal Dysplasias, 5th edn. St. Louis, MO: Mosby; 2007.Google Scholar
Kleinman, PK. Schmid-like metaphyseal chondrodysplasia simulating child abuse. AJR. 1991;156(3):576–8.CrossRefGoogle ScholarPubMed
Currarino, G, Birch, JG, Herring, JA. Developmental coxa vara associated with spondylometaphyseal dysplasia (DCV/SMD): “SMD-corner fracture type” (DCV/SMD-CF) demonstrated in most reported cases. Pediatr Radiol. 2000;30(1):14–24.CrossRefGoogle ScholarPubMed
Savarirayan, R, Cormier-Daire, V, Lachman, RS, Rimoin, DL. Schmid type metaphyseal chondrodysplasia: a spondylometaphyseal dysplasia identical to the “Japanese” type. Pediatr Radiol. 2000;30(7):460–3.CrossRefGoogle ScholarPubMed
Coote, JM, Steward, CG, Grier, DJ. Bilateral acromial fractures in an infant with malignant osteopetrosis. Clin Radiol. 2000;55(1):70–2.CrossRefGoogle Scholar
Kalideen, JM, Satyapal, KS. Fractures of the acromion in tetanus neonatorum [corrected]. Clin Radiol. 1994;49(8):563–5.CrossRefGoogle Scholar
Jacoby, J, Nicholls, AJ, Clarke, NM, Fairhurst, J. Bilateral acromial fractures in a neonate with epileptic encephalopathy. Pediatr Radiol. 2011;41(6):788–9.CrossRefGoogle Scholar
Dahl, N, Holmgren, G, Holmberg, S, Ersmark, H. Fracture patterns in malignant osteopetrosis (Albers–Schonberg disease). Arch Orthop Trauma Surg. 1992;111(2):121–3.CrossRefGoogle Scholar
Shapiro, F. Osteopetrosis. Current clinical considerations. Clin Orthop Relat Res. 1993(294):34–44.
Donnelly, LF, Johnson, JF, Benzing, G. Infantile osteopetrosis complicated by rickets. AJR. 1995;164(4):968–70.CrossRefGoogle ScholarPubMed
Gonen, KA, Yazici, Z, Gokalp, G, Ucar, AK. Infantile osteopetrosis with superimposed rickets. Pediatr Radiol. 2013;43(2):189–95.CrossRefGoogle ScholarPubMed
Makari, GS, Carroll, JE, Burton, EM. Hereditary sensory neuropathy manifesting as possible child abuse. Pediatrics. 1994;93(5):842–4.Google ScholarPubMed
Solomon, A, Rosen, E. The aspect of trauma in the bone changes of congenital lues. Pediatr Radiol. 1975;3(3):176–8.CrossRefGoogle ScholarPubMed
Bar-On, E, Weigl, D, Parvari, R, Katz, K, Weitz, R, Steinberg, T. Congenital insensitivity to pain. Orthopaedic manifestations. J Bone Joint Surg Br. 2002;84(2):252–7.CrossRefGoogle ScholarPubMed
Spencer, JA, Grieve, DK. Congenital indifference to pain mistaken for non-accidental injury. Br J Radiol. 1990;63(748):308–10.CrossRefGoogle ScholarPubMed
Silverman, F, Gilden, J. Congenital insensitivity to pain: a neurologic syndrome with bizarre skeletal lesions. Radiology. 1959;72(2):176–90.CrossRefGoogle ScholarPubMed
Siegelman, SS, Heimann, WG, Manin, MC. Congenital indifference to pain. AJR Am J Roentgenol Radium Ther Nucl Med. 1966;97(1):242–7.CrossRefGoogle ScholarPubMed
Apkon, SD, Fenton, L, Coll, JR. Bone mineral density in children with myelomeningocele. Dev Med Child Neurol. 2009;51(1):63–7.CrossRefGoogle ScholarPubMed
