Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T19:04:25.078Z Has data issue: false hasContentIssue false

7 - Diatoms as indicators of lake eutrophication

from Part II - Diatoms as indicators of environmental change in flowing waters and lakes

Published online by Cambridge University Press:  05 June 2012

Roland I. Hall
Affiliation:
University of Waterloo
John P. Smol
Affiliation:
Queen's University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

The term eutrophication broadly refers to the enrichment of aquatic systems by inorganic plant nutrients (Mason, 1991; Wetzel, 2001). Lake eutrophication occurs when nutrient supplies, usually phosphorus (P) and nitrogen (N), are elevated over rates that occur in the absence of any system perturbation, and results in increased production. Causes of eutrophication include human (anthropogenic eutrophication) and non-human (natural eutrophication) disturbances. Marked natural eutrophication events are relatively rare and may result from dramatic episodes, such as forest fire (e.g. Hickman et al., 1990), tree die-off (Boucherle et al., 1986; Hall & Smol, 1993; St. Jacques et al., 2000) and prolific returns of spawning salmon to nursery lakes (Gregory-Eaves & Keatley, this volume), to name a few mechanisms. Climatic episodes, such as droughts, may also concentrate lake-water nutrients by increasing contributions of nutrient-rich groundwater (e.g. Webster et al., 1996), or reducing flushing rates and increasing deepwater anoxia leading to elevated internal P loading from sediments to the illuminated surface waters (Brüchmann & Negendank, 2004). Some lakes lie in naturally fertile catchments or receive high natural loads of nutrients from groundwater and are naturally eutrophic (e.g. Hall et al., 1999). In most cases, however, eutrophication is caused by anthropogenic nutrient inputs from domestic and industrial sewage disposal, farming activities, soil erosion, and numerous other activities.

Eutrophication is the most widespread form of lake pollution on a global scale, and has many deleterious effects on aquatic systems (Harper, 1992; Smith et al., 2006). In addition to increasing overall primary production, eutrophication causes considerable changes to biochemical cycles and biological communities (Schelske, 1999). Marked changes occur at all levels in the food web and entire communities can change or die out (Carpenter et al., 1995).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 122 - 151
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, S. & Hübener, T. (2007). Spatial variability of diatom assemblages in surface lake sediments and its implications for transfer functions. Journal of Paleolimnology, 37, 573–90.CrossRefGoogle Scholar
Agbeti, M. D. (1992). Relationship between diatom assemblages and trophic variables: a comparison of old and new approaches. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1171–5.CrossRefGoogle Scholar
Agbeti, M. D. & Dickman, M. (1989). Use of fossil diatom assemblages to determine historical changes in trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 46, 1013–21.CrossRefGoogle Scholar
Alefs, J. & Müller, J. (1999). Differences in the eutrophication dynamics of Ammersee and Starnberger See (southern Germany), reflected by the diatom succession in varve-dated sediments. Journal of Paleolimnology, 21, 395–407.CrossRefGoogle Scholar
Allison, T. D., Moeller, R. E., & Davis, M. B. (1986). Pollen in laminated sediments provides evidence for a mid-Holocene forest pathogen outbreak. Ecology, 64, 1101–5.CrossRefGoogle Scholar
Anderson, N. J. (1989). A whole-basin diatom accumulation rate for a small eutrophic lake in Northern Ireland and its palaeoecological implications. Journal of Ecology, 77, 926–46.CrossRefGoogle Scholar
Anderson, N. J. (1990a). Variability of diatom concentrations and accumulation rates in sediments of a small lake basin. Limnology and Oceanography, 35, 497–508.CrossRefGoogle Scholar
Anderson, N. J. (1990b). Spatial pattern of recent sediment and diatom accumulation in a small, monomictic, eutrophic lake. Journal of Paleolimnology, 3, 143–60.CrossRefGoogle Scholar
Anderson, N. J. (1990c). Variability of sediment diatom assemblages in an upland, wind-stressed lake (Loch Fleet, Galloway, Scotland). Journal of Paleolimnology, 4, 43–59.CrossRefGoogle Scholar
Anderson, N. J. (1995a). Using the past to predict the future: lake sediments and the modelling of limnological disturbance. Ecological Modelling, 78, 149–72.CrossRefGoogle Scholar
Anderson, N. J. (1995b). Naturally eutrophic lakes: reality, myth or myopia?Trends in Ecology and Evolution, 10, 137–8.Google Scholar
Anderson, N. J. (1997). Reconstructing historical phosphorus concentrations in rural lakes using diatom models. In Phosphorus Loss to Water From Agriculture, ed. Tunney, H., Brookes, P. C. & Johnson, A. E.. Wallingford, UK: CAB International.Google Scholar
Anderson, N. J. (1998). Variability of diatom-inferred phosphorus profiles in a small lake basin and its implications for histories of lake eutrophication. Journal of Paleolimnology, 20, 47–55.CrossRefGoogle Scholar
Anderson, N. J., Jeppesen, E. & Sondergaard, M. (2005). Ecological effects of reduced nutrient loading (oligotrophication) on lakes: an introduction. Freshwater Biology, 50, 1589–193.CrossRefGoogle Scholar
Anderson, N. J. & Odgaard, B. V. (1994). Recent palaeoecology of three shallow Danish lakes. Hydrobiologia, 275/276, 411–22.CrossRefGoogle Scholar
Anderson, N. J. & Rippey, B. (1994). Monitoring lake recovery from point-source eutrophication: the use of diatom-inferred epilimnetic total phosphorus and sediment chemistry. Freshwater Biology, 32, 625–39.CrossRefGoogle Scholar
Anderson, N. J., Rippey, B. & Gibson, C. E. (1993). A comparison of sedimentary and diatom-inferred phosphorus profiles: implications for defining pre-disturbance nutrient conditions. Hydrobiologia, 253, 357–66.CrossRefGoogle Scholar
Anderson, N. J., Rippey, B. & Stevenson, A. C. (1990). Change to a diatom assemblage in a eutrophic lake following point source nutrient re-direction: a paleolimnological approach. Freshwater Biology, 23, 205–17.CrossRefGoogle Scholar
Augustinus, P., Reid, M., Andersson, S., Deng, Y., & Horrocks, M. (2006). Biological and geochemical record of anthropogenic impacts in recent sediments from Lake Pupuke, Auckland City, New Zealand. Journal of Paleolimnology, 35, 789–805.CrossRefGoogle Scholar
