Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:36:01.476Z Has data issue: false hasContentIssue false

10 - The Biology of Vascular Nitric Oxide

from SECTION TWO - PATHOPHYSIOLOGY OF HEMOGLOBIN AND ITS DISORDERS

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

The role of nitric oxide (NO) as the key mediator of endothelial function and vascular tone was initially recognized by Furchgott and Zawadski over two decades ago when they discovered that an intact endothelium was required for acetylcholine-stimulated vasodilation. From these studies, they determined that the endothelium released a potent vasodilator substance that they termed endothelium-derived relaxing factor; several years later, this factor was identified as NO. Since that time, NO has been shown to modulate a host of functions that maintain the integrity of the endothelium as well as regulate interactions between circulating blood components and the vessel wall. Through its chemical reactions with a variety of species, including heme iron, NO is uniquely positioned to regulate these vascular homeostatic processes.

Endothelium-derived NO serves as a paracrine regulator of vascular function. NO is released to the vascular smooth muscle cells where it activates soluble guanylyl cyclase to generate cyclic guanosine monophosphate (cGMP) and modulate cation flux which, in turn, induce vasodilation and adjust vascular tone accordingly. NO is also released to the bloodstream where it encounters erythrocytes, platelets, and plasma components. Here, the metabolic fate of NO is determined by a complex series of reactions that both consume and preserve stores of bioavailable NO. Owing to the relative abundance of erythrocytes compared with other circulating cell types, interactions between NO and redox-active hemoglobin achieve biological significance.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 185 - 200
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Furchgott, RF, Zawadzki, JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):3736.CrossRefGoogle ScholarPubMed
Ignarro, LJ, Buga, GM, Wood, KS, Byrns, RE, Chaudhuri, G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA. 1987;84(24):9265–9269.CrossRefGoogle ScholarPubMed
Palmer, RM, Ashton, DS, Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988;333(6174):664–666.CrossRefGoogle ScholarPubMed
Cohen, RA, Weisbrod, RM, Gericke, M, Yaghoubi, M, Bierl, C, Bolotina, VM. Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res. 1999;84(2):210–219.CrossRefGoogle ScholarPubMed
Bolotina, VM, Najibi, S, Palacino, JJ, Pagano, PJ, Cohen, RA. Nitric oxide directly activates calcium-dependent potassium channels in vascular smooth muscle. Nature. 1994;368(6474):850–853.CrossRefGoogle ScholarPubMed
Feron, O, Michel, T.Cell and molecular biology of nitric oxide synthases. In: Loscalzo, J, Vita, JA, eds. Nitric Oxide and the Cardiovascular System. Totowa, NJ: Humana; 2000:11–31.CrossRefGoogle Scholar
Bredt, DS, Snyder, SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195.CrossRefGoogle ScholarPubMed
Michel, T, Xie, QW, Nathan, C. Molecular biological analysis of nitric oxide synthases. In: Feelisch, M, Stamler, JS, eds. Methods in Nitric Oxide Research. Chichester, UK: Wiley; 1995:161–175.Google Scholar
Bredt, DS, Snyder, SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci USA. 1990;87(2):682–685.CrossRefGoogle ScholarPubMed
Dinerman, JL, Lowenstein, CJ, Snyder, SH. Molecular mechanisms of nitric oxide regulation. Potential relevance to cardiovascular disease. Circ Res. 1993;73(2):217–222.CrossRefGoogle ScholarPubMed
Minshall, RD, Sessa, WC, Stan, RV, Anderson, RG, Malik, AB. Caveolin regulation of endothelial function. Am J Physiol. 2003;285(6):L1179–L1183.Google ScholarPubMed
