Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T09:55:11.093Z Has data issue: false hasContentIssue false

9 - Atomization and breakup

Published online by Cambridge University Press:  07 October 2011

Grétar Tryggvason
Affiliation:
University of Notre Dame, Indiana
Ruben Scardovelli
Affiliation:
Università degli Studi, Bologna, Italy
Stéphane Zaleski
Affiliation:
Université de Paris VI (Pierre et Marie Curie)
Get access

Summary

Various applications and natural processes involve large deformations and eventual breakup of liquid jets, layers, and droplets. When liquid masses fragment in a small number of pieces one speaks of breakup. More intense phenomena where, for instance, a liquid jet is broken into seemingly microscopic droplets are called atomization, although the term is somewhat incorrect, since the individual pieces are still far larger than atomic scales.

Nevertheless, atomization is a striking process in which finely divided sprays or droplet clouds are produced. This is often based on the ejection of a high-speed liquid jet from an atomizer nozzle. Many other configurations exist, such as sheets ejected at high speed from diversely shaped nozzles, or colliding with each other. As with many of the multiphase phenomena investigated in this book, atomization offers a rich physical phenomenology which is still poorly understood. Considerable progress has been made in the development of methods for atomization simulations during the last few years, and advances in hardware are making it possible to conduct simulations of unprecedented complexity.

Introduction

There are many important motivations for the study of spray formation, droplet breakup, and atomization. To take a first example from natural phenomena, spray formation atop ocean waves occurs when sufficiently strong winds strip droplets from the crests of the waves. Breaking waves also create bubbles that, when bursting at the surface, create a very fine mist that can rise high into the atmosphere.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×