Barbour, M. T., Swietlik, W. F., Jackson, S. K., et al. (2000). Measuring the attainment of biological integrity in the USA: a critical element of ecological integrity. Hydrobiologia, 422/423, 453–64.CrossRefGoogle Scholar
Baron, J. S., Rueth, H. M., Wolfe, A. M., et al. (2000). Ecosystem responses to nitrogen deposition in the Colorado Front Range. Ecosystems, 3, 352–68.CrossRefGoogle Scholar
Battarbee, R. W. (1978). Biostratigraphical evidence for variations in the recent patterns of sediment accumulation in Lough Neagh, Northern Ireland. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen, 20, 625–9.Google Scholar
Battarbee, R. W. (1999). The importance of palaeolimnology to lake restoration. Hydrobiologia, 395/396, 149–59.CrossRefGoogle Scholar
Battarbee, R. W., Anderson, N. J., Jeppesen, E., & Leavitt, P. R. (2005). Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology, 50, 1772–80.CrossRefGoogle Scholar
Battarbee, R. W., Jones, V. J., Flower, R. J., et al. (2001) Diatoms. In Smol, J. P.Birks, H. J. B. & Last, W. M., (ed. Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators. Dordrecht: Kluwer Academic Publishers, 155–202.Google Scholar
Belzile, N., Pizarro, J., Filella, M., & Buffle, J. (1996). Sediment diffusive fluxes of Fe, Mn, and P in a eutrophic lake: contribution from lateral vs bottom sediments. Aquatic Sciences, 58, 327–54.CrossRefGoogle Scholar
Bennion, H. (1994). A diatom–phosphorus transfer-function for shallow, eutrophic ponds in southeast England. Hydrobiologia, 275/276, 391–410.CrossRefGoogle Scholar
Bennion, H. (1995). Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implications for reconstructing trophic status. Diatom Research, 10, 1–19.CrossRefGoogle Scholar
Bennion, H. & Appleby, P. (1999). An assessment of recent environmental change in Llangorse Lake using palaeolimnology. Aquatic Conservation: Marine and Freshwater Ecosystems, 9, 361–75.3.0.CO;2-N>CrossRefGoogle Scholar
Bennion, H. & Battarbee, R. (2007). The European Union Water Framework Directive: opportunities for palaeolimnology. Journal of Paleolimnology, 38, 285–95.CrossRefGoogle Scholar
Bennion, H., Fluin, J., & Simpson, G. K. L. (2004). Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. Journal of Applied Ecolology, 41, 124–38.CrossRefGoogle Scholar
Bennion, H., Johnes, P., Ferrier, R.Phillips, G., & Haworth, E. (2005). A comparison of diatom phosphorus transfer functions and export coefficient models as tools for reconstructing lake nutrient histories. Freshwater Biology, 50, 1651–70CrossRefGoogle Scholar
Bennion, H., Juggins, S., & Anderson, N. J. (1996). Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake management. Environmental Science & Technology, 30, 2004–7.CrossRefGoogle Scholar
Bennion, H. & Smith, M. A. (2000). Variability in the water chemistry of shallow ponds in southeast England, with special reference to the seasonality of nutrients and implications for modelling trophic status. Hydrobiologia, 436, 145–58.CrossRefGoogle Scholar
Bennion, H., Wunsam, S., & Schmidt, R. (1995). The validation of diatom–phosphorus transfer functions: an example from Mondsee, Austria. Freshwater Biology, 34, 271–83.CrossRefGoogle Scholar
Bigler, C., von Gunten, L., Lotter, A. F., Hausmann, S., Blass, A., Ohlendorf, C., & Sturm, M. (2007). Quantifying human-induced eutrophication in Swiss mountain lakes since AD 1800 using diatoms. The Holocene, 17, 1141--54.CrossRef
Birks, H. H. & Birks, H. J. B. (2006). Multi-proxy studies in palaeolimnology. Vegetation History and Archaeobotany, 15, 235–51.CrossRefGoogle Scholar
Birks, H. J. B. (1995). Quantitative palaeoenvironmental reconstructions. In Statistical Modelling of Quaternary Science Data, Technical Guide 5, ed. Maddy, D. & Brew, J. S., Cambridge: Quaternary Research Association, pp. 161–254Google Scholar
Birks, H. J. B. (1998). Numerical tools in palaeolimnology – progress, potentialities, and problems. Journal of Paleolimnology 20, 307–32.CrossRefGoogle Scholar
Birks, H. J. B., Anderson, N. J. & Fritz, S. C. (1995). Post-glacial changes in total phosphorus at Diss Mere, Norfolk inferred from fossil diatom assemblages. In Ecology and Palaeoecology of Lake Eutrophication, ed. Patrick, S. T. & Anderson, N. J., pp. 48–9. Copenhagen, DK: Geological Survey of Denmark DGU Service Report no. 7.Google Scholar
Birks, H. J. B., Juggins, S., & Line, J. M. (1990a). Lake surface-water chemistry reconstructions from palaeoecological data. In The Surface Waters Acidification Programme, ed. Mason, B. J., Cambridge: Cambridge University Press, pp. 301–11.Google Scholar
Birks, H. J. B., Juggins, S., Lotter, A. & Smol, J. P. (eds). (2011). Tracking Environmental Change Usingnts. Volume 5: Data Handling and Statistical Techniques, Dordrecht: Springer, in press.Google Scholar
Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C., & Braak, C. J. F. (1990b). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London, B 327: 263–78.CrossRefGoogle Scholar
Borcard, D., Legendre, P., & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–55.CrossRefGoogle Scholar
Bothwell, M. L. (1988). Growth rate response of lotic periphytic diatoms to experimental phosphorus additions. Canadian Journal of Fisheries and Aquatic Sciences, 45, 261–70.CrossRefGoogle Scholar
Boucherle, M. M., Smol, J. P., Oliver, T. C., Brown, S. R., & McNeely, R. (1986). Limnological consequences of the decline in hemlock 4800 years ago in three Southern Ontario lakes. Hydrobiologia, 143, 217–25.CrossRefGoogle Scholar
Boyle, J. F. (2001). Inorganic geochemical methods in paleolimnology. In Tracking Environmental Change Using Lake Sediments, Volume 2: Physical and Geochemical Methods, ed. Last, W. M. and Smol, J. P., Dordrecht: Springer, pp. 83–142.Google Scholar
Boyle, J. F., Rose, N. L., Bennion, H., Yang, H., & Appleby, P. G. (1999). Environmental impacts in the Jianghan Plain: evidence from lake sediments. Water, Air, and Soil Pollution, 112, 21–40.CrossRefGoogle Scholar
Bradbury, J. P. (1975). Diatom Stratigraphy and Human Settlement. The Geological Society of America Special Paper no. 171.CrossRef
Bradshaw, E. G. & Anderson, N. J. (2001). Validation of a diatom-phosphorus calibration set for Sweden. Freshwater Biology, 46, 1035–48.CrossRefGoogle Scholar
Bradshaw, E. G., Anderson, N. J., Jensen, J. P., & Jeppesen, E. (2002). Phosphorus dynamics in Danish lakes and the implications for diatom ecology and palaeoecology. Freshwater Biology, 47, 1963–75.CrossRefGoogle Scholar
