Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T04:58:48.155Z Has data issue: false hasContentIssue false

Chapter 8 - Differential diagnosis II: disorders of calcium and phosphorus metabolism

from Section I - Skeletal trauma

Published online by Cambridge University Press:  05 September 2015

Ingrid Holm
Affiliation:
Director of the Phenotype Core of the Program in Genomics at Boston Children’s Hospital and Assistant Professor of Pediatrics at Harvard Medical School, Boston, Massachusetts, USA
Jeannette M. Perez-Rossello
Affiliation:
Staff Pediatric Radiologist at Boston Children’s Hospital and Assistant Professor of Radiology at Harvard Medical School, Boston, Massachusetts, USA
Paul K. Kleinman
Affiliation:
Children's Hospital Boston
Get access

Summary

Introduction

Infants and children with metabolic bone diseases are at increased risk of fractures. Demineralization is an observation that alerts the radiologist to the possibility of an underlying disturbance of calcium and phosphorus metabolism. Demineralization or osteopenia are descriptive (qualitative) terms that can be seen in a variety of conditions causing osteoporosis or osteomalacia; for purposes of simplicity, they will be used interchangeably in this chapter (1–4). In osteoporosis there is normal mineralization of physeal cartilage (see Chapters 1 and 2); the demineralization is due to decrease osteoid matrix. However, the diagnosis of osteoporosis in children requires the presence of a clinically significant fracture and low bone mineral content (BMC) and the term “decreased osteoid matrix” is preferred by some (5). Osteomalacia occurs when there is lack of minerals available for adequate mineralization of osteoid matrix and, thus, there is an accumulation of unmineralized bone matrix. Rickets occurs when the endochondral mineralization at the physes is disturbed, leading to the characteristic pathologic and radiographic findings to be described. Rickets is associated with osteomalacia in children; osteomalacia alone is found once the physes have fused (Fig. 8.1).

The most common cause of osteomalacia in children is vitamin D deficiency rickets but there are several other forms of the disease including hypophosphatemic rickets (vitamin D-resistant rickets) and disorders of vitamin D synthesis and/or action. This chapter focuses on osteomalacia and rickets in the infants and young children where the primary manifestations of the metabolic disturbance (metaphyseal irregularities) and superimposed fractures are relevant to the differential diagnosis of abuse. Rickets is also discussed elsewhere in the context of miscellaneous form of abuse and neglect (see Chapter 23).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lenchik, L, Rochmis, P, Sartoris, DJ. Optimized interpretation and reporting of dual x-ray absorptiometry (DXA) scans. AJR. 1998;171(6):1509–19.CrossRefGoogle ScholarPubMed
Done, SL. Fetal and neonatal bone health: update on bone growth and manifestations in health and disease. Pediatr Radiol. 2012;42(Suppl. 1):S158–76.CrossRefGoogle Scholar
Hall, FM. Demise of generic terms “osteoporosis” and “osteopenia” in radiology reporting. AJR. 1999;173(4):1127–8.CrossRefGoogle Scholar
Hall, FM. What’s in a name – revisited. AJR. 1999;173(3):850.CrossRefGoogle Scholar
Rauch, F, Plotkin, H, DiMeglio, L, Engelbert, RH, Henderson, RC, Munns, C, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2007 Pediatric Official Positions. J Clin Densitom. 2008;11(1):22–8.CrossRefGoogle ScholarPubMed
Deeb, KK, Trump, DL, Johnson, CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684–700.CrossRefGoogle ScholarPubMed