Boytim, MJ, Davidson, RS, Charney, E, Melchionni, JB. Neonatal fractures in myelomeningocele patients. J Pediatr Orthop. 1991;11(1):28–30.CrossRefGoogle ScholarPubMed
Waltenspuhl, V. Traumatisch bedingte Knochenlasionen bei Meninogomyelocelen. Ann Paediatr (Gr). 1963;200:280–304.Google Scholar
Gyepes, M, Newbern, D, Neuhauser, E. Metaphyseal and physeal injuries in children with spina bifida and meningomyeloceles. AMJ Am J Roentgenol. 1965;95:168–77.CrossRefGoogle ScholarPubMed
Lock, TR, Aronson, DD. Fractures in patients who have myelomengocele. J Bone Joint Surg Am. 1989;71(8):1153–7.CrossRefGoogle Scholar
Roberts, JA, Bennet, GC, MacKenzie, JR. Physeal widening in children with myelomeningocele. J Bone Joint Surg Br. 1989;71(1):30–2.CrossRefGoogle ScholarPubMed
Asirdizer, M, Zeyfeoglu, Y. Femoral and tibial fractures in a child with myelomeningocele. J Clin Forensic Med. 2005;12(2):93–7.CrossRefGoogle Scholar
Henderson, RC, Lark, RK, Gurka, MJ, Worley, G, Fung, EB, Conaway, M, et al. Bone density and metabolism in children and adolescents with moderate to severe cerebral palsy. Pediatrics. 2002;110(1 Pt. 1):e5.CrossRefGoogle ScholarPubMed
Stevenson, RD, Conaway, M, Barrington, JW, Cuthill, SL, Worley, G, Henderson, RC. Fracture rate in children with cerebral palsy. Pediatr Rehabil. 2006;9(4):396–403.CrossRefGoogle ScholarPubMed
Uddenfeldt Wort, U, Nordmark, E, Wagner, P, Düppe, H, Westbom, L. Fractures in children with cerebral palsy: a total population study. Dev Med Child Neurol. 2013;55(9):821–6.CrossRefGoogle ScholarPubMed
Gniatkowska-Nowakowska, A. Fractures in epilepsy children. Seizure. 2010;19(6):324–5.CrossRefGoogle ScholarPubMed
Ballal, MS, Dawoodi, A, Sampath, J, Bass, A. Traumatic transepiphyseal separation of the upper femoral epiphysis following seizures in two children with cerebral palsy. J Bone Joint Surg Br. 2008;90(3):382–4.CrossRefGoogle ScholarPubMed
Aoudi, K, Vialle, R, Thevenin-Lemoine, C, Abelin, K, Mary, P, Damsin, JP. Traumatic transepiphyseal separation of the upper femoral epiphysis following seizures in a five-month-old child: a case report. Childs Nerv Syst. 2009;25(8):1039–41.CrossRefGoogle Scholar
Grayev, A, Boal, D, Wallach, D, Segal, L. Metaphyseal fractures mimicking abuse during treatment for clubfoot. Pediatr Radiol. 2001;31(8):559–63.CrossRefGoogle ScholarPubMed
Kleinman, PK. Problems in the diagnosis of metaphyseal fractures. Pediatr Radiol. 2008;38(Suppl.3):S388–94.CrossRefGoogle Scholar
Taylor, MN, Chaudhuri, R, Davis, J, Novelli, V, Jaswon, MS. Childhood osteomyelitis presenting as a pathological fracture. Clin Radiol. 2008;63(3):348–51.CrossRefGoogle ScholarPubMed
Aroojis, AJ, Johari, AN. Epiphyseal separations after neonatal osteomyelitis and septic arthritis. J Pediatr Orthop. 2000;20(4):544–9.CrossRefGoogle ScholarPubMed
Kaye, JJ, Winchester, PH, Freiberger, RH. Neonatal septic “dislocation” of the hip: true dislocation or pathological epiphyseal separation?Radiology. 1975;114(3):671–4.CrossRefGoogle ScholarPubMed