Bradshaw, E. G., Nielsen, A.B., & Anderson, N. J. (2006). Using diatoms to assess the impacts of prehistoric, pre-industrial and modern land-use on Danish lakes. Regional Environmental Change, 6, 17–24.CrossRefGoogle Scholar
Bradshaw, E. G., Rasmussen, P., Nielsen, H., & Anderson, N. J. (2005). Mid- to late-Holocene land-use change and lake development at Dallund Sø, Denmark: trends in lake primary production as reflected by algal and macrophyte remains. The Holocene, 15, 1130–42.CrossRefGoogle Scholar
Brenner, M., Whitmore, T. S., Flannery, M. S, & Binford, M. W. (1993). Paleolimnological methods for defining target conditions in lake restoration: Florida case studies. Lake and Reservoir Management, 7, 209–17.CrossRefGoogle Scholar
Brüchmann, C. & Negendank, J. F. W. (2004). Indication of climatically induced natural eutrophication during the early Holocene period, based on annually laminated sediment from Lake Holzmaar, Germany. Quaternary International, 123–125, 117–34.CrossRefGoogle Scholar
Brugam, R. B. & Vallarino, J. (1989). Paleolimnological investigations of human disturbance in Western Washington lakes. Archiv für Hydrobiologie, 116, 129–59.Google Scholar
Burkhardt, M. A. (1996). Nutrients. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L. & Lowe, R. L., San Diego, CA: Academic Press, pp. 184–228.Google Scholar
Canfield, D. E. Jr. & Bachmann, R. W. (1981). Prediction of total phosphorus concentration, chlorophyll a and Secchi depths in natural and artificial lakes. Canadian Journal of Fisheries and Aquatic Sciences, 38, 414–23.CrossRefGoogle Scholar
Carignan, R. & Flett, R. J. (1981). Postdepositional mobility of phosphorus in lake sediments. Limnology & Oceanography, 26, 361–6.CrossRefGoogle Scholar
Carpenter, S. R., Christensen, D. L., Cole, J. J., et al. 1995. Biological control of eutrophication in lakes. Environmental Science & Technology, 29, 784–6.CrossRefGoogle Scholar
Cattaneo, A. (1987). Periphyton in lakes of different trophy. Canadian Journal of Fisheries and Aquatic Sciences, 44, 296–303.CrossRefGoogle Scholar
Charles, D. F. & Smol, J. P. (1994). Long-term chemical changes in lakes: Quantitative inferences using biotic remains in the sediment record. In Environmental Chemistry of Lakes and Reservoirs: Advances in Chemistry, Series 237, ed. Baker, L., Washington, DC: American Chemical Society, pp. 3–31.CrossRefGoogle Scholar
Charles, D. F., Smol, J. P., & Engstrom, D. R. (1994). Paleolimnological approaches to biomonitoring. In Biological Monitoring of Aquatic Systems, ed. Loeb, S. & Spacie, D., Ann Arbor, MI: Lewis Press, pp. 233–93.Google Scholar
Cholnoky, B. J. (1968). Die Okologie der Diatomeen in Binnengewässern. Weinheur: J. Cramer.Google Scholar
Christie, C. E. & Smol, J. P. (1993). Diatom assemblages as indicators of lake trophic status in southeastern Ontario lakes. Journal of Phycology, 29, 575–86.CrossRefGoogle Scholar
Christie, C. E. & Smol, J. P. (1996). Limnological effects of 19th century canal construction and other disturbances on the trophic state history of Upper Rideau Lake, Ontario. Lake and Reservoir Management, 12, 78–90.CrossRefGoogle Scholar
Clerk, S., Selbie, D. T., & Smol, J. P. (2004). Cage aquaculture and water-quality changes in the LaCloche Channel, Lake Huron, Canada: a paleolimnological assessment. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1691–701.CrossRefGoogle Scholar
Cottingham, K. L, Rusak, J. A., & Leavitt, P.R. (2000). Increased ecosystem variability and reduced predictability following fertilization: evidence from palaeolimnology. Ecology Letters, 3, 340–8.CrossRefGoogle Scholar
Davies, S. J., Metcalfe, S. E., Bernal-Brooks, F., et al. (2005). Lake sediments record sensitivity of two hydrologically closed upland lakes in Mexico to human impact. Ambio, 34, 470–5.CrossRefGoogle ScholarPubMed
Davis, R. B., Anderson, D. S., Dixit, S. S., Appleby, P.G., & Schauffler, M. (2006). Responses of two New Hampshire (USA) lakes to human impacts in recent centuries. Journal of Paleolimnology, 35, 669–97.CrossRefGoogle Scholar
Dillon, P. J. & Rigler, F. H. (1975). A simple method for predicting the capacity of a lake for development based on lake trophic status. Journal of the Fisheries Research Board of Canada, 32, 1519–31.CrossRefGoogle Scholar
Dillon, P. J., Nicholls, K. H., Scheider, W. A., Yan, N. D., & Jeffries, D. S. (1986). Lakeshore Capacity Study, Trophic Status. Research and Special Projects Branch, Ontario Ministry of Municipal Affairs and Housing. Toronto, ON: Queen's Printer for Ontario.Google Scholar
Dixit, S. S. & Smol, J. P. (1994). Diatoms as indicators in the Environmental Monitoring and Assessment Program – Surface Waters (EMAP-SW). Environmental Monitoring and Assessment, 31, 275–306.Google Scholar
Dixit, S. S., Smol, J. P., Kingston, J. C., & Charles, D. F. (1992). Diatoms: powerful indicators of environmental change. Environmental Science & Technology, 26, 23–33.CrossRefGoogle Scholar
Dixit, S. S., Smol, J. P., Charles, D. F., et al. (1999). Assessing water quality changes in the lakes of the northeastern United States using sediment diatoms. Canadian Journal of Fisheries and Aquatic Sciences, 56,131–52.CrossRefGoogle Scholar
Dodds, W. K., Bouska, W. W., Eitzmann, J. L., et al. (2009). Eutrophication of U.S. freshwaters: analysis of potential economic damages. Environmental Science & Technology, 43, 12–19.CrossRefGoogle ScholarPubMed
Dong, X., Bennion, H., Battarbee, R., Yang, X., Yang, H., & Liu, E. (2008). Tracking eutrophication in Taihu Lake using the diatom record: potential and problems. Journal of Paleolimnology, 40, 413–29.CrossRefGoogle Scholar
Douglas, M. S. V. & Smol, J. P. (2000). Eutrophication and recovery in the High Arctic: Meretta Lake (Cornwallis Island, Nunavut, Canada) revisited. Hydrobiologia, 431, 193–204.CrossRefGoogle Scholar
Douglas, M. S. V., Smol, J. P., Savelle, J. M., & Blais, J. M. (2004). Prehistoric Inuit whalers affected Arctic freshwater ecosystems. Proceeding of the National Academy of Sciences, 101, 1613–7.CrossRefGoogle ScholarPubMed
Dreßler, M., Hübener, T., Gors, S., Werner, P., & Selig, U. (2007). Multi-proxy reconstruction of trophic state, hypolimnetic anoxia and phototrophic sulphur bacteria abundance in a dimictic lake in Northern Germany over the past 80 years. Journal of Paleolimnology, 37, 205–19.CrossRefGoogle Scholar
Ekdahl, E. J., Teranes, J. L., Wittkop, C. A., et al. (2007). Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake, Ontario, Canada. Journal of Paleolimnology, 37, 233–46.CrossRefGoogle Scholar