Busse, R, Mulsch, A. Induction of nitric oxide synthase by cytokines in vascular smooth muscle cells. FEBS Lett. 1990;275(1–2):87–90.CrossRefGoogle ScholarPubMed
Xie, QW, Cho, HJ, Calaycay, J, et al. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992;256(5054):225–228.CrossRefGoogle ScholarPubMed
Welch, G, Loscalzo, J. Nitric oxide and the cardiovascular system. J Cardiac Surg. 1994;9(3):361–371.CrossRefGoogle ScholarPubMed
Nathan, CF, Hibbs, JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr Opin Immunol. 1991;3(1):65–70.CrossRefGoogle ScholarPubMed
Wang, BY, Ho, HK, Lin, PS, et al. Regression of atherosclerosis: role of nitric oxide and apoptosis. Circulation. 1999;99(9):1236–1241.CrossRefGoogle ScholarPubMed
Searles, CD. Transcriptional and posttranscriptional regulation of endothelial nitric oxide synthase expression. Am J Physiol Cell Physiol. 2006;291(5):C803–C816.CrossRefGoogle ScholarPubMed
Casas, JP, Bautista, , Humphries, SE, Hingorani, AD. Endothelial nitric oxide synthase genotype and ischemic heart disease: meta-analysis of 26 studies involving 23028 subjects. Circulation. 2004;109(11):1359–1365.CrossRefGoogle ScholarPubMed
Paradossi, U, Ciofini, E, Clerico, A, Botto, N, Biagini, A, Colombo, MG. Endothelial function and carotid intima-media thickness in young healthy subjects among endothelial nitric oxide synthase Glu298–>Asp and T-786–>C polymorphisms. Stroke. 2004;35(6):1305–1309.CrossRefGoogle ScholarPubMed
Rossi, GP, Taddei, S, Virdis, A, et al. The T-786C and Glu298Asp polymorphisms of the endothelial nitric oxide gene affect the forearm blood flow responses of Caucasian hypertensive patients. J Am Coll Cardiol. 2003;41(6):938–945.CrossRefGoogle ScholarPubMed
Chen, W, Srinivasan, SR, Elkasabany, A, Ellsworth, DL, Boerwinkle, E, Berenson, GS. Combined effects of endothelial nitric oxide synthase gene polymorphism (G894T) and insulin resistance status on blood pressure and familial risk of hypertension in young adults: the Bogalusa Heart Study. Am J Hypertens. 2001;14(10):1046–1052.CrossRefGoogle ScholarPubMed
Chen, W, Srinivasan, SR, Bond, MG, et al. Nitric oxide synthase gene polymorphism (G894T) influences arterial stiffness in adults: The Bogalusa Heart Study. Am J Hypertens. 2004;17(7):553–559.CrossRefGoogle ScholarPubMed
Tesauro, M, Thompson, WC, Rogliani, P, Qi, L, Chaudhary, PP, Moss, J. Intracellular processing of endothelial nitric oxide synthase isoforms associated with differences in severity of cardiopulmonary diseases: cleavage of proteins with aspartate vs. glutamate at position 298. Proc Natl Acad Sci USA. 2000;97(6):2832–2835.CrossRefGoogle ScholarPubMed
Rossi, GP, Cesari, M, Zanchetta, M, et al. The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J Am Coll Cardiol. 2003;41(6):930–937.CrossRefGoogle ScholarPubMed
Rossi, GP, Maiolino, G, Zanchetta, M, et al. The T(-786)C endothelial nitric oxide synthase genotype predicts cardiovascular mortality in high-risk patients. J Am Coll Cardiol. 2006;48(6):1166–1174.CrossRefGoogle Scholar
Vargas, AE, da Silva, MA, Silla, L, Chies, JA. Polymorphisms of chemokine receptors and eNOS in Brazilian patients with sickle cell disease. Tissue Antigens. 2005;66(6):683–690.CrossRefGoogle ScholarPubMed
Sharan, K, Surrey, S, Ballas, S, et al. Association of T-786C eNOS gene polymorphism with increased susceptibility to acute chest syndrome in females with sickle cell disease. Br J Haematol. 2004;124(2):240–243.CrossRefGoogle ScholarPubMed
Fatini, C, Mannini, L, Sticchi, E, et al. eNOS gene affects red cell deformability: role of T-786C, G894T, and 4a/4b polymorphisms. Clin Appl Thromb Hemostat. 2005;11(4):481–488.CrossRefGoogle ScholarPubMed
Stamler, JS, Jaraki, O, Osborne, J, et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA. 1992;89(16):7674–7677.CrossRefGoogle ScholarPubMed