Ribe, JK, Changsri, C. A case of traumatic osteomyelitis in a victim of child abuse. Am J Forensic Med Pathol. 2008;29(2):164–6.CrossRefGoogle Scholar
Thacker, PG, Binkovitz, LA, Thomas, KB. Deficiency of interleukin-1-receptor antagonist syndrome: a rare auto-inflammatory condition that mimics multiple classic radiographic findings. Pediatr Radiol. 2012;42(4):495–8.CrossRefGoogle ScholarPubMed
Grogan, DP, Love, SM, Ogden, JA, Millar, EA, Johnson, LO. Chondro-osseous growth abnormalities after meningococcemia. A clinical and histopathological study. J Bone Joint Surg Am. 1989;71(6):920–8.CrossRefGoogle ScholarPubMed
Patriquin, HB, Trias, A, Jecquier, S, Marton, D. Late sequelae of infantile meningococcemia in growing bones of children. Radiology. 1981;141(1):77–82.CrossRefGoogle ScholarPubMed
Kleinman, PK. A regional approach to osteomyelitis of the lower extremities in children. Radiol Clin North Am. 2002;40(5):1033–59.CrossRefGoogle ScholarPubMed
Berry, MC, Dajani, AS. Resurgence of congenital syphilis. Infect Dis Clin North Am. 1992;6(1):19–29.Google ScholarPubMed
Connors, JM, Schubert, C, Shapiro, R. Syphilis or abuse: making the diagnosis and understanding the implications. Pediatr Emerg Care. 1998;14(2):139–42.CrossRefGoogle ScholarPubMed
Brion, LP, Manuli, M, Rai, B, Kresch, MJ, Pavlov, H, Glaser, J. Long-bone radiographic abnormalities as a sign of active congenital syphilis in asymptomatic newborns. Pediatrics. 1991;88(5):1037–40.Google ScholarPubMed
Caffey, J. Syphilis of the skeleton in early infancy: the nonspecificity of many of the roentgenographic changes. Am J Roentgenol Radium Ther. 1939;42:637–55.Google Scholar
Zhou, Q, Wang, L, Chen, C, Cao, Y, Yan, W, Zhou, W. A case series of 130 neonates with congenital syphilis: preterm neonates had more clinical evidences of infection than term neonates. Neonatology. 2012;102(2):152–6.CrossRefGoogle ScholarPubMed
Levin, TL, Schulman, M, Zieba, P, Goldman, HS. Absence of lower extremity ossification centers in term infants with congenital syphilis. J Perinatol. 1994;14(2):106–9.Google ScholarPubMed
Coley, BD, ed.-in-chief. Caffey’s Pediatric Diagnostic Imaging, 12th edn. Philadelphia, PA: W. B. Saunders; 2013.
Fiser, RH, Kaplan, J, Holder, JC. Congenital syphilis mimicking the battered child syndrome. How does one tell them apart?Clin Pediatr. 1972;11(5):305–7.CrossRefGoogle ScholarPubMed
Gurry, DL, Porter, PA, Evans, DT. Congenital syphilis: when the medium fails to transmit the message. Med J Aust. 1993;159(2):121–4.Google ScholarPubMed
Lim, HK, Smith, WL, Sato, Y, Choi, J. Congenital syphilis mimicking child abuse. Pediatr Radiol. 1995;25(7):560–1.CrossRefGoogle ScholarPubMed
Larralde, M, Santos Munoz, A, Boggio, P, Di Gruccio, V, Weis, I, Schygiel, A. Scurvy in a 10-month-old boy. Int J Dermatol. 2007;46(2):194–8.CrossRefGoogle Scholar
Ghedira Besbes, L, Haddad, S, Ben Meriem, C, Golli, M, Najjar, MF, Guediche, MN. Infantile scurvy: two case reports. Int J Pediatr. 2010:2010;717518.