Engstrom, D. R. & Wright, H. E. Jr., (1984). Chemical stratigraphy of lake sediments as a record of environmental change. In Lake Sediments and Environmental History, ed. Haworth, E. Y. & Lund, J. W. G., Minneapolis, MN: University of Minnesota Press, pp. 1–67.Google Scholar
Engstrom, D. R., Swain, E. B., & Kingston, J. C. (1985). A palaeolimnological record of human disturbance from Harvey's Lake, Vermont: geochemistry, pigments and diatoms. Freshwater Biology, 15, 261–88.CrossRefGoogle Scholar
Ennis, G. L., Northcote, T. G., & Stockner, J. G. (1983). Recent trophic changes in Kootenay Lake, British Columbia, as recorded by fossil diatoms. Canadian Journal of Botany, 61, 1983–92.CrossRefGoogle Scholar
,European Union (2000). Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 on establishing a framework for community action in the field of water policy. Journal of the European Community, L327, 1–72.Google Scholar
Fairchild, G. W. & Sherman, J. W. (1992). Linkage between epilithic algal growth and water column nutrients in softwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1641–9.CrossRefGoogle Scholar
Fairchild, G. W. & Sherman, J. W. (1993). Algal periphyton response to acidity and nutrients in softwater lakes: lake comparison vs. nutrient enrichment approaches. Journal of the North American Benthological Society, 12, 157–67.CrossRefGoogle Scholar
Fairchild, G. W., Lowe, R. L., & Richardson, W. T. (1985). Algal periphyton growth on nutrient-diffusing substrates: An in situ bioassay. Ecology, 66, 465–72.CrossRefGoogle Scholar
Farmer, J. G. (1994). Environmental change and the chemical record in Loch Lomond sediments. Hydrobiologia, 290, 39–49.CrossRefGoogle Scholar
Finsinger, W., Bigler, C., Krahenbuhl, U., Lotter, A. F., & Ammann, B. (2006). Human impacts and eutrophication patterns during the past ∼ 200 years at Lago Grande di Avigliana (N. Italy). Journal of Paleolimnology, 36, 55–67.CrossRefGoogle Scholar
Foy, R. H., Lennox, S. D., & Gibson, C. E. (2003). Changing perspectives on the importance of urban phosphorus inputs as the cause of nutrient enrichment in Lough Neagh. Science of the Total Environment, 310, 87–99.CrossRefGoogle ScholarPubMed
Franz, S. O., Schwark, L., Bruchmann, C., et al. (2006). Results from a multi-disciplinary sedimentary pilot study of tectonic Lake Iznik (NW Turkey) – geochemistry and paleolimnology of the recent past. Journal of Paleolimnology, 35, 715–36.CrossRefGoogle Scholar
Fritz, S. C. (1989). Lake development and limnological response to prehistoric and historic land-use in Diss, Norfolk, U.K. Journal of Ecology, 77, 182–202.CrossRefGoogle Scholar
Fritz, S. C., Kingston, J. C., & Engstrom, D. R. (1993). Quantitative trophic reconstructions from sedimentary diatom assemblages: a cautionary tale. Freshwater Biology, 30, 1–23.CrossRefGoogle Scholar
Garcıa-Rodríguez, F., Mazzeo, N., Sprechmann, P., et al. (2002). Paleolimnological assessment of human impacts in Lake Blanca, SE Uruguay. Journal of Paleolimnology, 28, 457–68.CrossRefGoogle Scholar
Garcıa-Rodrıguez, F., Anderson, R., & Adams, J. B. (2007). Paleolimnological assessment of human impacts on an urban South African lake. Journal of Paleolimnology, 38, 297–308.CrossRefGoogle Scholar
Garrison, P. J. & Fitzgerald, S. A. (2007). The role of shoreland development and commercial cranberry farming in a lake in Wisconsin, USA. Journal of Paleolimnology, 33, 169–88.CrossRefGoogle Scholar
Garrison, P. J. & Wakeman, R. S. (2000). Use of paleolimnology to document the effect of lake shoreland development on water quality. Journal of Paleolimnology, 24, 369–93.CrossRefGoogle Scholar
Gibson, C. E., Foy, R. H., & Bailey-Watts, A. E. (1996). An analysis of the total phosphorus cycle in temperate lakes: the response to enrichment. Freshwater Biology, 35, 525–32CrossRefGoogle Scholar
Goldman, C. R. (1981). Lake Tahoe: two decades of change in a nitrogen deficient oligotrophic lake. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen, 24, 411–5.Google Scholar
Gregory-Eaves, R., Smol, J. P., Finney, B. P., & Edwards, M. E. (1999). Diatom-based transfer functions for inferring past climatic and environmental changes in Alaska, USA. Arctic Antarctic and Alpine Research, 31, 353–65.CrossRefGoogle Scholar
Håkansson, H. & Regnéll, R. (1993). Diatom succession related to land use during the last 6000 years: a study of a small eutrophic lake in southern Sweden. Journal of Paleolimnology, 8, 49–69.CrossRefGoogle Scholar
Hall, R. I. & Smol, J. P. (1992). A weighted-averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology, 27, 417–34.CrossRefGoogle Scholar
Hall, R. I. & Smol, J. P. (1993). The influence of catchment size on lake trophic status during the hemlock decline and recovery (4800 to 3500 BP) in southern Ontario lakes. Hydrobiologia, 269/270, 371–90.CrossRefGoogle Scholar
Hall, R. I. & Smol, J. P. (1996). Paleolimnological assessment of long-term water-quality changes in south-central Ontario lakes affected by cottage development and acidification. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1–17.CrossRefGoogle Scholar
Hall, R. I. & Smol, J. P. (1999). Diatoms as indicators of lake eutrophication. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge, UK: Cambridge University Press, pp. 128–68.CrossRefGoogle Scholar
Hall, R. I., Leavitt, P. R., Smol, J. P. & Zirnhelt, N. (1999). Comparison of diatoms, fossil pigments and historical records as measures of lake eutrophication. Freshwater Biology, 38, 401–17.CrossRefGoogle Scholar
Hall, R. I., Leavitt, P. R., Dixit, A. S., Quinlan, R. & Smol, J. P. (1999). Effects of agriculture, urbanization and climate on water quality in the northern Great Plains. Limnology & Oceanography, 44, 739–56.CrossRefGoogle Scholar
Hambright, K. D., Zohary, T., Eckert, W., et al. (2008). Exploitation and destabilization of a warm, freshwater ecosystem through engineered hydrological change. Ecological Applications, 18, 1591–603.CrossRefGoogle ScholarPubMed
Hansson, L. A. (1988). Effects of competitive interactions on the biomass development of planktonic and periphytic algae in lakes. Limnology and Oceanography, 33, 121–8.CrossRefGoogle Scholar
Hansson, L. A. (1992). Factors regulating periphytic algal biomass. Limnology and Oceanography, 37, 322–8.CrossRefGoogle Scholar
Hargesheimer, E. E. & Watson, S. B. (1996). Drinking water treatment options for taste and odour control. Water Research, 30, 1423–30.CrossRefGoogle Scholar