Loscalzo, J.The biological chemistry of nitric oxide. In: Loscalzo, J, Vita, J, eds. Nitric Oxide in the Cardiovascular System. Totowa, NJ: Humana; 2000:3–10.CrossRefGoogle Scholar
Rassaf, T, Kleinbongard, P, Preik, M, et al. Plasma nitrosothiols contribute to the systemic vasodilator effects of intravenously applied NO: experimental and clinical Study on the fate of NO in human blood. Circ Res. 2002;91(6):470–477.CrossRefGoogle ScholarPubMed
Feelisch, M, Rassaf, T, Mnaimneh, S, et al. Concomitant S-, N-, and heme-nitros(yl)ation in biological tissues and fluids: implications for the fate of NO in vivo. FASEB J. 2002;16(13):1775–1785.CrossRefGoogle ScholarPubMed
Butler, AR, Flitney, FW, Williams, DL. NO, nitrosonium ions, nitroxide ions, nitrosothiols and iron-nitrosyls in biology: a chemist's perspective. Trends Pharmacol Sci. 1995;16(1):18–22.CrossRefGoogle ScholarPubMed
Rassaf, T, Bryan, NS, Kelm, M, Feelisch, M. Concomitant presence of N-nitroso and S-nitroso proteins in human plasma. Free Rad Biol Med. 2002;33(11):1590–1596.CrossRefGoogle ScholarPubMed
Rodriguez, J, Maloney, RE, Rassaf, T, Bryan, NS, Feelisch, M. Chemical nature of nitric oxide storage forms in rat vascular tissue. Proc Natl Acad Sci USA. 2003;100(1):336–341.CrossRefGoogle ScholarPubMed
Mordvintstev, PI, Putintsev, MD, Glalgan, ME, Oranovskaia, EV, Medvedov, OS. Hypotensive activity of dinitrosyl complexes of iron and proteins in anesthetized animals. Biull Vsesoiunzogo Kardiol Nauchn Tsentra AMN SSSR. 1988;11:46–51Google Scholar
Kuznetsov, VA, Mordvintstev, PI, Dank, EK, Iurkiv, VA, Vanin, AF. Low molecular weight and protein dinitrosyl complexes of non-heme iron as inhibitors of platelet aggregation. Vopr Med Khim. 1988;34:43–46.Google ScholarPubMed
Lauer, T, Preik, M, Rassaf, T, et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proc Natl Acad Sci USA. 2001;98(22):12814–12819.CrossRefGoogle ScholarPubMed
Cosby, K, Partovi, KS, Crawford, JH, et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat Med. 2003;9(12):1498–1505.CrossRefGoogle ScholarPubMed
Zweier, JL, Wang, P, Samouilov, A, Kuppusamy, P.Enzyme-independent formation of nitric oxide in biological tissues. Nat Med. 1995;1(8):804–809.CrossRefGoogle ScholarPubMed
Drabkin, DR, Austin, JH. Spectrophotometric studies. II. Preparations from washed blood cells/nitric oxide hemoglobin and sulfhemoglobin. J Biol Chem. 1935;112:51–65.Google Scholar
Cassoly, R, Gibson, Q. Conformation, co-operativity and ligand binding in human hemoglobin. J Mol Biol. 1975;91(3):301–313.CrossRefGoogle ScholarPubMed
Kim-Shapiro, DB.Hemoglobin-nitric oxide cooperativity: is NO the third respiratory ligand?Free Rad Biol Med. 2004;36(4):402–412.CrossRefGoogle ScholarPubMed
Moore, EG, Gibson, QH. Cooperativity in the dissociation of nitric oxide from hemoglobin. J Biol Chem. 1976;251(9):2788–2794.Google ScholarPubMed
Sharma, VS, Ranney, HM. The dissociation of NO from nitrosylhemoglobin. J Biol Chem. 1978;253(18):6467–6472.Google ScholarPubMed
Doyle, MP, Hoekstra, JW. Oxidation of nitrogen oxides by bound dioxygen in hemoproteins. J Organic Biochem. 1981;14(4):351–358.Google ScholarPubMed
Herold, S, Exner, M, Nauser, T. Kinetic and mechanistic studies of the NO∗-mediated oxidation of oxymyoglobin and oxyhemoglobin. Biochemistry. 2001;40(11):3385–3395.CrossRefGoogle ScholarPubMed
Liu, X, Samouilov, A, Lancaster, , Zweier, JL. Nitric oxide uptake by erythrocytes is primarily limited by extracellular diffusion not membrane resistance. J Biol Chem. 2002;277(29):26194–26199.CrossRefGoogle Scholar
Vaughn, MW, Huang, KT, Kuo, L, Liao, JC. Erythrocytes possess an intrinsic barrier to nitric oxide consumption. J Biol Chem. 2000;275(4):2342–2348.CrossRefGoogle ScholarPubMed