Ross, AC, Manson, JE, Abrams, SA, Aloia, JF, Brannon, PM, Clinton, SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.CrossRefGoogle ScholarPubMed
Givens, MH, Macy, IG. The chemical composition of the human fetus. J Biol Chem. 1933;102:7–17.Google Scholar
Kovacs, CS. Bone development in the fetus and neonate: role of the calciotropic hormones. Curr Osteoporos Rep. 2011;9(4):274–83.CrossRefGoogle ScholarPubMed
Kovacs, CS, Woodland, ML, Fudge, NJ, Friel, JK. The vitamin D receptor is not required for fetal mineral homeostasis or for the regulation of placental calcium transfer in mice. Am J Physiol Endocrinol Metab. 2005;289(1):E133–44.CrossRefGoogle ScholarPubMed
Bouillon, R, Verstuyf, A, Mathieu, C, Van Cromphaut, S, Masuyama, R, Dehaes, P, et al. Vitamin D resistance. Best Pract Res Clin Endocrinol Metab. 2006;20(4):627–45.CrossRefGoogle ScholarPubMed
Takeda, E, Yamamoto, H, Taketani, Y, Miyamoto, K. Vitamin D-dependent rickets type I and type II. Acta Paediatr Jpn. 1997;39(4):508–13.CrossRefGoogle ScholarPubMed
Kitanaka, S, Takeyama, K, Murayama, A, Sato, T, Okumura, K, Nogami, M, et al. Inactivating mutations in the 25-hydroxyvitamin D3 1alpha-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med. 1998;338(10):653–61.CrossRefGoogle ScholarPubMed
Silver, J, Landau, H, Bab, I, Shvil, Y, Friedlaender, MM, Rubinger, D, et al. Vitamin D-dependent rickets types I and II. Diagnosis and response to therapy. Isr J Med Sci. 1985;21(1):53–6.Google ScholarPubMed
Maxwell, J, Miles, L. Osteomalacia in China. J Obstet Gynaecol Br Emp. 1925;32:433–73.CrossRefGoogle Scholar
Weiler, HA, Fitzpatrick-Wong, SC, Schellenberg, JM. Bone mass in First Nations, Asian and white newborn infants. Growth Dev Aging. 2008;71(1):35–43.Google ScholarPubMed
Brooke, OG, Brown, IR, Bone, CD, Carter, ND, Cleeve, HJ, Maxwell, JD, et al. Vitamin D supplements in pregnant Asian women: effects on calcium status and fetal growth. Br Med J. 1980;280(6216):751–4.CrossRefGoogle ScholarPubMed
Hollis, BW, Johnson, D, Hulsey, TC, Ebeling, M, Wagner, CL. Vitamin D supplementation during pregnancy: double-blind, randomized clinical trial of safety and effectiveness. J Bone Miner Res. 2011;26(10):2341–57.CrossRefGoogle ScholarPubMed
Kovacs, CS. Fetal calcium metabolism. In Rosen, CJ, Bouillon, R, Compston, JE, Rosen, V, eds. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 8th edn. Hoboken, NJ: Wiley-Blackwell; 2013, pp. 180–7.CrossRefGoogle Scholar
Jaffe, HL. Rickets and Osteomalacia. Metabolic, Degenerative and Inflammatory Diseases of Bones and Joints. Philadelphia, PA: Lea & Febiger; 1972, pp. 381–446.Google Scholar
Weinmann, JP, Sicher, HC. Influence of vitamins on bone and bones. In Weinmann, JP, Sicher, HC, eds. Bone and Bones. St Louis, MO: C. V. Mosby Co., 1947, pp. 259–72.Google Scholar
Tsai, A, McDonald, AG, Rosenberg, AE, Stamoulis, C, Kleinman, PK. Discordant radiologic and histological dimensions of the zone of provisional calcification in fetal piglets. Pediatr Radiol. 2013;43:1606–14.CrossRefGoogle ScholarPubMed
Laval-Jeantet, M, Balmain, N, Juster, M, Bernard, J. Les rapports de la virole perichondrale et du cartilage en croissance normale et pathologique. Ann Radiol. 1968;11:327–35.Google Scholar
Oestreich, AE, Ahmad, BS. The periphysis and its effect on the metaphysis. II. Application to rickets and other abnormalities. Skeletal Radiol. 1993;22(2):115–19.CrossRefGoogle ScholarPubMed
Thacher, TD, Fischer, PR, Pettifor, JM, Lawson, JO, Manaster, BJ, Reading, JC. Radiographic scoring method for the assessment of the severity of nutritional rickets. J Trop Pediatr. 2000;46(3):132–9.CrossRefGoogle ScholarPubMed