Hargrave, B. T. (1969). Epibenthic algal production and community respiration in the sediments of Marion Lake. Journal of the Fisheries Research Board of Canada, 26, 2003–26.CrossRefGoogle Scholar
Harper, D. (1992). Eutrophication of Freshwaters. London: Chapman Hall.CrossRefGoogle Scholar
Hausmann, S., Lotter, A. F., Leeuwen, J. F. N., et al. (2002). Interactions of climate and land use documented in the varved sediments of Seebergsee in the Swiss Alps. The Holocene 12, 279–89.CrossRefGoogle Scholar
Hawes, I. H. & Smith, R. (1992). Effect of localised nutrient enrichment on the shallow epilithic periphyton of oligotrophic Lake Taupo. New Zealand Journal of Marine and Freshwater Research, 27, 365–72.CrossRefGoogle Scholar
Haworth, E. Y. (1984). Stratigraphic changes in algal remains (diatoms and chrysophytes) in the recent sediments of Blelham Tarn, English Lake District. In Lake Sediments and Environmental History, ed. Haworth, E. Y. & Lund, J. W. G., Leices ter: Leicester University Press, pp. 165–90.Google Scholar
Hayes, C. R. & Greene, L. A. (1984). The evaluation of eutrophication impact in public water supply reservoirs in East Anglia. Water Pollution Control, 83, 45–51.Google Scholar
Hickman, M., Schweger, C. E., & Klarer, D. M. (1990). Baptiste Lake, Alberta – a late Holocene history of changes in a lake and its catchment in the southern boreal forest. Journal of Paleolimnology, 4, 253–67.CrossRefGoogle Scholar
Hübener, T., Dreßler, M., Schwarz, A., Langner, K. & Adler, S. (2008). Dynamic adjustment of training sets (‘moving-window’ reconstruction) by using transfer functions in paleolimnology – a new approach. Journal of Paleolimnology, 40, 79–95.CrossRefGoogle Scholar
Hutchinson, N. J., Neary, B. P., & Dillon, P. J. (1991). Validation and use of Ontario's Trophic Status Model for establishing lake development guidelines. Lake and Reservoir Management, 7, 13–23.CrossRefGoogle Scholar
Jeppesen, E., Madsen, E. A., & Jensen, J. P. (1996). Reconstructing the past density of planktivorous fish and trophic structure from sedimentary zooplankton fossils: a surface sediment calibration data set from shallow lakes. Freshwater Biology, 36, 115–27.CrossRefGoogle Scholar
Jeziorski, A., Yan, N. D., Paterson, A. M., et al. (2008). The widespread threat of calcium decline in fresh waters. Science, 322, 1374–7.CrossRefGoogle ScholarPubMed
Jones, V. J. & Juggins, S. (1995). The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwater Biology, 34, 433–45.CrossRefGoogle Scholar
Jordan, P., Rippey, B., & Anderson, N. J. (2001). Modeling diffuse phosphorus loads from land to freshwater using the sedimentary record. Environmental Science & Technology, 35, 815–20.CrossRefGoogle ScholarPubMed
Jordan, P., Rippey, B., & Anderson, N. J. (2002). The 20th century whole-basin trophic history of an inter-drumlin lake in an agricultural catchment. The Science of the Total Environment, 297, 161–73.CrossRefGoogle Scholar
Juggins, S. (2001). The European Diatom Database. User Guide. Version 1.0. October 2001. See http://craticula.ncl.ac.uk/Eddi/ jsp/help.jsp.
Kann, J. & Falter, C. M. (1989). Periphyton indicators of enrichment in Lake Pend Oreille, Idaho. Lake and Reservoir Management, 5, 39–48.CrossRefGoogle Scholar
Karr, J. R. & Dudley, D. R. (1981). Ecological perspective on water quality goals. Environmental Management, 5, 55–68.CrossRefGoogle Scholar
Karst, T. L. & Smol, J. P. (2000). Paleolimnological evidence of limnetic nutrient concentration equilibrium in a shallow, macrophyte-dominated lake. Aquatic Science, 62, 20–38.CrossRefGoogle Scholar
Kauppila, T., Moisio, T., & Salonen, V. P. (2002). A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. Journal of Paleolimnology, 27, 261–73.CrossRefGoogle Scholar
Kilham, S. S., Theriot, E. C., & Fritz, S. C. (1996). Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Limnology and Oceanography, 41, 1052–62.CrossRefGoogle Scholar
King, L., Clarke, G., Bennion, H., Kelly, M. & Yallop, M. (2006). Recommendations for sampling littoral diatoms in lakes for ecological status assessments. Journal of Applied Phycology, 18, 15–25.CrossRefGoogle Scholar
Kireta, A. R., Reavie, E. D., Danz, N. P., et al. (2007). Coastal geomorphic and lake variability in the Laurentian Great Lakes: implications for a diatom-based monitoring tool. Journal of Great Lakes Research, 33 (Special Issue 3), 36–153.Google Scholar
Kotak, B. G., Lam, A. K-Y., Prepas, E. E., Kenefick, S. L., & Hrudey, S. E. (1995). Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. Journal of Phycology, 31, 248–63.CrossRefGoogle Scholar
Krammer, K., and Lange-Bertalot, H. (1986–1991). Bacillariophyceae. Süsswasserflora von Mitteleuropa, Band 2 (1–4), vol. 1–4, Stuttgart: Gustav Fischer Verlag.Google Scholar
Kreis, R. G. Jr., Stoermer, E. F., & Ladewski, T. B. (1985). Phytoplankton Species Composition, Abundance, and Distribution in Southern Lake Huron, 1980; Including a Comparative Analysis with Conditions in 1974 Prior to Nutrient Loading Reductions. Great Lakes Research Division Special Report no. 107. Ann Arbor, MI: The University of Michigan.Google Scholar
Lambert, D., Cattaneo, A., & Carignan, R. (2008). Periphyton as an early indictor of perturbation in recreational lakes. Canadian Journal of Fisheries and Aquatic Sciences, 65, 258–65.CrossRefGoogle Scholar
Leahy, P. J., Tibby, J., Kershaw, A. P., Heijnis, H., & Kershaw, J. S. (2005). The impact of European settlement on Bolin Billabong, a Yarra River floodplain lake, Melbourne, Australia. River Research and Applications, 21, 131–49.CrossRefGoogle Scholar
Leavitt, P. R. (1993). A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology, 9, 109–27.CrossRefGoogle Scholar
Leavitt, P. R., Carpenter, S. R., & Kitchell, J. F. (1989). Whole-lake experiments: the annual record of fossil pigments and zooplankton. Limnology and Oceanography, 34, 700–17.CrossRefGoogle Scholar
Leavitt, P. R. & Findlay, D. L. (1994). Comparison of fossil pigments with 20 years of phytoplankton data from eutrophic Lake 227, Experimental lakes Area, Ontario. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2286–99.CrossRefGoogle Scholar
Leira, M., Jordan, P., Taylor, D., Dalton, C., Bennion, H., Rose, N., & Irvine, K. (2006). Assessing the ecological status of candidate reference lakes in Ireland using palaeolimnology. Journal of Applied Ecology, 43, 816–27.CrossRefGoogle Scholar