Verma, S, Sivanandan, S, Aneesh, MK, Gupta, V, Seth, R, Kabra, S. Unilateral proptosis and extradural hematoma in a child with scurvy. Pediatr Radiol. 2007;37(9):937–9.CrossRefGoogle Scholar
Duggan, CP, Westra, SJ, Rosenberg, AE. Case records of the Massachusetts General Hospital. Case 23–2007. A 9-year-old boy with bone pain, rash, and gingival hypertrophy. N Engl J Med. 2007;357(4):392–400.CrossRefGoogle ScholarPubMed
Brickley, M, Ives, R. Skeletal manifestations of infantile scurvy. Am J Phys Anthropol. 2006;129(2):163–72.CrossRefGoogle ScholarPubMed
Fain, O. Musculoskeletal manifestations of scurvy. Joint Bone Spine. 2005;72(2):124–8.CrossRefGoogle ScholarPubMed
Clemetson, CA. Child abuse or Barlow’s disease?Pediatr Int. 2003;45(6):758.CrossRefGoogle ScholarPubMed
Mimasaka, S, Funayama, M, Adachi, N, Nata, M, Morita, M. A fatal case of infantile scurvy. Int J Legal Med. 2000;114(1–2):122–4.CrossRefGoogle ScholarPubMed
Hoeffel, J, Lascombes, P, Mainard, L, Durup de Baleine, D. Cone epiphysis of the knee and scurvy. Eur J Pediatr Surg. 1993;3(3):186–9.CrossRefGoogle ScholarPubMed
Lips, P. Hypervitaminosis A and fractures. N Engl J Med. 2003;348(4):347–9.CrossRefGoogle ScholarPubMed
Hough, S, Avioli, LV, Muir, H, Gelderblom, D, Jenkins, G, Kurasi, H, et al. Effects of hypervitaminosis A on the bone and mineral metabolism of the rat. Endocrinology. 1988;122(6):2933–9.CrossRefGoogle ScholarPubMed
Caffey, J. Traumatic cupping of the metaphyses of growing bones. AJR Am J Roentgenol Radium Ther Nucl Med. 1970;108:451–60.CrossRefGoogle ScholarPubMed
Caffey, J. Infantile cortical hyperostoses: preliminary report on a new syndrome. Am J Roentgenol Radium Ther. 1945;54:1–16.Google Scholar
Nistala, H, Mäkitie, O, Jüppner, H. Caffey disease: new perspectives on old questions. Bone. 2014;60:246–51.CrossRefGoogle ScholarPubMed
Prior, AR, Moldovan, O, Azevedo, A, Moniz, C. Caffey disease in neonatal period: the importance of the family! BMJ Case Rep. 2012;Oct 9:2012.
Yousefzadeh, D, Brosnan, P. Infantile cortical hyperostosis, Caffey’s disease, involving two cousins. Skeletal Radiol. 1979;4:141–7.CrossRefGoogle Scholar
Emmery, L, Timmermans, J, Christens, J, Fryns, JP. Familial infantile cortical hyperostosis. Eur J Pediatr. 1983;141(1):56–8.CrossRefGoogle ScholarPubMed
Katz, DS, Eller, DJ, Bergman, G, Blankenberg, FG. Caffey’s disease of the scapula: CT and MR findings. AJR. 1997;168(1):286–7.CrossRefGoogle ScholarPubMed
Saatci, I, Brown, JJ, McAlister, WH. MR findings in a patient with Caffey’s disease. Pediatr Radiol. 1996;26(1):68–70.CrossRefGoogle Scholar
Hasegawa, S, Ichiyama, T, Matsubara, T, Tokuda, O, Furukawa, S. Caffey disease in a six-month-old girl. Eur J Pediatr. 2004;163(3):175–6.CrossRefGoogle Scholar
Tien, R, Barron, BJ, Dhekne, RD. Caffey’s disease: nuclear medicine and radiologic correlation: a case of mistaken identity. Clin Nucl Med. 1988;13(8):583–5.CrossRefGoogle ScholarPubMed
Medlin, VL. Hypertrophic osteoarthropathy in children. Radiology. 1960;74(3):414–19.CrossRefGoogle Scholar
McGuire, MM, Demehri, S, Kim, HB, Kamin, D. Hypertrophic osteoarthropathy in intestinal transplant recipients. J Pediatr Surg. 2010;45(11):e19–22.CrossRefGoogle ScholarPubMed