Greenspan, A. Orthopedic Imaging: A Practical Approach, 4th edn. Philadelphia, PA: Lippincott, Williams & Wilkins; 2004, pp. 829–32.Google Scholar
Mankin, HJ. Rickets, osteomalacia, and renal osteodystrophy. Part II. J Bone Joint Surg Am. 1974;56(2):352–86.CrossRefGoogle ScholarPubMed
Daldrup-Link, E. Essentials of Pediatric Radiology: A Multimodality Approach. San Francisco, CA: Cambridge University Press; 2010, pp. 252–8.CrossRefGoogle Scholar
McKenna, MJ, Kleerekoper, M, Ellis, BI, Rao, DS, Parfitt, AM, Frame, B. Atypical insufficiency fractures confused with Looser zones of osteomalacia. Bone. 1987;8(2):71–8.CrossRefGoogle ScholarPubMed
Soliman, AT, El-Dabbagh, M, Adel, A, Al Ali, M, Aziz Bedair, EM, Elalaily, RK. Clinical responses to a mega-dose of vitamin D3 in infants and toddlers with vitamin D deficiency rickets. J Trop Pediatr. 2010;56(1):19–26.CrossRefGoogle ScholarPubMed
Rajah, J, Thandrayen, K, Pettifor, JM. Clinical practice: diagnostic approach to the rachitic child. Eur J Pediatr. 2011;170(9):1089–96.CrossRefGoogle ScholarPubMed
Harrison, CM, Gibson, AT. Osteopenia in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2013;98(3):F272–5.CrossRefGoogle ScholarPubMed
Carroll, DM, Doria, AS, Paul, BS. Clinical–radiological features of fractures in premature infants – a review. J Perinat Med. 2007;35(5):366–75.CrossRefGoogle ScholarPubMed
Huh, SY, Gordon, CM. Fractures in hospitalized children. Metabolism. 2013;62(3):315–25.CrossRefGoogle ScholarPubMed
Abrams, SA. In utero physiology: role in nutrient delivery and fetal development for calcium, phosphorus, and vitamin D. Am J Clin Nutr. 2007;85(2):604S–7S.CrossRefGoogle ScholarPubMed
Koo, WW, Sherman, R, Succop, P, Ho, M, Buckley, D, Tsang, RC. Serum vitamin D metabolites in very low birth weight infants with and without rickets and fractures. J Pediatr. 1989;114(6):1017–22.CrossRefGoogle ScholarPubMed
Tsukahara, H, Sudo, M, Umezaki, M, Fujii, Y, Kuriyama, M, Yamamoto, K, et al. Measurement of lumbar spinal bone mineral density in preterm infants by dual-energy X-ray absorptiometry. Biol Neonate. 1993;64(2–3):96–103.CrossRefGoogle ScholarPubMed
Lyon, AJ, McIntosh, N, Wheeler, K, Williams, JE. Radiological rickets in extremely low birthweight infants. Pediatr Radiol. 1987;17(1):56–8.CrossRefGoogle ScholarPubMed
Mitchell, DM, Juppner, H. Regulation of calcium homeostasis and bone metabolism in the fetus and neonate. Curr Opin Endocrinol Diabetes Obes. 2010;17(1):25–30.CrossRefGoogle ScholarPubMed
Harrison, CM, Johnson, K, McKechnie, E. Osteopenia of prematurity: a national survey and review of practice. Acta Paediatr. 2008;97(4):407–13.CrossRefGoogle Scholar
Dabezies, EJ, Warren, PD. Fractures in very low birth weight infants with rickets. Clin Orthop Relat Res. 1997;335:233–9.Google Scholar
McIntosh, N, Livesey, A, Brooke, OG. Plasma 25-hydroxyvitamin D and rickets in infants of extremely low birthweight. Arch Dis Child. 1982;57(11):848–50.CrossRefGoogle ScholarPubMed
Koo, WW, Sherman, R, Succop, P, Oestreich, AE, Tsang, RC, Krug-Wispe, SK, et al. Sequential bone mineral content in small preterm infants with and without fractures and rickets. J Bone Miner Res. 1988;3(2):193–7.CrossRefGoogle ScholarPubMed
Lee, SM, Namgung, R, Park, MS, Eun, HS, Park, KI, Lee, C. High incidence of rickets in extremely low birth weight infants with severe parenteral nutrition-associated cholestasis and bronchopulmonary dysplasia. J Korean Med Sci. 2012;27(12):1552–5.CrossRefGoogle ScholarPubMed
Marquardt, ML, Done, SL, Sandrock, M, Berdon, WE, Feldman, KW. Copper deficiency presenting as metabolic bone disease in extremely low birth weight, short-gut infants. Pediatrics. 2012;130(3):e695–8.CrossRefGoogle ScholarPubMed
