Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T06:40:51.860Z Has data issue: false hasContentIssue false

4 - Advecting a fluid interface

Published online by Cambridge University Press:  07 October 2011

Grétar Tryggvason
Affiliation:
University of Notre Dame, Indiana
Ruben Scardovelli
Affiliation:
Università degli Studi, Bologna, Italy
Stéphane Zaleski
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

When the governing equations are solved on a fixed grid, using one set of equations for the whole flow field, the different fluids must be identified in some way. This is generally done by using a marker function that takes different values in the different fluids. Sometimes a material property, such as the fluid density for incompressible fluids, can serve as a marker function, but here we shall assume that the rôle of the marker function is only to identify the different fluids. As the fluids move, and the boundary between the different fluids changes location, the marker function must be updated. Updating the marker function accurately is both critical for the success of simulations of multiphase flows and also surprisingly difficult. In this chapter we discuss the difficulties with advecting the marker function directly and the various methods that have been developed to overcome these difficulties.

The VOF method is the oldest method to advect a marker function and – after many improvements and innovations – continues to be widely used. Other marker function methods include the level-set method, the phase-field method, and the CIP method. Instead of advecting the marker function directly, the boundary between the different fluids can also be tracked using marker points, and the marker function then reconstructed from the location of the interface. Methods using marker points are generally referred to as “front-tracking” methods to distinguish them from “front-capturing” methods, where the marker function is advected directly.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×