Kim-Shapiro, DB, Schechter, AN, Gladwin, MT. Unraveling the reactions of nitric oxide, nitrite, and hemoglobin in physiology and therapeutics. Arterioscler Thromb Vasc Biol. 2006;26(4):697–705.CrossRefGoogle ScholarPubMed
Liao, JC, Hein, TW, Vaughn, MW, Huang, KT, Kuo, L. Intravascular flow decreases erythrocyte consumption of nitric oxide. Proc Natl Acad Sci USA. 1999;96(15):8757–8761.CrossRefGoogle ScholarPubMed
Li, H, Samouilov, A, Liu, X, Zweier, JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrite reduction. Evaluation of its role in nitric oxide generation in anoxic tissues. J Biol Chem. 2001;276(27):24482–24489.CrossRefGoogle ScholarPubMed
Lundberg, JO, Weitzberg, E. NO generation from nitrite and its role in vascular control. Arterioscler Thromb Vasc Biol. 2005;25(5):915–922.CrossRefGoogle ScholarPubMed
Nagababu, E, Ramasamy, S, Abernethy, DR, Rifkind, JM. Active nitric oxide produced in the red cell under hypoxic conditions by deoxyhemoglobin-mediated nitrite reduction. J Biol Chem. 2003;278(47):46349–46356.CrossRefGoogle ScholarPubMed
Huang, KT, Keszler, A, Patel, N, et al. The reaction between nitrite and deoxyhemoglobin. Reassessment of reaction kinetics and stoichiometry. J Biol Chem. 2005;280(35):31126–31131.CrossRefGoogle ScholarPubMed
Huang, Z, Shiva, S, Kim-Shapiro, DB, et al. Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest. 2005;115(8):2099–2107.CrossRefGoogle ScholarPubMed
Jeffers, A, Xu, X, Huang, KT, et al. Hemoglobin mediated nitrite activation of soluble guanylyl cyclase. Comp Biochem Physiol. 2005;142(2):130–135.CrossRefGoogle ScholarPubMed
Stamler, JS, Jia, L, Eu, JP, et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science. 1997;276(5321):2034–2037.CrossRefGoogle ScholarPubMed
Gladwin, MT, Ognibene, FP, Pannell, LK, et al. Relative role of heme nitrosylation and beta-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc Natl Acad Sci USA. 2000;97(18):9943–9948.CrossRefGoogle ScholarPubMed
Joshi, MS, Ferguson, TB, Han, TH, et al. Nitric oxide is consumed, rather than conserved, by reaction with oxyhemoglobin under physiological conditions. Proc Natl Acad Sci USA. 2002;99(16):10341–10346.CrossRefGoogle ScholarPubMed
Huang, KT, Azarov, I, Basu, S, Huang, J, Kim-Shapiro, DB. Lack of allosterically controlled intramolecular transfer of nitric oxide from the heme to cysteine in the beta subunit of hemoglobin. Blood. 2006;107(7):2602–2604.CrossRefGoogle ScholarPubMed
Crawford, JH, White, CR, Patel, RP. Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme, and NO oxidation states. Blood. 2003;101(11):4408–4415.CrossRefGoogle ScholarPubMed
Gladwin, MT, Schechter, AN, Kim-Shapiro, DB, et al. The emerging biology of the nitrite anion. Nat Chem Biol. 2005;1(6):308–314.CrossRefGoogle ScholarPubMed
Gladwin, MT, Raat, NJ, Shiva, S, et al. Nitrite as a vascular endocrine nitric oxide reservoir that contributes to hypoxic signaling, cytoprotection, and vasodilation. Am J Physiol Heart Circ Physiol. 2006;291(5):H2026–H2035.CrossRefGoogle ScholarPubMed
Liu, X, Yan, Q, Baskerville, KL, Zweier, JL. Estimation of nitric oxide concentration in blood for different rates of generation: evidence that intravascular nitric oxide levels are too low to exert physiological effects. J Biol Chem. 2007;282(12):8831–8833CrossRefGoogle ScholarPubMed
Darling, RC, Roughton, FJW. The effect of methemoglobin on the equilibrium between oxygen and hemoglobin. Am J Physiol. 1942;137:56–68.Google Scholar
Yonetani, T, Tsuneshige, A, Zhou, Y, Chen, X. Electron paramagnetic resonance and oxygen binding studies of alpha-Nitrosyl hemoglobin. A novel oxygen carrier having no-assisted allosteric functions. J Biol Chem. 1998;273(32):20323–20333.CrossRefGoogle ScholarPubMed
Bonaventura, C, Ferruzzi, G, Tesh, S, Stevens, RD. Effects of S-nitrosation on oxygen binding by normal and sickle cell hemoglobin. J Biol Chem. 1999;274(35):24742–24748.CrossRefGoogle ScholarPubMed