Wei, C, Stevens, J, Harrison, S, Mott, A, Warner, J. Fractures in a tertiary neonatal intensive care unit in Wales. Acta Paediatr. 2012;101(6):587–90.CrossRefGoogle Scholar
Lucas-Herald, A, Butler, S, Mactier, H, McDevitt, H, Young, D, Ahmed, SF. Prevalence and characteristics of rib fractures in ex-preterm infants. Pediatrics. 2012;130(6):1116–19.CrossRefGoogle ScholarPubMed
Smurthwaite, D, Wright, NB, Russell, S, Emmerson, AJ, Mughal, MZ. How common are rib fractures in extremely low birth weight preterm infants?Arch Dis Child Fetal Neonatal Ed. 2009;94(2):F138–9.CrossRefGoogle ScholarPubMed
Amir, J, Katz, K, Grunebaum, M, Yosipovich, Z, Wielunsky, E, Reisner, SH. Fractures in premature infants. J Pediatr Orthop. 1988;8(1):41–4.CrossRefGoogle ScholarPubMed
Strathearn, L, Gray, PH, Wood, DO. Childhood neglect and cognitive development in extremely low birth weight infants: a prospective study. Pediatrics. 2001;108(1):142–51.CrossRefGoogle ScholarPubMed
Hurme, T, Alanko, S, Anttila, P, Juven, T, Svedstrom, E. Risk factors for physical child abuse in infants and toddlers. Eur J Pediatr Surg. 2008;18(6):387–91.CrossRefGoogle ScholarPubMed
Wu, SS, Ma, CX, Carter, RL, Ariet, M, Feaver, EA, Resnick, MB, et al. Risk factors for infant maltreatment: a population-based study. Child Abuse Negl. 2004;28(12):1253–64.CrossRefGoogle ScholarPubMed
Teotia, SPS, Teotia, M. Nutritional bone disease in Indian population. Indian J Med Res. 2008;127(3):219–28.Google Scholar
Thandrayen, K, Pettifor, JM. Maternal vitamin D status: implications for the development of infantile nutritional rickets. Endocrinol Metab Clin North Am. 2010;39(2):303–20.CrossRefGoogle ScholarPubMed
Teotia, M, Teotia, SP, Nath, M. Metabolic studies in congenital vitamin D deficiency rickets. Indian J Pediatr. 1995;62(1):55–61.CrossRefGoogle ScholarPubMed
Lamm, CI, Norton, KI, Murphy, RJ, Wilkins, IA, Rabinowitz, JG. Congenital rickets associated with magnesium sulfate infusion for tocolysis. J Pediatr. 1988;113(6):1078–82.CrossRefGoogle ScholarPubMed
Levin, TL, States, L, Greig, A, Goldman, HS. Maternal renal insufficiency: a cause of congenital rickets and secondary hyperparathyroidism. Pediatr Radiol. 1992;22(4):315–16.CrossRefGoogle ScholarPubMed
al-Senan, K, al-Alaiyan, S, al-Abbad, A, LeQuesne, G. Congenital rickets secondary to untreated maternal renal failure. J Perinatol. 2001;21(7):473–5.CrossRefGoogle ScholarPubMed
Erdeve, O, Atasay, B, Arsan, S, Siklar, Z, Ocal, G, Berberoglu, M. Hypocalcemic seizure due to congenital rickets in the first day of life. Turk J Pediatr. 2007;49(3):301–3.Google ScholarPubMed
Innes, AM, Seshia, MM, Prasad, C, Al Saif, S, Friesen, FR, Chudley, AE, et al. Congenital rickets caused by maternal vitamin D deficiency. Paediatr Child Health. 2002;7(7):455–8.CrossRefGoogle ScholarPubMed
Ahmed, I, Atiq, M, Iqbal, J, Khurshid, M, Whittaker, P. Vitamin D deficiency rickets in breast-fed infants presenting with hypocalcaemic seizures. Acta Paediatr. 1995;84(8):941–2.CrossRefGoogle ScholarPubMed
Orbak, Z, Karacan, M, Doneray, H, Karakelleoglu, C. Congenital rickets presenting with hypocalcaemic seizures. West Indian Med J. 2007;56(4):364–7.Google ScholarPubMed
Soliman, A, Salama, H, Alomar, S, Shatla, E, Ellithy, K, Bedair, E. Clinical, biochemical, and radiological manifestations of vitamin D deficiency in newborns presented with hypocalcemia. Indian J Endocrinol Metab. 2013;17(4):697–703.CrossRefGoogle ScholarPubMed
Maiyegun, SO, Malek, AH, Devarajan, LV, Dahniya, MH. Severe congenital rickets secondary to maternal hypovitaminosis D: a case report. Ann Trop Paediatr. 2002;22(2):191–5.CrossRefGoogle ScholarPubMed
