Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-23T15:58:00.535Z Has data issue: false hasContentIssue false

10 - Adaptive digital baseband predistortion

design and implementation

from Part II - DPD and CFR

Published online by Cambridge University Press:  07 October 2011

Fa-Long Luo
Affiliation:
Element CXI, San Jose, California
Get access

Summary

Introduction

The radio frequency (RF) power amplifier (PA) is the most power consuming element in a wireless transmission system, and can account for more than 50 percent of the total power consumed by the transmitter [1]. Improving the PA efficiency saves energy and drives down the overall system costs. A study described in [2, p. 13] provides a compelling reason for PA linearization: application of PA linearization technologies can yield annual savings of millions of dollars for a typical network service provider.

Efficient PAs are usually nonlinear. Nonlinearity generates both in-band distortion and out-of-band interference, which manifest in terms of transmitter error vector magnitude (EVM) degradation and spectral regrowth. In wireless communication systems, many signal formats, such as Code Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing (OFDM) transmission, have been introduced to improve spectrum efficiency and data rate. However, these non-constant-envelope signals are not power efficient in the presence of nonlinear PAs as large back-offs are needed for linear transmission. In most commercial wireless communication systems, PAs are still the dominant source of signal quality degradation since the PAs are usually biased in a mildly nonlinear region to gain a reasonable amount of efficiency.