Gladwin, MT, Schechter, AN, Shelhamer, JH, et al. Inhaled nitric oxide augments nitric oxide transport on sickle cell hemoglobin without affecting oxygen affinity. J Clin Invest. 1999;104(7):937–945.CrossRefGoogle ScholarPubMed
Hrinczenko, BW, Alayash, AI, Wink, DA, Gladwin, MT, Rodgers, GP, Schechter, AN. Effect of nitric oxide and nitric oxide donors on red blood cell oxygen transport. Br J Haematol. 2000;110(2):412–419.CrossRefGoogle ScholarPubMed
Hrinczenko, BW, Schechter, AN, Wojtkowski, TL, Pannell, LK, Cashon, RE, Alayash, AI. Nitric oxide-mediated heme oxidation and selective beta-globin nitrosation of hemoglobin from normal and sickle erythrocytes. Biochem Biophys Res Commun. 2000;275(3):962–967.CrossRefGoogle ScholarPubMed
Cabrales, P, Tsai, AG, Frangos, JA, Intaglietta, M. Role of endothelial nitric oxide in microvascular oxygen delivery and consumption. Free Rad Biol Med. 2005;39(9):1229–1237.CrossRefGoogle ScholarPubMed
Shibata, M, Ichioka, S, Kamiya, A. Nitric oxide modulates oxygen consumption by arteriolar walls in rat skeletal muscle. Am J Physiol Heart Circ Physiol. 2005;289(6):H2673–H2679.CrossRefGoogle ScholarPubMed
Friesenecker, B, Tsai, AG, Dunser, MW, et al. Oxygen distribution in microcirculation after arginine vasopressin-induced arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol. 2004;287(4):H1792–H1800.CrossRefGoogle ScholarPubMed
Hangai-Hoger, N, Tsai, AG, Friesenecker, B, Cabrales, P, Intaglietta, M. Microvascular oxygen delivery and consumption following treatment with verapamil. Am J Physiol Heart Circ Physiol. 2005;288(4):H1515–H1520.CrossRefGoogle ScholarPubMed
Shibata, M, Qin, K, Ichioka, S, Kamiya, A. Vascular wall energetics in arterioles during nitric oxide-dependent and -independent vasodilation. J Appl Physiol. 2006;100(6):1793–1798.CrossRefGoogle ScholarPubMed
Liu, X, Cheng, C, Zorko, N, Cronin, S, Chen, YR, Zweier, JL. Biphasic modulation of vascular nitric oxide catabolism by oxygen. Am J Physiol Heart Circ Physiol. 2004;287(6):H2421–H2426.CrossRefGoogle Scholar
Tune, JD, Gorman, MW, Feigl, EO. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol. 2004;97(1):404–415.CrossRefGoogle ScholarPubMed
Tsai, AG, Johnson, PC, Intaglietta, M. Oxygen gradients in the microcirculation. Physiol Rev. 2003;83(3):933–963.CrossRefGoogle ScholarPubMed
Segal, SS, Duling, BR. Flow control among microvessels coordinated by intercellular conduction. Science. 1986;234(4778):868–870.CrossRefGoogle ScholarPubMed
Segal, SS, Duling, BR. Communication between feed arteries and microvessels in hamster striated muscle: segmental vascular responses are functionally coordinated. Circ Res. 1986;59(3):283–290.CrossRefGoogle ScholarPubMed
Chen, X, Buerk, DG, Barbee, KA, Jaron, D.A Model of NO/O(2) Transport in Capillary-perfused Tissue Containing an Arteriole and Venule Pair. Ann Biomed Eng. 2007;35(4):517–529.CrossRefGoogle Scholar
Ellsworth, ML, Forrester, T, Ellis, CG, Dietrich, HH. The erythrocyte as a regulator of vascular tone. Am J Physiol. 1995;269(6 Pt 2):H2155–H2161.Google ScholarPubMed
Azarov, I, Huang, KT, Basu, S, Gladwin, MT, Hogg, N, Kim-Shapiro, DB. Nitric oxide scavenging by red blood cells as a function of hematocrit and oxygenation. J Biol Chem. 2005;280(47):39024–39032.CrossRefGoogle ScholarPubMed
Webb, A, Bond, R, McLean, P, Uppal, R, Benjamin, N, Ahluwalia, A. Reduction of nitrite to nitric oxide during ischemia protects against myocardial ischemia-reperfusion damage. Proc Natl Acad Sci USA. 2004;101(37):13683–13688.CrossRefGoogle ScholarPubMed
Duranski, MR, Greer, JJ, Dejam, A, et al. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005;115(5):1232–1240.CrossRefGoogle ScholarPubMed