Park, W, Paust, H, Kaufmann, HJ, Offermann, G. Osteomalacia of the mother – rickets of the newborn. Eur J Pediatr. 1987;146(3):292–3.CrossRefGoogle Scholar
Pettifor, JM. Nutritional rickets: deficiency of vitamin D, calcium, or both?Am J Clin Nutr. 2004;80(Suppl. 6):S1725–9.CrossRefGoogle Scholar
Prentice, A. Nutritional rickets around the world. J Steroid Biochem Mol Biol. 2013;136:201–6.CrossRefGoogle ScholarPubMed
Aggarwal, V, Seth, A, Aneja, S, Sharma, B, Sonkar, P, Singh, S, et al. Role of calcium deficiency in development of nutritional rickets in Indian children: a case control study. J Clin Endocrinol Metab. 2012;97(10):3461–6.CrossRefGoogle ScholarPubMed
Kovacs, CS. Vitamin D in pregnancy and lactation: maternal, fetal, and neonatal outcomes from human and animal studies. Am J Clin Nutr. 2008;88(2):S520–S8.CrossRefGoogle ScholarPubMed
Thacher, TD, Fischer, PR, Tebben, PJ, Singh, RJ, Cha, SS, Maxson, JA, et al. Increasing incidence of nutritional rickets: a population-based study in Olmsted County, Minnesota. Mayo Clin Proc. 2013;88(2):176–83.CrossRefGoogle ScholarPubMed
Gordon, CM, Feldman, HA, Sinclair, L, Williams, AL, Kleinman, PK, Perez-Rossello, J, et al. Prevalence of vitamin D deficiency among healthy infants and toddlers. Arch Pediatr Adolesc Med. 2008;162(6):505–12.CrossRefGoogle ScholarPubMed
Pettifor, JM, Prentice, A. The role of vitamin D in paediatric bone health. Best Pract Res Clin Endocrinol Metab. 2011;25(4):573–84.CrossRefGoogle ScholarPubMed
Shore, RM, Chesney, RW. Rickets: part I. Pediatr Radiol. 2013;43(2):140–51.CrossRefGoogle ScholarPubMed
Shore, RM, Chesney, RW. Rickets: part II. Pediatr Radiol. 2013;43(2):152–72.CrossRefGoogle ScholarPubMed
Ladhani, S, Srinivasan, L, Buchanan, C, Allgrove, J. Presentation of vitamin D deficiency. Arch Dis Child. 2004;89(8):781–4.CrossRefGoogle ScholarPubMed
Salama, MM, El-Sakka, AS. Hypocalcemic seizures in breastfed infants with rickets secondary to severe maternal vitamin D deficiency. Pak J Biol Sci. 2010;13(9):437–42.Google ScholarPubMed
Misra, M, Pacaud, D, Petryk, A, Collett-Solberg, PF, Kappy, M. Vitamin D deficiency in children and its management: review of current knowledge and recommendations. Pediatrics. 2008;122(2):398–417.CrossRefGoogle ScholarPubMed
Arnaud, SB, Stickler, GB, Haworth, JC. Serum 25-hydroxyvitamin D in infantile rickets. Pediatrics. 1976;57(2):221–5.Google ScholarPubMed
Perez-Rossello, JM, Feldman, HA, Kleinman, PK, Connolly, SA, Fair, RA, Myers, RM, et al. Rachitic changes, demineralization, and fracture risk in healthy infants and toddlers with vitamin D deficiency. Radiology. 2012;262(1):234–41.CrossRefGoogle ScholarPubMed
Taylor, JA, Richter, M, Done, S, Feldman, KW. The utility of alkaline phosphatase measurement as a screening test for rickets in breast-fed infants and toddlers: a study from the puget sound pediatric research network. Clin Pediatr (Phila). 2010;49(12):1103–10.CrossRefGoogle ScholarPubMed
Ponnapakkam, T, Bradford, E, Gensure, R. A treatment trial of vitamin D supplementation in breast-fed infants: universal supplementation is not necessary for rickets prevention in Southern Louisiana. Clin Pediatr (Phila). 2010;49(11):1053–60.CrossRefGoogle Scholar
Jain, V, Gupta, N, Kalaivani, M, Jain, A, Sinha, A, Agarwal, R. Vitamin D deficiency in healthy breastfed term infants at three months and their mothers in India: seasonal variation and determinants. Indian J Med Res. 2011;133:267–73.Google Scholar
Leventhal, JM, Martin, KD, Asnes, AG. Incidence of fractures attributable to abuse in young hospitalized children: results from analysis of a United States database. Pediatrics. 2008;122(3):599–604.CrossRefGoogle ScholarPubMed