Type
Chapter
Information
Digital Front-End in Wireless Communications and Broadcasting
Circuits and Signal Processing
, pp. 280 - 308
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, G.Khesbak, S.Agarwal, A.Chin, S.60 2010
Kenington, P. B.High-Linearity RF Amplifier DesignBoston, MAArtech House 2000Google Scholar
Cripps, S. C.Advanced Techniques in RF Power Amplifier DesignNorwood, MAArtech House 2002Google Scholar
Sundström, L. 1995
Dawson, J. L.Lee, T. H.Feedback Linearization of RF Power AmplifiersNew YorkSpringer 2004Google Scholar
Razavi, B.RF MicroelectronicsUpper Saddle River, NYPrentice Hall 1997Google Scholar
Cox, D.Linear amplification by sampling techniques: A new application for delta codersIEEE Transactions on Communications 23 793 1975CrossRefGoogle Scholar
Raab, F. H.Asbeck, P.Cripps, S.Power amplifiers and transmitters for RF and microwaveIEEE Transactions on Microwave Theory and Techniques 50 814 2002CrossRefGoogle Scholar
Kundert, K. S. 2002 www.designers-guide.org/analysis/intercept-point.pdf
Chang, K.Bahl, I.Nair, V.RF and Microwave Circuits and Component Design for Wireless SystemsNew YorkJohn Wiley & Sons 2002Google Scholar
Benedetto, S.Biglieri, E.Principles of Digital Transmission with Wireless ApplicationsDordrechtKluwer Academic Publishers 1999Google Scholar
Maas, S. A.Nonlinear Microwave CircuitsPiscataway, NJIEEE Press 1997Google Scholar
Cripps, S. C.RF Power Amplifiers for Wireless CommunicationsNorwood, MAArtech House 1999Google Scholar
Proakis, J. G.Digital CommunicationsNew YorkMcGraw-Hill 1995Google Scholar
Zhou, G. T.Qian, H.Ding, L.Raich, R.On the baseband representation of a bandpass nonlinearityIEEE Transactions on Signal Processing 53 2953 2005CrossRefGoogle Scholar
Raich, R.Zhou, G. T.On the modeling of memory nonlinear effects of power amplifiers for communication applicationsProc. the 10th IEEE DSP WorkshopPine Mountain, GA7 2002Google Scholar
D’Andrea, A. N.Lottici, V.Reggiannini, R.RF power amplifier linearization through amplitude phase predistortionIEEE Transactions on Communications 44 1477 1996CrossRefGoogle Scholar
Jin, M.Shin, S. K.Oh, D.1129 2002
Vo, T. H.Le-Ngoe, T.Baseband predistortion techniques for M-QAM transmission using non-linear power amplifiersProc. IEEE Vehicular Technology Conference 1 687 2003Google Scholar
Faulkner, M.Johansson, M.Adaptive linearization using predistortion – experimental resultsIEEE Transactions on Vehicular Technology 43 323 1994CrossRefGoogle Scholar
Benedetto, S.Biglieri, E.Daffara, R.Modeling and performance evaluation of nonlinear satellite links - a Volterra series approachIEEE Transactions on Aerospace and Electronic Systems 15 494 1979CrossRefGoogle Scholar
Marmarelis, V. Z.Nonlinear Dynamic Modeling of Physiological SystemsHoboken, NJWiley-IEEE Press 2004CrossRefGoogle Scholar
Eun, C.Powers, E. J.A new Volterra predistorter based on the indirect learning architechtureIEEE Transactions on Signal Processing 45 223 1997Google Scholar
Clark, C. J.Chrisikos, G.Muha, M. S.Moulthrop, A. A.Silva, C. P.Time-domain envelope measurement technique with application to wideband power amplifier modelingIEEE Transactions on Microwave Theory and Techniques 46 2531 1998CrossRefGoogle Scholar
Ding, L.Raich, R.Zhou, G. T.A Hammerstein predistortion linearization design based on the indirect learning architectureProc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’02) 3 2689 2002Google Scholar
Kang, H. W.Cho, Y. S.Youn, D. H.On compensating nonlinear distortions of an OFDM system using an efficient adaptive predistorterIEEE Transactions on Communications 47 522 1999CrossRefGoogle Scholar
Benedetto, S.Biglieri, E.57 1983
Bosch, W.Gatti, G.Measurements and simulation of memory effects in predistortion linearizersIEEE Transactions on Microwave Theory and Techniques 37 1885 1989CrossRefGoogle Scholar
Vuolevi, J.Rahkonen, T.Manninen, J.Measurement technique for characterizing memory effects in RF power amplifiersIEEE Transactions on Microwave Theory and Techniques 49 1383 2001CrossRefGoogle Scholar
Pedro, J.Carvalho, N.Lavrador, P.Modeling nonlinear behavior of band-pass memoryless and dynamic systemsIEEE MTT-S International Microwave Symposium DigestPhiladelphia, PA2133 2003Google Scholar
Asbeck, P.Kobayashi, H.Iwamoto, M.Augmented behavioral characterization for modeling the nonlinear response of power amplifiersIEEE MTT-S International Microwave Symposium DigestSeattle, WA135 2002Google Scholar
Ding, L.Zhou, G. T.Morgan, D. R.A robust predistorter constructed using memory polynomialsIEEE Transactions on Communications 52 159 2004CrossRefGoogle Scholar
Kim, J.Konstantinou, K.Digital predistortion of wideband signals based on power amplifier model with memoryElectronic Letters 37 1417 2001CrossRefGoogle Scholar
Morgan, D. R.Ma, Z.Kim, J.Zierdt, M. G.John, P.A generalized memory polynomial model for digital predistortion of RF power amplifiersIEEE Transactions on Signal Processing 54 3852 2006CrossRefGoogle Scholar
Eun, C.Powers, E. J.A predistorter design for a memory-less nonlinearity preceded by a dynamic linear systemProc. Global Telecommunications Conference 1 152 1995Google Scholar
Chang, S.Powers, E. J.A simplified predistorter for compensatoin of nonlinear distortion in OFDM systemsProc. IEEE Global Telecommunications Conference, 2001San Antonio, TX3080 2001Google Scholar
Mathews, V. J.10 1991
Mathews, V. J.Sicuranza, G. L.Polynomial Signal ProcessingNew YorkJohn Wiley & Sons 2000Google Scholar
Saleh, A. M.Frequency-independent and frequency-dependent nonlinear models of TWT amplifiersIEEE Transactions on Communications 29 1715 1981CrossRefGoogle Scholar
Kusunoki, S.Yamamoto, K.Hatsugai, T.Power-amplifier module with digital adaptive predistortion for cellular phonesIEEE Transactions on Microwave Theory and Techniques 50 2979 2002CrossRefGoogle Scholar
Zavosh, F.Thomas, M.Thron, T. H. C.22 1999
Kubo, T.Fudaba, N.Ishikawa, H.2206 2003
Boumaiza, S.Ghannouchi, F. M.Realistic power-amplifiers characterization with application to baseband digital predistortion for 3G base stationsIEEE Transactions on Microwave Theory and Techniques 50 3016 2002CrossRefGoogle Scholar
Jung, W. J.Kim, W. R.Kim, K. M.Lee, K. B.Digital predistorter using multiple lookup tablesElectronics Letters 39 1386 2003CrossRefGoogle Scholar
Qian, H.Ding, L.Zhou, G. T.Kenney, J. S.Predistortion linearization measurement results for power amplifiers with memory effectsProc. IEEE Topical Workshop on Power Amplifiers for Wireless CommunicationsSan Diego, CA 2004Google Scholar
Stapleton, S. P.Cavers, J. K.A new technique for adaptation of linearizing predistortersProc. IEEE Vehicular Technology ConferenceSt. Louis, MO753 1991Google Scholar
Salmela, P.Happonen, A.Burian, A.Takala, J.Several approaches to fixed-point implementation of matrix inversionProc. International Symposium on Signals, Circuits and Systems 2 497 2005Google Scholar
Raich, R.Qian, H.Zhou, G. T.Orthogonal polynomials for power amplifier modeling and predistorter designIEEE Transactions on Vehicular Technology 53 1468 2004CrossRefGoogle Scholar
Raich, R.Zhou, G. T.Orthogonal polynomials for complex Gaussian processesIEEE Transactions on Signal Processing 52 2788 2004CrossRefGoogle Scholar
Ding, L.Qian, H.Chen, N.Zhou, G. T.A memory polynomial predistorter implemented using TMS320C67xxProc. TI Developer Conference 2004Houston, TX1 2004Google Scholar
Afsahi, A.Behzad, A.Magoon, V.Larson, L. E.Linearized dual-band power amplifiers with integrated baluns in 65 nm CMOS for a 2 × 2 802.11n MIMO WLAN SoCIEEE Journal of Solid-State Circuits 45 955 2010CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×