Ng, ES, Jourd'heuil, D, McCord, JM, et al. Enhanced S-nitroso-albumin formation from inhaled NO during ischemia/reperfusion. Circ Res. 2004;94(4):559–565.CrossRefGoogle ScholarPubMed
Hataishi, R, Rodrigues, AC, Neilan, TG, et al. Inhaled nitric oxide decreases infarction size and improves left ventricular function in a murine model of myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2006;291(1):H379–H384.CrossRefGoogle Scholar
Stamler, JS, Loh, E, Roddy, MA, Currie, KE, Creager, MA. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation. 1994;89(5):2035–2040.CrossRefGoogle ScholarPubMed
Huang, PL, Huang, Z, Mashimo, H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature. 1995;377(6546):239–242.CrossRefGoogle ScholarPubMed
Panza, JA, Quyyumi, AA, Brush, JE, Epstein, SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 1990;323(1):22–27.CrossRefGoogle ScholarPubMed
Kilbourn, RG, Jubran, A, Gross, SS, et al. Reversal of endotoxin-mediated shock by NG-methyl-L-arginine, an inhibitor of nitric oxide synthesis. Biochem Biophys Res Commun. 1990;172(3):1132–1138.CrossRefGoogle ScholarPubMed
Just, A. Nitric oxide and renal autoregulation. Kidney Blood Press Res. 1997;20(3):201–204.CrossRefGoogle ScholarPubMed
White, RP, Vallance, P, Markus, HS. Effect of inhibition of nitric oxide synthase on dynamic cerebral autoregulation in humans. Clin Sci (Lond). 2000;99(6):555–560.CrossRefGoogle ScholarPubMed
Horowitz, A, Menice, CB, Laporte, R, Morgan, KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996;76(4):967–1003.CrossRefGoogle ScholarPubMed
Boon, EM, Huang, SH, Marletta, MA. A molecular basis for NO selectivity in soluble guanylate cyclase. Nat Chem Biol. 2005;1(1):53–59.CrossRefGoogle ScholarPubMed
Schlossmann, J, Ammendola, A, Ashman, K, et al. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature. 2000;404(6774):197–201.CrossRefGoogle ScholarPubMed
Cornwell, TL, Pryzwansky, KB, Wyatt, TA, Lincoln, TM. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Mol Pharmacol. 1991;40(6):923–931.Google ScholarPubMed
Somlyo, AP, Somlyo, AV. Signal transduction and regulation in smooth muscle. Nature. 1994;372(6503):231–236.CrossRefGoogle ScholarPubMed
Surks, HK, Mochizuki, N, Kasai, Y, et al. Regulation of myosin phosphatase by a specific interaction with cGMP-dependent protein kinase Ialpha. Science. 1999;286(5444):1583–1587.CrossRefGoogle ScholarPubMed
Yuan, SY. New insights into eNOS signaling in microvascular permeability. Am J Physiol Heart Circ Physiol. 2006;291(3):H1029–H1031.CrossRefGoogle ScholarPubMed
Predescu, D, Predescu, S, Shimizu, J, Miyawaki-Shimizu, K, Malik, AB. Constitutive eNOS-derived nitric oxide is a determinant of endothelial junctional integrity. Am J Physiol. 2005;289(3):L371–L381.Google ScholarPubMed
Bucci, M, Roviezzo, F, Posadas, I, et al. Endothelial nitric oxide synthase activation is critical for vascular leakage during acute inflammation in vivo. Proc Natl Acad Sci USA. 2005;102(3):904–908.CrossRefGoogle ScholarPubMed
Sanchez, FA, Savalia, NB, Duran, RG, Lal, BK, Boric, MP, Duran, WN. Functional significance of differential eNOS translocation. Am J Physiol Heart Circ Physiol. 2006;291(3):H1058–H1064.CrossRefGoogle ScholarPubMed
Schubert, W, Frank, PG, Woodman, SE, et al. Microvascular hyperpermeability in caveolin-1 (-/-) knock-out mice. Treatment with a specific nitric-oxide synthase inhibitor, L-NAME, restores normal microvascular permeability in Cav-1 null mice. J Biol Chem. 2002;277(42):40091–40098.CrossRefGoogle ScholarPubMed
Murohara, T, Asahara, T, Silver, M, et al. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest. 1998;101(11):2567–2578.CrossRefGoogle ScholarPubMed
Cooke, JP. NO and angiogenesis. Atherosclerosis. 2003;4(4):53–60.CrossRefGoogle ScholarPubMed
