Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-20T13:23:31.044Z Has data issue: false hasContentIssue false

4 - Low-level data processing in Jagiellonian PET

Published online by Cambridge University Press:  13 October 2023

Get access

Summary

This chapter describes the subsequent steps of low-level data processing in the J-PET scanner. The goal of low-level reconstruction is an evaluation of time and position of each particular event of positron emission. A simple setup with two detection modules that permits the reconstruction of information about an event is shown in Fig. 4.1.

A single detection module consists of a long scintillator strip and a pair of photomultipliers (PMs) attached to opposite ends of the strip (see Fig. 4.1). The subsequent steps of the reconstruction take place in the reverse order than the physical processes of interactions in the detector. Light pulses produced in the strip propagate to its edges where they are converted via photomultipliers into electric signals. Measurement of electric signals results in timestamps from both sides of each scintillator, allowing the extraction of timing, position and energy information for each γ photon interaction marked with gray circle in Fig. 4.1. The time and position of the γ photon interaction in the scintillator strip is calculated based on times at left (t(L)) and right (t(R)) side of the strip. In the first approximation, the time of interaction may be estimated as an arithmetic mean of t(L) and t(R) and the position of interaction along the strip may be calculated as (t(L)t(R)) vsc /2, where vsc denotes the speed of light signals in the scintillator strip. The energy deposited in the scintillator strip may be expressed in terms of the number of photoelectrons registered by the photomultipliers and is proportional to the arithmetic mean of a number of photoelectrons registered at the left and right sides of the scintillator; the value of energy calibration factor was evaluated in [17]. The registration of single event of positron emission, used for the image reconstruction, is based on the detection of both γ photons in two modules in a narrow time window. Therefore, a single image-building event, marked with black star in Fig. 4.1, includes information about four times of light signals arrival to the left and right ends of the two modules that register in coincidence.

The two main features of the data acquired in the J-PET scanner that have the greatest impact on the TOF resolution are: (i) a very short rise-time and duration of the signals and (ii) a relation between the shape and amplitude of the signals and the hit position.

Type
Chapter
Information
Publisher: Jagiellonian University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×