el-Tawil, T, Stoker, DJ. Benign osteopetrosis: a review of 42 cases showing two different patterns. Skeletal Radiol. 1993;22(8):587–93.CrossRefGoogle ScholarPubMed
Fulkerson, JP, Ozonoff, MB. Multiple symmetrical fractures of bone of unresolved etiology. AJR. 1977;129(2):313–16.CrossRefGoogle ScholarPubMed
Hussain, M, Wood, BP. Periosteal new bone of ribs with associated extremity fractures after high-frequency jet ventilation. Radiology. 1992;183(3):875.CrossRefGoogle ScholarPubMed
Kopelman, AE, Minnefor, AB, Halsted, CC. Osteomalacia and spontaneous fractures in twins with congenital cytomegalic inclusion disease. J Pediatr. 1972;81(1):101–5.CrossRefGoogle ScholarPubMed
McDowell, CL, Moore, JD. Multiple fractures in a child: the osteoporosis pseudoglioma syndrome. A case report. J Bone Joint Surg Am. 1992;74(8):1247–9.CrossRefGoogle Scholar
Starinsky, R. Multifocal chronic osteomyelitis with exuberant periosteal formation. Pediatr Radiol. 1991;21(6):455–6.CrossRefGoogle ScholarPubMed
Wadhwa, N, Balsam, D, Ciminera, P. Hypertrophic osteoarthropathy in a young child with adult respiratory stress syndrome (ARDS) secondary to burns. Pediatr Radiol. 1992;22(7):539–40.CrossRefGoogle Scholar
Gardiner, J, Zauk, A, Donchey, S, McInerney, V. Prostaglandin-induced cortical hyperostosis. J Bone Joint Surg Am. 1995;77A(6):932–6.CrossRefGoogle Scholar
Ringel, RE, Brenner, JI, Haney, PJ, Burns, JE, Moulton, AL, Berman, MA. Prostaglandin-induced periostitis: a complication of long-term PGE1 infusion in an infant with congenital heart disease. Radiology. 1982;142(3):657–8.CrossRefGoogle Scholar
Kogutt, MS, Lovretich, JO. Periosteal reaction of the long bones associated with extracorporeal membrane oxygenation: cause and effect?Pediatr Radiol. 1999;29(10):797–8.CrossRefGoogle Scholar
Feinstein, KA, Fernbach, SK. Periosteal reaction of the ribs in neonates treated with extracorporeal membrane oxygenation: prevalence and association with soft-tissue swelling. AJR. 1993;160(3):587–9.CrossRefGoogle ScholarPubMed
Babhulkar, SS, Pande, K, Babhulkar, S. The hand–foot syndrome in sickle-cell haemoglobinopathy. J Bone Joint Surg Br. 1995;77(2):310–12.CrossRefGoogle ScholarPubMed
Nixon, GW, Gwinn, JL. The roentgen manifestations of leukemia in infancy. Radiology. 1973;107(3):603–9.CrossRefGoogle ScholarPubMed
Gallagher, D, Heinrich, SD, Craver, R, Ward, K, Warrier, R. Skeletal manifestations of acute leukemia in childhood. Orthopedics. 1991;14(4):485–92.Google ScholarPubMed
McClain, JL, Clark, MA, Sandusky, GE. Undiagnosed, untreated acute lymphoblastic leukemia presenting as suspected child abuse. J Forensic Sci. 1990;35(3):735–9.CrossRefGoogle ScholarPubMed
Schwyzer, R, Sherman, GG, Cohn, RJ, Poole, JE, Willem, P. Granulocytic sarcoma in children with acute myeloblastic leukemia and t(8;21). Med Pediatr Oncol. 1998;31(3):144–9.3.0.CO;2-B>CrossRefGoogle Scholar
Kassarjian, A, Zurakowski, D, Dubois, J, Paltiel, HJ, Fishman, SJ, Burrows, PE. Infantile hepatic hemangiomas: clinical and imaging findings and their correlation with therapy. AJR. 2004;182(3):785–95.CrossRefGoogle ScholarPubMed