Likens, G. E. (ed.) (1989) Long-Term Studies in Ecology. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Little, J. L., Hall, R. I., Quinlan, R., & Smol, J. P. (2000). Quantifying past trophic status and hypolimnetic anoxia in Gravenhurst Bay, Ontario: differential responses of diatoms and chironomids following nutrient diversion. Canadian Journal of Fisheries and Aquatic Sciences, 57, 333–41.CrossRefGoogle Scholar
Lotter, A. F. (1998). The recent eutrophication of Baldeggersee (Switzerland) as assessed by fossil diatom assemblages. The Holocene, 8, 395–405.CrossRefGoogle Scholar
Lotter, A. F., Ammann, B., & Sturm, M. (1992). Rates of change and chronological problems during the late-glacial period. Climate Dynamics, 6, 233–9.CrossRefGoogle Scholar
Lotter, A. F., Birks, H. J. B., Hofmann, W., & Marchetto, A. (1998). Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. Journal of Paleolimnology, 19, 443–63CrossRefGoogle Scholar
Lowe, R. L. (1996). Periphyton patterns in lakes. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L., & Lowe, R. L., San Diego, CA: Academic Press, pp. 57–77.CrossRefGoogle Scholar
Lowe, R. L. & Hunter, R. D. (1988). Effect of grazing by Physa integra on periphyton community structure. Journal of the North American Benthological Society, 7, 29–36.CrossRefGoogle Scholar
Lund, J. W. G. (1950). Studies on Asterionella Hass. I. The origin and nature of the cells producing seasonal maxima. Journal of Ecology, 38, 1–35.CrossRefGoogle Scholar
Lund, J. W. G. & Reynolds, C. S. (1982). The development and operation of large limnetic enclosures in Blelham Tarn, English Lake District, and their contribution to phytoplankton ecology. Progress in Phycological Research, 1, 1–65.Google Scholar
Marchetto, A. & Bettinetti, R. (1995). Reconstruction of the phosphorus history of two deep, subalpine Italian lakes from sedimentary diatoms, compared with long-term chemical measurements. Memoire dell'Istituto Italiano di Idrobiologia, 53, 27–38.Google Scholar
Marchetto, A., Lamia, A., Musazzi, S., et al. (2003). Lake Maggiore (N. Italy) trophic history: fossil diatom, plant pigments, and chironomids, and comparison with long-term limnological data. Quaternary International, 113, 97–110.CrossRefGoogle Scholar
Marsden, M. W. (1989). Lake restoration by reducing external phosphorus loading: the influence of sediment phosphorus release. Freshwater Biology, 21, 139–62.CrossRefGoogle Scholar
Mason, C. F. (1991). Biology of Freshwater Pollution, 2nd edition, London: Longman Group (FE) Ltd.Google Scholar
McGowan, S., Leavitt, P. R., Hall, R. I., et al. 2005. Controls of algal abundance and community composition during alternative stable state change. Ecology, 86, 2200–11.CrossRefGoogle Scholar
Michelutti, N., Hermanson, M. H., Smol, J. P., Dillon, P. J., & Douglas, M. S. V. (2007). Delayed response of diatom assemblages to sewage inputs in an Arctic lake. Aquatic Science, 69, 523–33.CrossRefGoogle Scholar
Miettinen, J. O., Simola, H., Gronlund, E., Lahtinen, J., & Niinioja, R. (2005). Limnological effects of growth and cessation of agricultural land use in Ladoga Karelia: sedimentary pollen and diatom analyses. Journal of Paleolimnology, 34, 229–43.CrossRefGoogle Scholar
Niederhauser, P. & Schanz, F. (1993). Effects of nutrient (N, P, C) enrichment upon the littoral diatom community of an oligotrophic high-mountain lake. Hydrobiologia, 269/270, 453–62.CrossRefGoogle Scholar
Niemi, G. J., Kelly, J. R., & Danz, N. P. (2007). Environmental indicators for the coastal region of the North American Great Lakes: introduction and prospectus. Journal of Great Lakes Research, 33 (Special Issue 3), 1–12.CrossRefGoogle Scholar
Niemi, G. J. & McDonald, M. 2004. Application of ecological indicators. Annual Review of Ecology and Systematics, 35, 89–111.CrossRefGoogle Scholar
Nygaard, G. (1949). Hydrobiological studies on some Danish ponds and lakes. II: the Quotient hypothesis and some new or little known phytoplankton organisms. Det Kongelinge Dansk Videnskabernes Selskab Biologiske Skrifter, 7, 1–193.Google Scholar
O'Sullivan, P. E. (1992). The eutrophication of shallow coastal lakes in southwest England – understanding and recommendations for restoration, based on palaeolimnology, historical records, and the modelling of changing phosphorus loads. Hydrobiologia, 243/244, 421–34.CrossRefGoogle Scholar
Patrick, R. & Reimer, C. (1966). The Diatoms of the United States, vol. 1, Monograph 3, Philadelphia, PA: Academy of Natural Sciences, pp. 1–668.Google Scholar
Peglar, S. M., Fritz, S. C., & Birks, H. J. B. (1989). Vegetation and land-use history in Diss, Norfolk, England. Journal of Ecology, 77, 203–22.CrossRefGoogle Scholar
Philibert, A. & Prairie, Y. (2002). Is the introduction of benthic species necessary for open-water chemical reconstruction in diatom-based transfer functions? Canadian Journal of Fisheries and Aquatic Sciences, 59, 938–51.CrossRefGoogle Scholar
Polis, G. A. & Winemiller, K. O. (ed.) (1996). Food Webs: Integration of Patterns & Dynamics. New York, NY: Chapman & Hall.CrossRefGoogle Scholar
Pollard, P. & Huxham, M. (1998). The European Water Framework Directive: a new era in the management of aquatic ecosystem health?Aquatic Conservation: Marine and Freshwater Ecosystems, 8, 773–792.3.0.CO;2-R>CrossRefGoogle Scholar
Qinghong, L. & Bråkenhielm, S. (1995). A statistical approach to decompose ecological variation. Water, Air and Soil Pollution, 85, 1587–92.CrossRefGoogle Scholar
Quinlan, R., Hall, R. I., Paterson, A. M., Cumming, B. F., & Smol, J. P. (2008). Long-term assessments of ecological effects of anthropogenic stressors on aquatic ecosystems from paleoecological analyses: challenges to perspectives of lake management. Canadian Journal of Fisheries and Aquatic Sciences, 65, 933–44.CrossRefGoogle Scholar
Quinlan, R., Smol, J. P., & Hall, R. I. (1998). Quantitative inferences of past hypolimnetic anoxia in south-central Ontario lakes using fossil chironomids (Diptera: Chironomidae). Canadian Journal of Fisheries and Aquatic Sciences, 54, 587–96.CrossRefGoogle Scholar
Rasanen, J., Kauppila, T., & Salonen, V.-P. (2006). Sediment-based investigation of naturally or historically eutrophic lakes – implications for lake management. Journal of Environmental Management, 79, 253–65.CrossRefGoogle ScholarPubMed
Reavie, E. D. (2007). A diatom-based water quality model for Great Lakes coastlines. Journal of Great Lakes Research, 33 (Special Issue 3), 86–92.CrossRefGoogle Scholar
