Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-09T10:18:27.749Z Has data issue: false hasContentIssue false

7 - Finite-precision effects

Published online by Cambridge University Press:  05 June 2012

Paulo S. R. Diniz
Affiliation:
Universidade Federal do Rio de Janeiro
Eduardo A. B. da Silva
Affiliation:
Universidade Federal do Rio de Janeiro
Sergio L. Netto
Affiliation:
Universidade Federal do Rio de Janeiro
Get access

Summary

Introduction

In practice, a digital signal processing system is implemented by software on a digital computer, either using a general-purpose digital signal processor, or using dedicated hardware for the given application. In either case, quantization errors are inherent due to the finite-precision arithmetic. These errors are of the following types:

  • Errors due to the quantization of the input signals into a set of discrete levels, such as the ones introduced by the analog-to-digital converter.

  • Errors in the frequency response of filters, or in transform coefficients, due to the finite-wordlength representation of multiplier constants.

  • Errors made when internal data, like outputs of multipliers, are quantized before or after subsequent additions.

All these error forms depend on the type of arithmetic utilized in the implementation. If a digital signal processing routine is implemented on a general-purpose computer, since floating-point arithmetic is in general available, this type of arithmetic becomes the most natural choice. On the other hand, if the building block is implemented on special-purpose hardware, or a fixed-point digital signal processor, fixed-point arithmetic may be the best choice, because it is less costly in terms of hardware and simpler to design. A fixed-point implementation usually implies a lot of savings in terms of chip area as well.

For a given application, the quantization effects are key factors to be considered when assessing the performance of a digital signal processing algorithm.

Type
Chapter
Information
Digital Signal Processing
System Analysis and Design
, pp. 310 - 353
Publisher: Cambridge University Press
Print publication year: 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×