Schwartz, AM, Leonidas, JC. Methotrexate osteopathy. Skeletal Radiol. 1984;11(1):13–16.CrossRefGoogle ScholarPubMed
Segal, LS, Palumbo, RC, Robertson, WW. The development of rickets as a complication of chemotherapy for the treatment of Wilms tumor. Orthopedics. 1995;18(3):261–4.Google ScholarPubMed
Sweeney, LE. Hypophosphatemic rickets after ifosfamide treatment in children. Clin Radiol. 1993;47(5):345–7.CrossRefGoogle ScholarPubMed
Grissom, LE, Griffin, GC, Mandell, GA. Hypervitaminosis A as a complication of treatment for neuroblastoma. Pediatr Radiol. 1996;26(3):200–2.CrossRefGoogle ScholarPubMed
Brill, PW, Winchester, P, Giardina, PJ, Cunningham-Rundles, S. Deferoxamine-induced bone dysplasia in patients with thalassemia major. AJR. 1991;156(3):561–5.CrossRefGoogle ScholarPubMed
Miller, TT, Caldwell, G, Kaye, JJ, Arkin, S, Burke, S, Brill, PW. MR imaging of deferoxamine-induced bone dysplasia in an eight-year-old female with thalassemia major. Pediatr Radiol. 1993;23(7):523–4.CrossRefGoogle Scholar
Chan, Y, Li, C, Chu, WC, Pang, L, Cheng, JC, Chik, KW. Deferoxamine-induced bone dysplasia in the distal femur and patella of pediatric patients and young adults: MR imaging appearance. AJR. 2000;175(6):1561–6.CrossRefGoogle Scholar
Shaw, JC. Copper deficiency and non-accidental injury. Arch Dis Child. 1988;63(4):448–55.CrossRefGoogle ScholarPubMed
Levy, J, Berdon, WE, Abramson, SJ. Epiphyseal separation simulating pyarthrosis, secondary to copper deficiency, in an infant receiving total parenteral nutrition. Br J Radiol. 1984;57(679):636–8.CrossRefGoogle Scholar
Chapman, S. Child abuse or copper deficiency? A radiological view. BMJ (Clin Res Ed). 1987;294(6584):1370.CrossRefGoogle ScholarPubMed
Marquardt, ML, Done, SL, Sandrock, M, Berdon, WE, Feldman, KW. Copper deficiency presenting as metabolic bone disease in extremely low birth weight, short-gut infants. Pediatrics. 2012;130(3):e695–8.CrossRefGoogle ScholarPubMed
Carty, H. Brittle or battered. Arch Dis Child. 1988;63(4):350–2.CrossRefGoogle ScholarPubMed
Paterson, CR. Child abuse or copper deficiency?BMJ (Clin Res Ed). 1987;295(6591):213–14.CrossRefGoogle ScholarPubMed
Paterson, CR. Osteogenesis imperfecta and other bone disorders in the differential diagnosis of unexplained fractures. J R Soc Med. 1990;83(2):72–4.CrossRefGoogle ScholarPubMed
Paterson, CR, Burns, J, McAllion, SJ. Osteogenesis imperfecta: the distinction from child abuse and the recognition of a variant form. Am J Med Genet. 1993;45(2):187–92.CrossRefGoogle ScholarPubMed
Carty, H. Osteogenesis imperfecta, non-accidental injury, and temporary brittle bone disease. Arch Dis Child. 1995;72:172–4.CrossRefGoogle Scholar
Judgement of the honourable Mr. Justice Hollis in Wardship Proceedings. Middlesbrough, UK; 1987.
Regina vs. Lees and Lees, Lord Justice Lane; 1987.
Taitz, LS, Taylor, CJ. Correspondence. Copper deficiency and non-accidental injury. Arch Dis Child. 1988;63(9):1111–16.CrossRefGoogle ScholarPubMed
Wynne, JM, Hobbs, CJ. Osteogenesis imperfecta, non-accidental injury and temporary brittle bone disease. Arch Dis Child. 1995;72(2):171–2.