Zollner, S, Aberle, S, Harvey, SE, Polokoff, MA, Rubanyi, GM. Changes of endothelial nitric oxide synthase level and activity during endothelial cell proliferation. Endothelium. 2000;7(3):169–184.CrossRefGoogle ScholarPubMed
Cooney, R, Hynes, SO, Sharif, F, Howard, L, O'Brien, T.Effect of gene delivery of NOS isoforms on intimal hyperplasia and endothelial regeneration after balloon injury. Gene Ther. 2007:14:396–404.CrossRefGoogle ScholarPubMed
Searles, CD, Miwa, Y, Harrison, DG, Ramasamy, S. Posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res. 1999;85(7):588–595.CrossRefGoogle ScholarPubMed
Ziche, M, Parenti, A, Ledda, F, et al. Nitric oxide promotes proliferation and plasminogen activator production by coronary venular endothelium through endogenous bFGF. Circ Res. 1997;80(6):845–852.CrossRefGoogle ScholarPubMed
Isenberg, JS, Ridnour, , Thomas, DD, Wink, DA, Roberts, DD, Espey, MG. Guanylyl cyclase-dependent chemotaxis of endothelial cells in response to nitric oxide gradients. Free Rad Biol Med. 2006;40(6):1028–1033.CrossRefGoogle ScholarPubMed
Brouet, A, Sonveaux, P, Dessy, C, Balligand, JL, Feron, O. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem. 2001;276(35):32663–32669.CrossRefGoogle ScholarPubMed
Pyriochou, A, Zhou, Z, Koika, V, et al. The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J Cell Physiol. 2007;211(1):197–204.CrossRefGoogle Scholar
Shen, YH, Wang, XL, Wilcken, . Nitric oxide induces and inhibits apoptosis through different pathways. FEBS Lett. 1998;433(1–2):125–131.CrossRefGoogle ScholarPubMed
Walford, G, Loscalzo, J. Nitric oxide in vascular biology. J Thromb Haemostat. 2003;1(10):2112–2118.CrossRefGoogle ScholarPubMed
Urbich, C, Dernbach, E, Zeiher, AM, Dimmeler, S. Double-edged role of statins in angiogenesis signaling. Circ Res. 2002;90(6):737–744.CrossRefGoogle ScholarPubMed
Hayashi, T, Matsui-Hirai, H, Miyazaki-Akita, A, et al. Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes. Proc Natl Acad Sci USA. 2006;103(45):17018–17023.CrossRefGoogle ScholarPubMed
Cornwell, TL, Arnold, E, Boerth, NJ, Lincoln, TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1994;267(5 Pt 1):C1405–C1413.CrossRefGoogle ScholarPubMed
Ciullo, I, Diez-Roux, G, Di Domenico, M, Migliaccio, A, Avvedimento, EV. cAMP signaling selectively influences Ras effectors pathways. Oncogene. 2001;20(10):1186–1192.CrossRefGoogle ScholarPubMed
D'Souza, FM, Sparks, RL, Chen, H, Kadowitz, PJ, Jeter, JR. Mechanism of eNOS gene transfer inhibition of vascular smooth muscle cell proliferation. Am J Physiol Cell Physiol. 2003;284(1):C191–C199.CrossRefGoogle ScholarPubMed
Nagel, DJ, Aizawa, T, Jeon, KI, et al. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ Res. 2006;98(6):777–784.CrossRefGoogle ScholarPubMed
Sarkar, R, Gordon, D, Stanley, JC, Webb, RC. Cell cycle effects of nitric oxide on vascular smooth muscle cells. Am J Physiol. 1997;272(4 Pt 2):H1810–H1818.Google ScholarPubMed
Ignarro, LJ, Buga, GM, Wei, LH, Bauer, PM, Wu, G, Soldato, P.Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation. Proc Natl Acad Sci USA. 2001;98(7):4202–4208.CrossRefGoogle ScholarPubMed
Bauer, PM, Buga, GM, Ignarro, LJ. Role of p42/p44 mitogen-activated-protein kinase and p21waf1/cip1 in the regulation of vascular smooth muscle cell proliferation by nitric oxide. Proc Natl Acad Sci USA. 2001;98(22):12802–12807.CrossRefGoogle ScholarPubMed
Zuckerbraun, BS, Stoyanovsky, DA, Sengupta, R, et al. Nitric oxide-induced inhibition of smooth muscle cell proliferation involves S-nitrosation and inactivation of RhoA. Am J Physiol Cell Physiol. 2007;292(2):C824–C831.CrossRefGoogle ScholarPubMed
Battinelli, EM, Loscalzo, J. Nitric oxide and platelet-mediated hemostasis. In: Loscalzo, J, Vita, JA, eds. Nitric Oxide and the Cardiovascular System. Totowa, NJ: Humana; 2000:123–138.CrossRefGoogle Scholar