Reavie, E. D., Axler, R. P., Sgro, G. V., et al. (2006). Diatom-based weighted-averaging transfer functions for Great Lakes coastal water quality: relationships to watershed characteristics. Journal of Great Lakes Research, 32, 321–47.CrossRefGoogle Scholar
Reavie, E. D., Hall, R. I., & Smol, J. P. (1995). An expanded weighted-averaging model for inferring past total phosphorus concentrations from diatom assemblages in eutrophic British Columbia (Canada) lakes. Journal of Paleolimnology, 14, 49–67.CrossRefGoogle Scholar
Reavie, E. D., Kireta, A. R., Kingston, J. C., et al. (2008). Comparison of simple and multimetric diatom-based indices for Great Lakes coastline disturbance. Journal of Phycology, 44, 787–802.CrossRefGoogle ScholarPubMed
Reavie, E. D. & Smol, J. P. (2001). Diatom–environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. Journal of Paleolimnology, 25, 25–42.CrossRefGoogle Scholar
Reavie, E. D., Smol, J. P., & Dillon, P. J. (2002). Inferring long-term nutrient changes in southeastern Ontario lakes: comparing paleolimnological and mass-balance models. Hydrobiologia, 481, 61–74.CrossRefGoogle Scholar
Reckow, K. H. & Simpson, J. T. (1980). A procedure using modelling and error analysis for the prediction of lake phosphorus concentration from land use information. Canadian Journal of Fisheries and Aquatic Sciences, 37, 1439–48.CrossRefGoogle Scholar
Reid, M. (2005). Diatom-based models for reconstructing past water quality and productivity in New Zealand lakes. Journal of Paleolimnology, 33, 13–38.CrossRefGoogle Scholar
Revsbeck, N. P. & Jørgensen, B. B. (1986). Microelectrodes: their use in microbial ecology. Advances in Microbial Ecology, 9, 749–56.Google Scholar
Revsbeck, N. P., Jørgensen, B. B., Blackburn, T. H., & Cohen, Y. (1983). Microelectrode studies of photosynthesis and O2, H2S and pH profiles of a microbial mat. Limnology and Oceanography, 28, 1062–74.CrossRefGoogle Scholar
Reynolds, C. S. (1984). The Ecology of Freshwater Phytoplankton. Cambridge: Cambridge University Press.Google Scholar
Rippey, B. (1995). Lake phosphorus models. In Ecology and Palaeoecology of Lake Eutrophication, ed. Patrick, S. T. & Anderson, N. J., DGU Service Report no. 7, Copenhagen: Geological Survey of Denmark, pp. 58–60.Google Scholar
Rippey, B. & Anderson, N. J. (1996). Reconstruction of lake phosphorus loading and dynamics using the sedimentary record. Environmental Science & Technology, 30, 1786–8.CrossRefGoogle Scholar
Rippey, B., Anderson, N. J. & Foy, R. H. (1997). Accuracy of diatom-inferred total phosphorus concentration, and the accelerated eutrophication of a lake due to reduced flushing and increased internal loading. Canadian Journal of Fisheries and Aquatic Sciences, 54, 2637–46.CrossRefGoogle Scholar
Rosenberger, E. E., Hampton, S. E., Fradkin, S. C., & Kennedy, B. P. (2008). Effects of shoreline development on the nearshore environment in large deep oligotrophic lakes. Freshwater Biology, 53, 1673–91.CrossRefGoogle Scholar
Round, F. E., Crawford, R. M., & Mann, D. G. (1990). The Diatoms: Biology and Morphology of the Genera. Cambridge: Cambridge University Press.Google Scholar
Sandman, O., Lichu, A., & Simola, H. (1990). Drainage ditch erosion history as recorded in the varved sediment of a lake in East Finland. Journal of Paleolimnology, 3, 161–9.CrossRefGoogle Scholar
Sas, H. (1989) Lake Restoration by Reduction of Nutrient Loading: Expectations, Experiences, Extrapolations, St. Augustin: Cademia Verlag, 497 pp.Google Scholar
Schelske, C. L. (1999) Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge: Cambridge University Press, pp. 73–84.CrossRefGoogle Scholar
Schelske, C. L., Rothman, E. D., Stoermer, E. F., & Santiago, M. A. (1974). Responses of phosphorus limited Lake Michigan phytoplankton to factorial enrichments with nitrogen and phosphorus. Limnology and Oceanography, 19, 409–19.CrossRefGoogle Scholar
Schelske, C. L. & Stoermer, E. F. (1971). Eutrophication, silica depletion and predicted changes in algal quality in Lake Michigan. Science, 173, 423–4.CrossRefGoogle ScholarPubMed
Schelske, C. L., Stoermer, E. F., Fahnenstiel, G. L., & Haibach, G. L. (1986). Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Canadian Journal of Fisheries and Aquatic Sciences, 43, 407–15.CrossRefGoogle Scholar
Schindler, D. W. (1971). Carbon, nitrogen and phosphorus and the eutrophication of freshwater lakes. Journal of Phycology, 7, 321–9.Google Scholar
Schindler, D. W. (1977). Evolution of phosphorus limitation in lakes. Science, 195, 260–2.CrossRefGoogle ScholarPubMed
Schönfelder, I., Gelbrecht, J., Schönfelder, J., & Steinberg, C. E. W. (2002). Relationships between littoral diatoms and their chemical environment in northeastern German lakes and rivers. Journal of Phycology, 38, 666–82.CrossRefGoogle Scholar
Simola, H. (1983). Limnological effects of peatland drainage and fertilization as reflected in the varved sediment of a deep lake. Hydrobiologia, 106, 43–57.CrossRefGoogle Scholar
Simpson, G. L. & Hall, R. I. (2011). Human impacts – applications of numerical methods to evaluate surface-water acidification and eutrophication. In Tracking Environmental Change Using Lake Sediments, Volume 5: Data Handling and Statistical Techniques, Dordrecht: Springer (in press).Google Scholar
Siver, P. A. (1999). Development of paleolimnological inference models for pH, total nitrogen and specific conductivity based on planktonic diatoms. Journal of Paleolimnology, 21, 45–59.CrossRefGoogle Scholar
Smith, V. H., Joye, S. B., & Howarth, R. W. (2006). Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography, 51, 351–5.CrossRefGoogle Scholar
Smol, J. P. (1995). Paleolimnological approaches to the evaluation and monitoring of ecosystem health: providing a history for environmental damage and recovery. In Evaluating and Monitoring the Health of Large-Scale Ecosystems: NATO ASI Series, Vol. 128, ed. Rapport, D. J., Gaudet, C. L. & Calow, P., Berlin: Springer-Verlag, pp. 301–18.CrossRefGoogle Scholar
Smol, J. P. (2008). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective, 2nd Edition. Blackwell Publ. 383 pp.Google Scholar
Smol, J. P. & Dickman, M. D. (1981). The recent histories of three Canadian Shield lakes: A paleolimnological experiment. Archiv für Hydrobiologie, 93, 83–108.Google Scholar
Soranno, P. A., Hubler, S. L., Carpenter, S. R., & Lathrop, R. C. (1996). Phosphorus loads to surface waters: a simple model to account for spatial pattern of land use. Ecological Applications, 6, 865–78.CrossRefGoogle Scholar