Abanamy, A, Salman, H, Cheriyan, M, Shuja, M, Siddrani, S. Vitamin D deficiency rickets in Riyadh. Ann Saudi Med. 1991;11(1):35–9.CrossRefGoogle ScholarPubMed
Chapman, T, Sugar, N, Done, S, Marasigan, J, Wambold, N, Feldman, K. Fractures in infants and toddlers with rickets. Pediatr Radiol. 2010;40:1184–9.CrossRefGoogle ScholarPubMed
Agarwal, A, Gulati, D, Rath, S, Walia, M. Rickets: a cause of delayed walking in toddlers. Indian J Pediatr. 2009;76(3):269–72.CrossRefGoogle ScholarPubMed
Winzenberg, T, Jones, G. Vitamin D and bone health in childhood and adolescence. Calcif Tissue Int. 2013;92(2):140–50.CrossRefGoogle ScholarPubMed
Thacher, TD, Fischer, PR, Strand, MA, Pettifor, JM. Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr. 2006;26(1):1–16.CrossRefGoogle ScholarPubMed
Palacios, C, Gonzalez, L. Is vitamin D deficiency a major global public health problem?J Steroid Biochem Mol Biol. 2013;144(Pt. A):138–45.CrossRefGoogle ScholarPubMed
Keller, KA, Barnes, PD. Rickets vs. abuse: a national and international epidemic. Pediatr Radiol. 2008;38(11):1210–16.CrossRefGoogle ScholarPubMed
Paterson, CR. Bone disorders that cause fractures and mimic non-accidental injury. Acta Paediatr. 2010;99(9):1281–2.CrossRefGoogle ScholarPubMed
Paterson, CR. Vitamin D deficiency and fractures in childhood. Pediatrics. 2011;127(5):973–4.CrossRefGoogle ScholarPubMed
Slovis, TL, Chapman, S. Evaluating the data concerning vitamin D insufficiency/deficiency and child abuse. Pediatr Radiol. 2008;38(11):1221–4.CrossRefGoogle ScholarPubMed
Feldman, K. Commentary on “congenital rickets” article. Pediatr Radiol. 2009;39(10):1127–9; author reply 1130–2.CrossRefGoogle ScholarPubMed
Keller, KA, Barnes, PD. Reply regarding rickets vs. abuse: the evidence. Pediatr Radiol. 2009;39(10):1130–2.CrossRefGoogle Scholar
Chesney, RW. Rickets or abuse, or both?Pediatr Radiol. 2008;38(11):1217–18.CrossRefGoogle ScholarPubMed
Jenny, C. Rickets or abuse?Pediatr Radiol. 2008;38(11):1219–20.CrossRefGoogle ScholarPubMed
Paterson, CR. Temporary brittle bone disease: fractures in medical care. Acta Paediatr. 2009;98(12):1935–8.CrossRefGoogle ScholarPubMed
Miller, M. The death of temporary brittle bone disease is premature. Acta Paediatr. 2009;98(12):1871–3.CrossRefGoogle ScholarPubMed
Spivack, BS, Otterman, GJ. Does temporary brittle bone disease exist? Not by the evidence offered. Acta Paediatr. 2010;99(4):486.CrossRefGoogle Scholar
Marcovitch, H, Mughal, MZ. Cases do not support temporary brittle bone disease. Acta Paediatr. 2010;99(4):485–6.CrossRefGoogle Scholar
Feldman, KW, Done, S. Vitamin D deficiency rickets and allegations of non-accidental injury. Acta Paediatr. 2010;99(4):486–7.CrossRefGoogle ScholarPubMed
Ayoub, D, Plunkett, J, Keller, KA, Barnes, PD. Are Paterson’s critics too biased to recognize rickets?Acta Paediatr. 2010;99(9):1282–3.CrossRefGoogle ScholarPubMed
Hyman, CJ. Response to Paterson. Temporary brittle bone disease: fractures in medical care. Acta Paediatr. 2010;99(9):1281.CrossRefGoogle ScholarPubMed
Paterson, CR, Monk, EA. Temporary brittle bone disease: relationship between clinical findings and judicial outcome. Pediatr Rep. 2011;3(3):e24.CrossRefGoogle ScholarPubMed
Paterson, CR, Monk, EA. Clinical and laboratory features of temporary brittle bone disease. J Pediatr Endocinol Metab. 2013:1–9.
Ayoub, D. Limitations of radiology in rickets. Pediatr Dev Pathol. 2013;16(5):397.CrossRefGoogle ScholarPubMed
Ayoub, D. Fractures: Abuse or rickets?Radiology. 2012;264:614–15.CrossRefGoogle ScholarPubMed
Paterson, CR, Ayoub, D. Congenital rickets due to vitamin D deficiency in the mothers. Clin Nutri. 2014. Epub 2014/12/17.