Loscalzo, J.Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res. 2001;88(8):756–762.CrossRefGoogle ScholarPubMed
Bell, SE, Shah, CM, Gordge, MP. Protein disulphide-isomerase mediates delivery of nitric oxide redox derivatives into platelets. Biochem J. 2006;403(Pt 2):283–288.CrossRefGoogle Scholar
Nakashima, S, Tohmatsu, T, Hattori, H, Okano, Y, Nozawa, Y. Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem Biophys Res Commun. 1986;135(3):1099–1104.CrossRefGoogle ScholarPubMed
Redondo, PC, Rosado, JA, Pariente, JA, Salido, GM. Collaborative effect of SERCA and PMCA in cytosolic calcium homeostasis in human platelets. J Physiol Biochem. 2005;61(4):507–516.CrossRefGoogle ScholarPubMed
Kroll, MH, Schafer, AI. Biochemical mechanisms of platelet activation. Blood. 1989;74(4):1181–1195.Google ScholarPubMed
Antl, M, Bruhl, ML, Eiglsperger, C, et al. IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood. 2007;109(2):552–559.CrossRefGoogle ScholarPubMed
Michelson, AD, Benoit, SE, Furman, MI, et al. Effects of nitric oxide/EDRF on platelet surface glycoproteins. Am J Physiol. 1996;270(5 Pt 2):H1640–H1648.Google ScholarPubMed
Mendelsohn, ME, O'Neill, S, George, D, Loscalzo, J. Inhibition of fibrinogen binding to human platelets by S-nitroso-N-acetylcysteine. J Biol Chem. 1990;265(31):19028–190234.Google ScholarPubMed
Morrell, CN, Matsushita, K, Chiles, K, et al. Regulation of platelet granule exocytosis by S-nitrosylation. Proc Natl Acad Sci USA. 2005;102(10):3782–3787.CrossRefGoogle ScholarPubMed
Iafrati, MD, Vitseva, O, Tanriverdi, K, et al. Compensatory mechanisms influence hemostasis in setting of eNOS deficiency. Am J Physiol Heart Circ Physiol. 2005;288(4):H1627–H1632.CrossRefGoogle ScholarPubMed
Matsushita, K, Morrell, CN, Cambien, B, et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell. 2003;115(2):139–150.CrossRefGoogle ScholarPubMed
Inbal, A, Gurevitz, O, Tamarin, I, et al. Unique antiplatelet effects of a novel S-nitroso derivative of a recombinant fragment of von Willebrand factor, AR545C: in vitro and ex vivo inhibition of platelet function. Blood. 1999;94(5):1693–1700.Google ScholarPubMed
Marks, DS, Vita, JA, Folts, JD, Keaney, JF, Welch, GN, Loscalzo, J. Inhibition of neointimal proliferation in rabbits after vascular injury by a single treatment with a protein adduct of nitric oxide. J Clin Invest. 1995;96(6):2630–2638.CrossRefGoogle ScholarPubMed
Mehta, JL, Chen, LY, Kone, BC, Mehta, P, Turner, P. Identification of constitutive and inducible forms of nitric oxide synthase in human platelets. J Lab Clin Med. 1995;125(3):370–377.Google ScholarPubMed
Sase, K, Michel, T. Expression of constitutive endothelial nitric oxide synthase in human blood platelets. Life Sci. 1995;57(22):2049–2055.CrossRefGoogle ScholarPubMed
Zhou, Q, Hellermann, GR, Solomonson, LP. Nitric oxide release from resting human platelets. Thromb Res. 1995;77(1):87–96.CrossRefGoogle ScholarPubMed
Freedman, JE, Sauter, R, Battinelli, EM, et al. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ Res. 1999;84(12):1416–14121.CrossRefGoogle ScholarPubMed
Kubes, P, Suzuki, M, Granger, DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA. 1991;88(11):4651–4655.CrossRefGoogle ScholarPubMed
Tailor, A, Granger, DN. Role of adhesion molecules in vascular regulation and damage. Curr Hypertens Rep. 2000;2(1):78–83.CrossRefGoogle ScholarPubMed
Hickey, MJ, Kubes, P. Role of nitric oxide in regulation of leucocyte-endothelial cell interactions. Exp Physiol. 1997;82(2):339–348.CrossRefGoogle ScholarPubMed
Wallace, JL. Nitric oxide as a regulator of inflammatory processes. Memorias do Instituto Oswaldo Cruz. 2005;100 (Suppl 1):5–9.CrossRefGoogle ScholarPubMed
Guzik, TJ, Korbut, R, Adamek-Guzik, T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol. 2003;54(4):469–487.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×