Amador, E, Domene, R, Fuentes, C, Carreno, JC, Enriquez, G. Long-term skeletal findings in Menkes disease. Pediatr Radiol. 2010;40(8):1426–9.CrossRefGoogle ScholarPubMed
Hill, SC, Dwyer, AJ, Kaler, SG. Cervical spine anomalies in Menkes disease: a radiologic finding potentially confused with child abuse. Pediatr Radiol. 2012;42(11):1301–4.CrossRefGoogle ScholarPubMed
Adams, PC, Strand, RD, Bresnan, MJ, Lucky, AW. Kinky hair syndrome: serial study of radiological findings with emphasis on the similarity to the battered child syndrome. Radiology. 1974;112(2):401–7.CrossRefGoogle ScholarPubMed
Wesenberg, RL, Gwinn, JL, Barnes, GR. Radiological findings in the kinky-hair syndrome. Radiology. 1969;92(3):500–6.CrossRefGoogle ScholarPubMed
Jacobs, DS, Smith, AS, Finelli, DA, Lanzieri, CF, Wiznitzer, M. Menkes kinky hair disease: characteristic MR angiographic findings. AJNR Am J Neuroradiol. 1993;14(5):1160–3.Google ScholarPubMed
Bacopoulou, F, Henderson, L, Philip, SG. Menkes disease mimicking non-accidental injury. Arch Dis Child. 2006;91(11):919.CrossRefGoogle ScholarPubMed
Nassogne, MC, Sharrard, M, Hertz-Pannier, L, Armengaud, D, Touati, G, Delonlay-Debeney, P, et al. Massive subdural haematomas in Menkes disease mimicking shaken baby syndrome. Childs Nerv Syst. 2002;18(12):729–31.CrossRefGoogle ScholarPubMed
Levin, TL, Berdon, WE, Lachman, RS, Anyane-Yeboa, K, Ruzal-Shapiro, C, Roye, DPLumbar gibbus in storage diseases and bone dysplasias. Pediatr Radiol. 1997;27(4):289–94.CrossRefGoogle ScholarPubMed
Mahnken, AH, Staatz, G, Hermanns, B, Gunther, RW, Weber, M. Congenital pseudarthrosis of the tibia in pediatric patients: MR imaging. AJR. 2001;177(5):1025–9.CrossRefGoogle ScholarPubMed
Talbot, JC, Gummerson, NW, Kluge, W, Shaw, DL, Groves, C, Lealman, GT. Osteoporotic femoral fracture in a child with propionic acidaemia presenting as non-accidental injury. Eur J Pediatr. 2006;165(7):496–7.CrossRefGoogle Scholar
Kozlowski, K, Masel, J, Sillence, DO, Arbuckle, S, Juttnerova, V. Gracile bone dysplasias. Pediatr Radiol. 2002;32(9):629–34.CrossRefGoogle ScholarPubMed
Widhe, TL. A probable new type of osteopenic bone disease. Pediatr Radiol. 2002;32(6):447–51.CrossRefGoogle ScholarPubMed
Udler, Y, Halpern, GJ, Lachman, RS, Rimoin, DL, Shohat, M. Pathological fractures in spondyloenchondrodysplasia: case report. Pediatr Radiol. 2000;30(2):119–20.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Differential diagnosis I: diseases, dysplasias, and syndromes
    • By Paul K. Kleinman, Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA, Paula W. Brill, Chief of the Division of Pediatric Radiology at the New York-Presbyterian Hospital-Weill Cornell Center and Professor of Radiology and Pediatrics at Weill Cornell Medical College, New York, New York, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Differential diagnosis I: diseases, dysplasias, and syndromes
    • By Paul K. Kleinman, Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA, Paula W. Brill, Chief of the Division of Pediatric Radiology at the New York-Presbyterian Hospital-Weill Cornell Center and Professor of Radiology and Pediatrics at Weill Cornell Medical College, New York, New York, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Differential diagnosis I: diseases, dysplasias, and syndromes
    • By Paul K. Kleinman, Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA, Paula W. Brill, Chief of the Division of Pediatric Radiology at the New York-Presbyterian Hospital-Weill Cornell Center and Professor of Radiology and Pediatrics at Weill Cornell Medical College, New York, New York, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.015
Available formats
×