Ayoub, DM, Hyman, C, Cohen, M, Miller, M. A critical review of the classic metaphyseal lesion: traumatic or metabolic?AJR. 2014;202(1):185–96.CrossRefGoogle ScholarPubMed
Wood, BP. Commentary on “A critical review of the classic metaphyseal lesion: traumatic or metabolic?”AJR. 2014;202(1):197–8.CrossRefGoogle Scholar
Brown, SD. Serveas, SHayes, LLSociety for Pediatric Radiology Child Abuse Committee. SPR Child Abuse Committee response regarding classic metaphyseal lesion. AJR Am J Roentgenol. 2014;203(2):W232.CrossRefGoogle ScholarPubMed
Kleinman, PK. Classic metaphyseal lesions. AJR Am J Roentgenol. 2014;202(6):W603.CrossRefGoogle ScholarPubMed
Perez-Rossello, JM, McDonald, AG, Rosenberg, AE, Tsai, A, Kleinman, PK. Absence of rickets in infants with fatal abusive head trauma and classic metaphyseal lesions. Radiology 2015; Epub 2015/02/17.
Botash, AS, Sills, IN, Welch, TR. Calciferol deficiency mimicking abusive fractures in infants: is there any evidence?J Pediatr. 2012;160(2):199–203.CrossRefGoogle ScholarPubMed
Schilling, S, Wood, JN, Levine, MA, Langdon, D, Christian, CW. Vitamin D status in abused and nonabused children younger than two years old with fractures. Pediatrics. 2011;127(5):835–41.CrossRefGoogle Scholar
Kepron, C. Pollanen, MS. Rickets or abuse? A histologic comparison of rickets and child abuse-related fractures. Forensic Sci Med Pathol. 2015;11(1):78–87.CrossRefGoogle ScholarPubMed
Kleinman, PK, Marks, SC, Spevak, MR, Belanger, PL, Richmond, JM. Extension of growth-plate cartilage into the metaphysis: a sign of healing fracture in abused infants. AJR. 1991;156(4):775–9.CrossRefGoogle ScholarPubMed
Oestreich, AE. Child abuse vs. rickets – controversy and contribution. Pediatr Radiol. 2009;39(Suppl. 3):S533.Google Scholar
Strouse, PJ. “Keller & Barnes” after five years – still inadmissible as evidence. Pediatr Radiol. 2013;43(11):1424.CrossRefGoogle Scholar
Ma, NS, Gordon, CM. Pediatric osteoporosis: where are we now?J Pediatr. 2012;161(6):983–90.CrossRefGoogle ScholarPubMed
Bianchi, ML, Baim, S, Bishop, NJ, Gordon, CM, Hans, DB, Langman, CB, et al. Official positions of the International Society for Clinical Densitometry (ISCD) on DXA evaluation in children and adolescents. Pediatr Nephrol. 2010;25(1):37–47.CrossRefGoogle ScholarPubMed
Leonard, MB, Bachrach, LK. Non-invasive techniques for bone mass measurement. In Glorieux, FH, Pettifor, JM, Juppner, H, eds. Pediatric Bones, 2nd edn. London: Elsevier; 2012, pp. 309–42.CrossRefGoogle Scholar
Lewiecki, EM, Watts, NB, McClung, MR, Petak, SM, Bachrach, LK, Shepherd, JA, et al. Official positions of the international society for clinical densitometry. J Clin Endocrinol Metab. 2004;89(8):3651–5.CrossRefGoogle ScholarPubMed
Leonard, MB. Assessment of bone health in children and adolescents with cancer: promises and pitfalls of current techniques. Med Pediatr Oncol. 2003;41(3):198–207.CrossRefGoogle ScholarPubMed
Ahmad, I, Nemet, D, Eliakim, A, Koeppel, R, Grochow, D, Coussens, M, et al. Body composition and its components in preterm and term newborns: A cross-sectional, multimodal investigation. Am J Hum Biol. 2010;22(1):69–75.CrossRefGoogle ScholarPubMed
Rigo, J, Nyamugabo, K, Picaud, JC, Gerard, P, Pieltain, C, De Curtis, M. Reference values of body composition obtained by dual energy X-ray absorptiometry in preterm and term neonates. J Pediatr Gastroenterol Nutr. 1998;27(2):184–90.CrossRefGoogle ScholarPubMed
Koo, WW, Walters, J, Bush, AJ, Chesney, RW, Carlson, SE. Dual-energy X-ray absorptiometry studies of bone mineral status in newborn infants. J Bone Miner Res. 1996;11(7):997–1002.CrossRefGoogle ScholarPubMed
Topor, LS, Melvin, P, Giancaterino, C, Gordon, CM. Factors associated with low bone density in patients referred for assessment of bone health. Int J Pediatr Endocrinol. 2013;2013(1):4.CrossRefGoogle ScholarPubMed
Ergur, AT, Erselcan, T. Diagnostic value of bone mineral density measurements in infants with rickets. J Trop Pediatr. 2000;46(2):124–6.CrossRefGoogle ScholarPubMed