St. Jacques, J.-M., Douglas, M. S. V., & McAndrews, J. H. (2000). Mid-Holocene hemlock decline and diatom communities in van Nostrand Lake, Ontario, Canada. Journal of Paleolimnology, 23, 385–97.CrossRefGoogle Scholar
Stockner, J. G. (1971). Preliminary characterization of lakes in the Experimental Lakes Area, north-western Ontario using diatom occurrence in lake sediments. Journal of the Fisheries Research Board of Canada, 28, 265–75.CrossRefGoogle Scholar
Stoermer, E. F., Emmert, G., Julius, M. L. & Schelske, C. L. (1996). Paleolimnologic evidence of rapid change in Lake Erie's trophic status. Canadian Journal of Fisheries and Aquatic Sciences, 53, 1451–8.CrossRefGoogle Scholar
Stoermer, E. F. & Yang, J. J. (1970). Distribution and Relative Abundance of Dominant Planktonic Diatoms in Lake Michigan. Great Lakes Research Division Publication no. 16. Ann Arbor, MI: University of Michigan.Google Scholar
Taylor, D., Dalton, C., Leira, M., et al. (2006). Recent histories of six productive lakes in the Irish Ecoregion based on multiproxy palaeolimnological evidence. Hydrobiologia, 571, 237–59.CrossRefGoogle Scholar
Tibby, J. (2004). Development of a diatom-based model for inferring total phosphorus in south-eastern Australian water storages. Journal of Paleolimnology, 31, 23–36.CrossRefGoogle Scholar
Tilman, D. (1977). Resource competition between planktonic algae: an experimental and theoretical approach. Ecology, 58, 338–48.CrossRefGoogle Scholar
Tilman, D., Kilham, S. S., & Kilham, P. (1982). Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics, 13, 349–72.CrossRefGoogle Scholar
Tilman, D., Kiesling, R., Sterner, R., Kilham, S. S., & Johnson, F. A. (1986). Green, bluegreen and diatom algae: taxonomic differences in competitive ability for phosphorus, silicon and nitrogen. Archiv für Hydrobiolgie, 106, 473–85.Google Scholar
Turkia, J. & Lepistö, L. (1999). Size variation of planktonic Aulacoseira in water and sediment from Finnish lakes of varying trophic status. Journal of Plankton Research, 21, 757–70.CrossRefGoogle Scholar
Turner, M. A., Howell, E. T., Robinson, G. G. C., et al. (1994). Role of nutrients in controlling growth of epilithon in oligotrophic lakes of low alkalinity. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2784–93.CrossRefGoogle Scholar
Vaughn, J. C. (1961). Coagulation difficulties of the south district filtration plant. Pure Water, 13, 45–9.Google Scholar
Verschuren, D., Johnson, T. C., Kling, H. J., et al. (2002) The chronology of human impact on Lake Victoria, East Africa. Proceedings of the Royal Society, London, B 269, 289–94.CrossRefGoogle Scholar
Vinebrooke, R. D. (1996). Abiotic and biotic regulation of periphyton in recovering acidified lakes. Journal of the North American Benthological Society, 15, 318–31.CrossRefGoogle Scholar
Vollenweider, R. A. (1975). Input–output models with special reference to the phosphorus loading concept. Schweizerische Zeitschrift für Hydrologie, 37, 58–83.Google Scholar
Watchorn, M. A., Hamilton, P. B., Anderson, T. W., Roe, H. M., & Patterson, R. T. (2008). Diatoms and pollen as indicators of water quality and land-use change: a case study from the Oak Ridges Moraine, southern Ontario, Canada. Journal of Paleolimnology, 39, 491–509.CrossRefGoogle Scholar
Webster, K. E., Kratz, T. K., Bowser, C. J., & Magnusson, J. J. (1996). The influence of landscape position on lake chemical responses to drought in northern Wisconsin. Limnology and Oceanography, 41, 977–84.CrossRefGoogle Scholar
Werner, D. (ed.) (1977). The Biology of Diatoms. Berkeley, CA: University of California Press.Google Scholar
Werner, P. & Smol, J. P. (2005). Diatom–environmental relationships and nutrient transfer functions from contrasting shallow and deep limestone lakes in Ontario, Canada. Hydrobiologia, 533, 145–73.CrossRefGoogle Scholar
Wessels, M., Mohaup, K., Kummerlin, R., & Lenhard, A. (1999). Reconstructing past eutrophication trends from diatoms and biogenic silica in the sediment and the pelagic zone of Lake Constance, Germany. Journal of Paleolimnology, 21, 171–92.CrossRefGoogle Scholar
Wetzel, R. G. (1964). A comparative study of the primary productivity of higher aquatic plants, periphyton and phytoplankton in a large shallow lake. Internationale Revue der Gesamten Hydrobiologie 48, 1–61.CrossRefGoogle Scholar
Wetzel, R. G. (2001). Limnology, 3rd edition, San Diego, CA: Academic Press.Google Scholar
Wetzel, R. G., Rich, P. H., Miller, M. C., & Allen, H. L. (1972). Metabolism of dissolved and particulate detrital carbon in a temperate hard-water lake. Memoire dell'Istituto Italiano di Idrobiologia Supplement, 29, 253–76.Google Scholar
Weyhenmeyer, G. A., Westöö, A.-K., & Willén, E. (2008). Increasingly ice-free winters and their effects on water quality in Sweden's largest lakes. Hydrobiologia, 599, 111–18.CrossRefGoogle Scholar
Whitmore, T. J. (1989). Florida diatom assemblages as indicators of trophic state and pH. Limnology and Oceanography, 34, 882–95.CrossRefGoogle Scholar
Whittier, T. R. & Paulsen, S. G. (1992). The surface waters component of the Environmental Monitoring and Assessment Program (EMAP): an overview. Journal of Aquatic Ecosystem Health, 2, 119–26.CrossRefGoogle Scholar
Wunsam, S. & Schmidt, R. (1995). A diatom–phosphorus transfer function for alpine and pre-alpine lakes. Memoire dell'Istituto Italiano di Idrobiologia, 53, 85–99.Google Scholar
Yang, J.-R., Duthie, H. C., & Delorme, L. D. (1993). Reconstruction of the recent environmental history of Hamilton Harbour (Lake Ontario, Canada) from analysis of siliceous microfossils. Journal of Great Lakes Research, 19, 55–71.CrossRefGoogle Scholar
Yang, J.-R., Pick, F. R., & Hamilton, P. B. (1996). Changes in the planktonic diatom flora of a large mountain lake in response to fertilization. Journal of Phycology, 32, 232–43.CrossRefGoogle Scholar
Yang, X., Anderson, N. J., Dong, X., & Shen, J. I. (2008). Surface sediment diatom assemblages and epilimnetic total phosphorus in large, shallow lakes of the Yangtze floodplain: their relationships and implications for assessing long-term eutrophication. Freshwater Biology, 53, 1273–90.CrossRefGoogle Scholar
Zeeb, B. A., Christie, C. E., Smol, J. P., et al. (1994). Responses of diatom and chrysophyte assemblages in Lake 227 sediments to experimental eutrophication. Canadian Journal of Fisheries and Aquatic Sciences, 51, 2300–11.CrossRef

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×