Akcam, M, Yildiz, M, Yilmaz, A, Artan, R. Bone mineral density in response to two different regimes in rickets. Indian Pediatr. 2006;43(5):423–7.Google ScholarPubMed
Holmlund-Suila, E, Viljakainen, H, Hytinantti, T, Lamberg-Allardt, C, Andersson, S, Makitie, O. High-dose vitamin d intervention in infants–effects on vitamin d status, calcium homeostasis, and bone strength. J Clin Endocrinol Metab. 2012;97(11):4139–47.CrossRefGoogle Scholar
Wren, TA, Liu, X, Pitukcheewanont, P, Gilsanz, V. Bone acquisition in healthy children and adolescents: comparisons of dual-energy x-ray absorptiometry and computed tomography measures. J Clin Endocrinol Metab. 2005;90(4):1925–8.CrossRefGoogle ScholarPubMed
Kaste, SC, Rai, SN, Fleming, K, McCammon, EA, Tylavsky, FA, Danish, RK, et al. Changes in bone mineral density in survivors of childhood acute lymphoblastic leukemia. Pediatr Blood Cancer. 2006;46(1):77–87.CrossRefGoogle ScholarPubMed
Gilsanz, V. Bone density in children: a review of the available techniques and indications. Eur J Radiol. 1998;26(2):177–82.CrossRefGoogle ScholarPubMed
Link, TM, Majumdar, S. Current diagnostic techniques in the evaluation of bone architecture. Curr Osteoporos Rep. 2004;2(2):47–52.CrossRefGoogle ScholarPubMed
Lang, TF, Li, J, Harris, ST, Genant, HK. Assessment of vertebral bone mineral density using volumetric quantitative CT. J Comput Assist Tomogr. 1999;23(1):130–7.CrossRefGoogle ScholarPubMed
Gordon, CL, Lang, TF, Augat, P, Genant, HK. Image-based assessment of spinal trabecular bone structure from high-resolution CT images. Osteoporos Int. 1998;8(4):317–25.CrossRefGoogle ScholarPubMed
Mora, S, Goodman, WG, Loro, ML, Roe, TF, Sayre, J, Gilsanz, V. Age-related changes in cortical and cancellous vertebral bone density in girls: assessment with quantitative CT. AJR. 1994;162(2):405–9.CrossRefGoogle ScholarPubMed
Hong, J, Cabe, GD, Tedrow, JR, Hipp, JA, Snyder, BD. Failure of trabecular bone with simulated lytic defects can be predicted non-invasively by structural analysis. J Orthop Res. 2004;22(3):479–86.CrossRefGoogle ScholarPubMed
Engelke, K, Libanati, C, Fuerst, T, Zysset, P, Genant, HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep. 2013;11(3):246–55.CrossRefGoogle ScholarPubMed
Castellanos, NP, Martinez, E, Gutierrez, J. Improving osteoporosis diagnosis in children using image texture analysis. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. New York, NY: IEEE Engineering in Medicine and Biology Society; 2011, pp. 6184–7.Google Scholar
Rauch, F, Schoenau, E. Changes in bone density during childhood and adolescence: an approach based on bone’s biological organization. J Bone Miner Res. 2001;16(4):597–604.CrossRefGoogle ScholarPubMed
Keens, TG, Oki, GS, Gilsanz, V, Roe, TF, Goodman, W, Tsang, RC, et al. Does radiation research in healthy children pose greater than minimal risk?IRB. 1994;16(5):5–10.Google ScholarPubMed
Blake, GM, Naeem, M, Boutros, M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone. 2006;38(6):935–42.CrossRefGoogle ScholarPubMed
Kalra, MK, Maher, MM, Toth, TL, Hamberg, LM, Blake, MA, Shepard, JA, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230(3):619–28.CrossRefGoogle ScholarPubMed
Damilakis, J, Adams, JE, Guglielmi, G, Link, TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14.CrossRefGoogle ScholarPubMed
Khoo, BC, Brown, K, Cann, C, Zhu, K, Henzell, S, Low, V, et al. Comparison of QCT-derived and DXA-derived areal bone mineral density and T scores. Osteoporos Int. 2009;20(9):1539–45.CrossRefGoogle ScholarPubMed
Burrows, M, Liu, D, McKay, H. High-resolution peripheral QCT imaging of bone micro-structure in adolescents. Osteoporos Int. 2010;21(3):515–20.CrossRefGoogle ScholarPubMed
Flaherty, EG, Perez-Rossello, JM, Levine, MA, Hennrikus, WL, American Academy of Pediatrics Committee on Child Abuse and Neglect, Section on Radiology, et al. Evaluating children with fractures for child physical abuse. Pediatrics. 2014;133(2):e477–89.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×